第七章_纳米微粒尺寸的评估
- 格式:ppt
- 大小:1.49 MB
- 文档页数:34
一纳米颗粒的尺寸评估目录⏹1.1 纳米微粒的相关概念⏹1.2 透射电镜观察法⏹1.2.1 操作步骤:⏹1.2.2 透射电镜的3种观测方法⏹1.2.3 透射电镜观察法的优缺点⏹1.2.4 透射电镜观察法注意的问题⏹1.3 X射线衍射线线宽法(谢乐公式)⏹1.3.2 谢乐公式原理⏹1.3.3 谢乐公式计算晶粒度时注意的问题⏹1.4 比表面积法(BET)⏹1.4.1 测量原理:⏹1.4.2 比表面积法的计算过程⏹1.4.3 比表面法的测定方法:⏹1.4.4 动态法和静态法的优缺点及对比⏹1.5 X射线小角散射法(SAXS)⏹1.5.1 X射线小角散射的定义⏹1.5.2 X射线小角散射的原理⏹1.5.3 X射线小角散射法的适用范围及应用⏹1.5.4 X射线小角散射法的优缺点⏹1.6 拉曼(Raman)散射法⏹1.6.1 拉曼散射(Raman scattering)的定义:⏹1.6.2 拉曼散射遵守的规律:⏹1.6.3 拉曼(Raman)散射法的原理⏹1.6.4 拉曼(Raman)散射法的优缺点⏹1.7 光子相关谱法⏹1.7.1 基本原理⏹1.7.2 光子相关谱⏹1.7.3 光子相关谱仪⏹1.7.4 数字自相关器⏹1.7.5 数据分析⏹1.8 其他测量方法的介绍⏹1.8.1 沉降法⏹1.8.2 扫描隧道显微镜(STM)⏹1.8.3 扫描电子显微镜⏹1.9 小结⏹1.9.1 各种方法实际应用的总结1.1 纳米微粒的相关概念⏹(1)晶粒:是指单晶颗粒,即颗粒单相,无晶界。
⏹(2)一次颗粒:是指含有低气孔率的一种独立的粒子,颗粒内部可以有界面,例如相界、晶界等。
⏹(3)团聚体:是由一次颗粒通过表面力或固体桥键作用形成的更大的颗粒。
团聚体内含有相互连接的气孔网络。
团聚体可分为硬团聚体和软团聚体两种.团聚体的形成过程使体系能量下降。
⏹(4)二次颗粒:是指人为制造的粉料团聚粒子;例如制备陶瓷的工艺过程中所指的“造粒”就是制造二次颗粒。
高分子纳米复合材料知到章节测试答案智慧树2023年最新齐鲁工业大学第一章测试1.关于纳米材料的表述,错误的是()参考答案:新型管状病毒处于纳米尺度的范围内2.复合材料的英文名称()参考答案:Composite3.纳米材料能够实现高分子纳米复合材料既增强又增韧的原因是?()参考答案:高分子基体中的无机纳米粒子作为高分子链的交联点,增加了填料与基体间的相互作用,从而提高复合材料的强度;随着纳米粒子粒径的减小,粒子的比表面积增大,纳米微粒与基体接触面积增大,有利于改善纳米材料与基体材料的应力传递,使材料受冲击时产生更多的微裂纹,从而吸收更多的冲击能;如果纳米微粒用量过多或填料粒径变大,复合材料应力集中较为明显,微裂纹易发展成宏观开裂,反而造成复合材料性能下降;无机纳米粒子具有微裂纹阻断效应,通过能量的吸收与辐射,使基体树脂裂纹扩展受阻和钝化,最终终止裂纹,不至于发展成为破坏性开裂;纳米材料的粒径对增强增韧性能有直接的贡献;无机纳米粒子进入高分子基体缺陷内,改变了基体的应力集中现象,引发粒子周围基体屈服变形(包括脱粘、空化、银纹化、剪切带作用),吸收一定的变形功实现增韧4.实现杀菌功能可以选用()纳米Ag5.要实现具有磁性的纳米材料应该选择()参考答案:纳米Fe3O46.提高高分子纳米复合材料性能的途径有()参考答案:提高与基体作用力;选择具有特定功能的纳米材料;让纳米材料分散均匀;纳米材料粒径要小7.以下是nanomaterial的为:()参考答案:MMT;CNT;rGO;石墨;GO;氧化石墨烯8.关于高分子纳米复合材料,说法正确的是()参考答案:Rainforced phase is nanomaterial;Continuous phase is polymermatrix;It can be made by in-situ polymerization method9.