纳米粒子粒径评估的方法全解共47页文档
- 格式:ppt
- 大小:6.57 MB
- 文档页数:47
纳米材料粒度测试方法大全目前,纳米材料已成为材料研发以及产业化最基本的构成部分,其中纳米材料的粒度则是其最重要的表征参数之一。
本文根据不同的测试原理阐述了8种纳米材料粒度测试方法,并分析了不同粒度测试方法的优缺点及适用范围。
1.电子显微镜法电子显微镜法是对纳米材料尺寸、形貌、表面结构和微区化学成分研究最常用的方法,一般包括扫描电子显微镜法(SEM)和透射电子显微镜法(TEM)。
对于很小的颗粒粒径,特别是仅由几个原子组成的团簇,采用扫描隧道电镜进行测量。
计算电镜所测量的粒度主要采用交叉法、最大交叉长度平均值法、粒径分布图法等。
优点:该方法是一种颗粒度观测的绝对方法,因而具有可靠性和直观性。
缺点:测量结果缺乏整体统计性;滴样前必须做超声波分散;对一些不耐强电子束轰击的纳米颗粒样品较难得到准确的结果。
2.激光粒度分析法激光粒度分析法是基于Fraunhofer衍射和Mie氏散射理论,根据激光照射到颗粒后,颗粒能使激光产生衍射或散射的现象来测试粒度分布的。
因此相应的激光粒度分析仪分为激光衍射式和激光动态散射式两类。
一般衍射式粒度仪适于对粒度在5μm以上的样品分析,而动态激光散射仪则对粒度在5μm以下的纳米、亚微米颗粒样品分析较为准确。
所以纳米粒子的测量一般采用动态激光散射仪。
优点:样品用量少、自动化程度高、重复性好, 可在线分析等。
缺点:不能分析高浓度的粒度及粒度分布,分析过程中需要稀释,从而带来一定误差。
3.动态光散射法动态光散射也称光子相关光谱,是通过测量样品散射光强度的起伏变化得出样品的平均粒径及粒径分布。
液体中纳米粒子以布朗运动为主,其运动速度取决于粒径、温度和黏度系数等因素。
在恒定温度和黏度条件下, 通过光子相关谱法测定颗粒的扩散系数就可获得颗粒的粒度分布,其适用于工业化产品粒径的检测,测量粒径范围为1nm~5μm的悬浮液。
优点:速度快,可获得精确的粒径分布。
缺点:结果受样品的粒度大小以及分布影响较大,只适用于测量粒度分布较窄的颗粒样品;测试中应不发生明显的团聚和快速沉降现象。
一纳米颗粒的尺寸评估目录⏹1.1 纳米微粒的相关概念⏹1.2 透射电镜观察法⏹1.2.1 操作步骤:⏹1.2.2 透射电镜的3种观测方法⏹1.2.3 透射电镜观察法的优缺点⏹1.2.4 透射电镜观察法注意的问题⏹1.3 X射线衍射线线宽法(谢乐公式)⏹1.3.2 谢乐公式原理⏹1.3.3 谢乐公式计算晶粒度时注意的问题⏹1.4 比表面积法(BET)⏹1.4.1 测量原理:⏹1.4.2 比表面积法的计算过程⏹1.4.3 比表面法的测定方法:⏹1.4.4 动态法和静态法的优缺点及对比⏹1.5 X射线小角散射法(SAXS)⏹1.5.1 X射线小角散射的定义⏹1.5.2 X射线小角散射的原理⏹1.5.3 X射线小角散射法的适用范围及应用⏹1.5.4 X射线小角散射法的优缺点⏹1.6 拉曼(Raman)散射法⏹1.6.1 拉曼散射(Raman scattering)的定义:⏹1.6.2 拉曼散射遵守的规律:⏹1.6.3 拉曼(Raman)散射法的原理⏹1.6.4 拉曼(Raman)散射法的优缺点⏹1.7 光子相关谱法⏹1.7.1 基本原理⏹1.7.2 光子相关谱⏹1.7.3 光子相关谱仪⏹1.7.4 数字自相关器⏹1.7.5 数据分析⏹1.8 其他测量方法的介绍⏹1.8.1 沉降法⏹1.8.2 扫描隧道显微镜(STM)⏹1.8.3 扫描电子显微镜⏹1.9 小结⏹1.9.1 各种方法实际应用的总结1.1 纳米微粒的相关概念⏹(1)晶粒:是指单晶颗粒,即颗粒单相,无晶界。
⏹(2)一次颗粒:是指含有低气孔率的一种独立的粒子,颗粒内部可以有界面,例如相界、晶界等。
⏹(3)团聚体:是由一次颗粒通过表面力或固体桥键作用形成的更大的颗粒。
团聚体内含有相互连接的气孔网络。
团聚体可分为硬团聚体和软团聚体两种.团聚体的形成过程使体系能量下降。
⏹(4)二次颗粒:是指人为制造的粉料团聚粒子;例如制备陶瓷的工艺过程中所指的“造粒”就是制造二次颗粒。
纳米颗粒粒径大小、粒径分布及比表面积的测试方法与各种方法的特点纳米微粒一般是指一次颗粒,它的尺度一般在1~100nm之间,是介于原子、分子和固体体相之间的物质状态。