高分子纳米复合材料独特的性能有:()既增强又增韧;阻隔性;阻燃性;新功能高分子材料性能;超疏水性10.关于团聚,说法正确的是()参考答案:指的是纳米材料的聚集;产生团聚的主要原因是其表面效应;对纳米材料进行适当的改性,可以降低团聚11.关于聚集态结构,说法正确的是()参考答案:指的是纳米材料在使用前后所处的状态参数;二级结构包含分散状态;两种结构都包含纳米材料的粒径;二级结构包含分散程度12.关于原位聚合,说法正确的是()参考答案:原位填充聚合就是原位聚合的一种;单体中含有纳米材料再实施的聚合13.传统的聚合物基复合材料与高分子纳米复合材料都可以既增强又增韧()参考答案:错第二章测试1.防止纳米SiO2的团聚所使用的化学试剂是()硅烷偶联剂2.rGO的是哪种纳米材料的英文简写()参考答案:还原氧化石墨烯3.纳米材料的基本性质包括?()参考答案:表面效应;宏观量子隧道效应;量子尺寸效应;小尺寸效应4.哪种结构的纳米材料可以实现负载的功能,比如载药()参考答案:中空结构纳米材料5.纳米材料易于团聚的原因主要是纳米材料的哪种性质造成的()参考答案:表面效应6.纳米材料的三种分类方式包括()参考答案:按照属性分类;按照结构分类;按照维度分类7.纳米材料的特殊性质包括?()参考答案:超疏水性质;润滑性质;光学性质;储氢性质;热学性质8.SiO2@TiO2表示以()为核,()为壳。
第五章纳米微粒的尺寸评估技术基本概念①晶粒(Grain) :单晶颗粒(晶粒内部物质均匀,单相,无晶界和气孔存在)②一次颗粒(Primary Particle) :气孔率低的一种独立的粒子,结构可为晶态、非晶态和准晶态,可以是单相、多相结构(有相界面),或多晶结构(有晶界面)。
其特点是不可渗透。
界面包括外表面(自由表面)和内界面。
表面是指固体材料与气体或液体的分界面;而内界面可分为晶粒边界和晶内的亚晶界、孪晶界、层错及相界面等。
在晶体表面上,原子排列情况与晶内不同,表面原子会偏离其正常的平衡位置,并影响到邻近的几层原子,造成表层的点阵畸变,使它们的能量比内部原子高,这几层高能量的原子层称为表面。
界面通常包含几个原子层厚的区域,该区域内的原子排列甚至化学成分往往不同于晶体内部,又因它是二维结构分布,故也称为晶体的面缺陷。
界面的存在对晶体的力学、物理和化学等性能产生重要的影响。
多数晶体物质是由许多晶粒所组成,属于同一固相但位向不同的晶粒之间的界面称为晶界,它是一种内界面;而每个晶粒有时又由若干个位向稍有差异的亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界。
具有不同结构的两相之间的分界面称为“相界”。
根据结构特点(两相晶格的彼此衔接情况),相界面可分为共格相界、半共格相界和非共格相界三种类型。
✍当一次颗粒为单相、晶态(单晶晶粒)时,颗粒的粒径才与晶粒尺寸(晶粒度)相同。
③二次颗粒(Granules) :一次颗粒组成的粉体团聚粒子。
可自发合成(减小表面能、界面能),也可人为制造。
④团聚体(Agglomerate) :与二次颗粒类似,由一次颗粒通过表面力(软团聚)或化学键键合作用(硬团聚)形成的更大颗粒,内含相互连接的气孔网络。
它的形成使体系能量下降,达到稳定状态。
⑤胶粒(Colloidal Particles):即胶体颗粒。
胶粒尺寸小于100nm,并可在液相中形成稳定胶体而无沉降现象。
颗粒尺寸:对球形颗粒,粒径指其直径;对不规则颗粒:等当直径(如体积等当直径、投影面积等当直径等)。
《纳米材料与器件》课程教学大纲(三号黑体)一、课程基本信息(四号黑体)二、课程目标(四号黑体)(一)总体目标:(小四号黑体)本课程是为材料化学专业和全校非材料类专业学生开设的一门专业选修课程。