由于纳米微粒具有尺寸小、比表面积大和量子尺寸效应,使它具有不同于常规固体的新的特性。
在纳米态下,颗粒尺寸更是对其性质有着强烈的影响,纳米材料的颗粒度的大小是衡量纳米材料最重要的参数之一。
因此,在纳米材料的研究中准确测量纳米颗粒的大小是很重要的。
目前可用于测定纳米颗粒粒径的方法有:透射电镜观察法(TEM观察法)、X射线衍射线宽法(谢乐公式)、X射线小角散射法、BET比表面积法、离心沉降法、动态光散射法等6种。
1.1透射电子显微镜(transmissionelectronmicroscopeTEM)。
其原理是:以高能电子(一般为50-200keV)穿透样品,根据样品不同位置的电子透过强度不同或电子透过晶体样品的衍射方向不同,经后面电磁透镜的放大后,在荧光屏上显示出图像。
TEM分辨率达0.3nm,晶格分辨率达到0.1nm~0.2nm,其样品可放在直径2mm~3mm的铜网上进行测试。
用电镜测量粒径首先应尽量多拍摄有代表性的纳米微粒形貌像,然后由这些电镜照片来测量粒径。
该方法是颗粒度观察测定的绝对方法,因而具有高可靠性和直观性。
用这种方法可以观察到纳米粒子的平均直径或粒径分布。
电镜观察法的缺点一是由于观察用的粉末极少,使得测量结果缺乏统计性;二是因为在制备超微粒子的电镜观察样品时,首先需用超声波分散法使超微粉末分散在载液中,有时候很难使它们全部分散成一次颗粒,特别是纳米粒子很难分散,往往使测得的颗粒粒径是团聚体的粒径。
1.2 X射线衍射线宽法(谢乐公式)由衍射原理可知,物质的X射线衍射峰(花样)与物质内部的晶体结构有关。
每种结晶物质都有其特定的结构参数(包括晶体结构类型,晶胞大小,晶胞中原子、离子或分子的位置和数目等)。
因此,没有两种不同的结晶物质会给出完全相同的衍射峰。
第五章纳米微粒的尺寸评估技术基本概念①晶粒(Grain) :单晶颗粒(晶粒内部物质均匀,单相,无晶界和气孔存在)②一次颗粒(Primary Particle) :气孔率低的一种独立的粒子,结构可为晶态、非晶态和准晶态,可以是单相、多相结构(有相界面),或多晶结构(有晶界面)。
其特点是不可渗透。
界面包括外表面(自由表面)和内界面。
表面是指固体材料与气体或液体的分界面;而内界面可分为晶粒边界和晶内的亚晶界、孪晶界、层错及相界面等。
在晶体表面上,原子排列情况与晶内不同,表面原子会偏离其正常的平衡位置,并影响到邻近的几层原子,造成表层的点阵畸变,使它们的能量比内部原子高,这几层高能量的原子层称为表面。
界面通常包含几个原子层厚的区域,该区域内的原子排列甚至化学成分往往不同于晶体内部,又因它是二维结构分布,故也称为晶体的面缺陷。
界面的存在对晶体的力学、物理和化学等性能产生重要的影响。
多数晶体物质是由许多晶粒所组成,属于同一固相但位向不同的晶粒之间的界面称为晶界,它是一种内界面;而每个晶粒有时又由若干个位向稍有差异的亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界。
具有不同结构的两相之间的分界面称为“相界”。
根据结构特点(两相晶格的彼此衔接情况),相界面可分为共格相界、半共格相界和非共格相界三种类型。
✍当一次颗粒为单相、晶态(单晶晶粒)时,颗粒的粒径才与晶粒尺寸(晶粒度)相同。
③二次颗粒(Granules) :一次颗粒组成的粉体团聚粒子。
可自发合成(减小表面能、界面能),也可人为制造。
④团聚体(Agglomerate) :与二次颗粒类似,由一次颗粒通过表面力(软团聚)或化学键键合作用(硬团聚)形成的更大颗粒,内含相互连接的气孔网络。
它的形成使体系能量下降,达到稳定状态。
⑤胶粒(Colloidal Particles):即胶体颗粒。
胶粒尺寸小于100nm,并可在液相中形成稳定胶体而无沉降现象。
颗粒尺寸:对球形颗粒,粒径指其直径;对不规则颗粒:等当直径(如体积等当直径、投影面积等当直径等)。
如何测量纳米颗粒的粒径近年来PM2.5成为肯定的热词,简单来说就是直径小于等于 2.5m 的可吸入颗粒物。
宏观世界中看似没什么差别的颗粒,在微观角度可谓包罗万象,因此必要的定量描述必不可少。
首先我们来明确一个基本概念和一个基本假设。
粒度:颗粒的大小称为粒度,通常球体颗粒的粒度用直径表示,立方体颗粒的粒度用边长表示。
粒径是颗粒的直径。