通过课程的开设,使学生在了解纳米技术在工程实践中最新发展趋势的基础上,全面学习纳米材料的基本概念与性质,重点掌握纳米材料的制备技术,熟悉纳米材料的性能表征手段,逐步建立起纳米材料的结构、性能、制备、表征、应用这一系统的知识体系,最终使学生具有能够根据实践需求完成对纳米材料设计的能力,为从事这方面的学习与工作奠定坚实的基础。
(二)课程目标:(小四号黑体)《纳米材料与器件》课程系统建立纳米材料的结构、性能、制备、表征、应用这一系统的知识体系。
本课程目标如下:课程目标1:纳米纳米材料的基本概念与性质,课程目标2:纳米材料的制备方法;课程目标3:纳米材料的表征方法;课程目标4:纳米材料工程实践中的应用。
课程目标L通过绪论2学时的学习,使学生了解材料发展的历史,全面掌握纳米材料的定义、纳米效应,加深了解材料尺寸对材料性能的影响,从构效关系的角度思考材料性能改善的特定路径。
课程目标2:在已有学习常规材料制备方法的基础上,深入理解纳米材料制备过程控制的核心问题,把握纳米材料的团聚的分类、成因、前提、解决方法,深入体会不同制备方法的原理,学会用过程分析的理念去认知材料的制备过程。
课程目标3:结构决定性能,借助仪器分析,表征纳米材料组成、尺寸、形貌、一致性、缺陷等特征结构,结合性能评估深入理解材料的构效关系。
课程目标4:《纳米材料与器件》是材料类工科选修课,理论学习的目标是工程实践。
因此,本课程作为教学的重要环节,重点突出纳米材料在能源、环保、日常生活中的重要应用,将纳米材料的制备、表征、应用贯穿于工程实践当中,学以致用,激发学生的工程实践探索兴趣。
(要求参照《普通高等学校本科专业类教学质量国家标准》,对应各类专业认证标准,注意对毕业要求支撑程度强弱的描述,与“课程目标对毕业要求的支撑关系表一致)(五号宋体)(三)课程目标与毕业要求、课程内容的对应关系(小四号黑体)(大类基础课程、专业教学课程及开放选修课程按照本科教学手册中各专业拟定的毕业要求填写“对应毕业要求”栏。
举例说明纳米微粒尺寸常用的方法纳米微粒尺寸的测量方法有很多种,下面将介绍常用的10种方法。
1. 透射电子显微镜(Transmission Electron Microscopy,TEM)TEM是一种常用的纳米微粒尺寸测量方法。
它通过透射电子束来观察样品的微观结构,可以直接测量纳米级颗粒的尺寸。
2. 扫描电子显微镜(Scanning Electron Microscopy,SEM)SEM是一种常用的纳米微粒尺寸测量方法。
它通过扫描电子束来观察样品的表面形貌,可以间接推测纳米级颗粒的尺寸。
3. 动态光散射(Dynamic Light Scattering,DLS)DLS是一种常用的纳米微粒尺寸测量方法。
它利用光散射的原理,通过测量散射光的强度和时间的变化,来推测颗粒的大小和分布。
4. X射线衍射(X-ray Diffraction,XRD)XRD是一种常用的纳米微粒尺寸测量方法。
它利用材料对X射线的衍射来推测颗粒的晶格结构和尺寸。
5. 原子力显微镜(Atomic Force Microscopy,AFM)AFM是一种常用的纳米微粒尺寸测量方法。
它通过探针与样品表面进行相互作用,测量力的变化来推测颗粒的尺寸。
6. 扫描隧道显微镜(Scanning Tunneling Microscopy,STM)STM是一种常用的纳米微粒尺寸测量方法。
它利用电子的隧穿效应,通过探针与样品表面的距离变化来推测颗粒的尺寸。
7. 粒度分析仪粒度分析仪是一种常用的纳米微粒尺寸测量方法。
它通过测量样品中颗粒的沉降速度、散射光强度等参数,来推测颗粒的尺寸。
8. 静态光散射(Static Light Scattering,SLS)SLS是一种常用的纳米微粒尺寸测量方法。
它利用光散射的原理,通过测量散射光的强度和角度的变化,来推测颗粒的大小和分布。
9. 红外光谱(Infrared Spectroscopy,IR)红外光谱是一种常用的纳米微粒尺寸测量方法。