然而实际中的颗粒大多是不规定的,所以,为了更便利的描述颗粒的大小,在实际测算中,将不规定的颗粒等效为规定球,并以其直径作为颗粒的粒度。
这就是“等效圆球理论”。
几种粒度测量方法及其范围:所以,小颗粒,你多大呀?下面让我们一起认得筛分法、显微(图像)法、沉降法、电阻法、光阻法、激光衍射、动态光散射、电子显微镜、超声波法和比表面积法。
一、筛分法筛分法测定粒径时,依照被测试样的粒径大小及分布范围,将大小不同筛孔的筛子叠放在一起进行筛分,收集各个筛子的筛余量,称量求得被测试样以重量计的颗粒粒径分布。
筛分法适于粒度30m的粉体。
测定时取肯定量的粉料通过筛子,测定筛余量(即通不过的粉料量)占总重量的百分率,筛余越多,说明粉料颗粒愈粗。
不同产品有不同的筛余量(如电容器陶瓷要求筛余量小于0.01%)。
其中紧要的参数是:A.筛分直径(颗粒能够通过的最小方筛孔的宽度);B.筛孔的大小用目表示每一英寸长度上筛孔的个数,国产筛是以每平方英寸上的孔数表示筛的目数。
优点:设备简单,操作简便,易于实行,设备造价低。
缺点:1)对小于400目(38m)的干粉很难测量。
测量时间越长,得到的结果就越小;2)在筛分操作过程中,颗粒有可能破损或断裂,因此筛分特别不适合测定长形针状或片状颗粒的粒度。
同时必需注意到,非球形的颗粒通过筛子在肯定程度上取决于颗粒的方向,造成测量误差。
此外,含有结合水的颗粒粒度的测量不适合采纳筛分法;3)不能测量射流或乳浊液,结果受人为因素影响较大;4)所谓某某粉体多少目,是指用该目数的筛筛分后的筛余量小于某给定值。
纳米材料粒度测试方法大全纳米材料粒度测试是纳米材料研究和应用中非常重要的一项工作,通过准确测量纳米材料的粒度可以了解其物理性质和化学性质,为纳米材料的合成、应用和性能优化提供数据支持。
下面将介绍几种常用的纳米材料粒度测试方法。
1.扫描电子显微镜(SEM):SEM是一种通过扫描纳米材料表面的高能电子束来观察和测量纳米材料粒度的方法。
该方法具有分辨率高、测量精度高、对纳米材料样品无需特殊处理等特点。
通过SEM观察到的纳米材料外观图像可以用于测量粒径、形貌和分布等参数。
2.透射电子显微镜(TEM):TEM是一种通过透射电子束观察纳米材料内部结构的方法,也可用于测量纳米材料的粒度。
TEM具有高分辨率,可以观察到纳米尺度的细节。
通过对TEM图像的分析,可以根据纳米材料的投影面积和长度等参数来计算纳米材料的粒径。
3.动态光散射(DLS):DLS是一种通过检测纳米材料颗粒在溶液中的布朗运动来测量纳米材料粒度的方法。
它利用激光束照射纳米颗粒溶液,测量散射光的强度和角度分布,从而得到纳米材料的尺寸分布。
DLS具有非接触式测量、快速、方便等特点,适用于纳米材料的溶液或悬浮液样品。
4.X射线衍射(XRD):XRD是一种通过测量材料晶体的衍射角度来确定晶体结构和晶粒尺寸的方法。
对于具有晶体结构的纳米材料,可以通过XRD图谱的峰宽来估算晶粒尺寸。
XRD具有无损测量、精度高等特点,适用于晶体结构明确的纳米材料。
5.傅里叶红外光谱(FTIR):FTIR是一种通过测量纳米材料在红外波段的吸收光谱来研究纳米材料结构和成分的方法。
纳米材料的粒度也可以通过红外吸收峰的强度和位置进行定性和定量分析。
FTIR具有所需样品量少、分辨率高等特点,适用于纳米材料的表面分析和组成分析。
6.水中悬浮液测定法:将纳米材料置于水中制备悬浮液,通过测量悬浮液的光学性质如透光率等,可以间接测得纳米材料的粒度。
该方法操作简单、快速,可用于大量样品的测量。
7.气相吸附法:纳米材料的比表面积可以通过气相吸附法来测量。
纳米粒粒径一、什么是纳米粒粒径?说起纳米粒子,这可不是普通的灰尘或沙子。
它们小得让你根本看不见,要是你拿放大镜看,估计都得失望,根本看不清。
它们的“身高”一般都在1到100纳米之间。
什么是纳米?就是在米的基础上,往后面加上九个零,想象一下,如果你把一根头发剪得非常非常细,那就差不多是纳米级的大小了。
这个尺寸,听起来是不是有点让人摸不着头脑?不过别急,咱们一步步来。
纳米粒子小到什么程度呢?举个例子,你把一颗足球放在地球上,那颗足球的大小差不多是一个纳米粒子在宇宙中的尺度。
也就是说,纳米粒子可以容纳在你眼睛瞧不见的世界里,成千上万的纳米粒子才能凑起来一个肉眼可见的物体。
这种极其微小的物质,进入人体后,竟然能发挥出强大的功能!比如药物传递、清洁、甚至修复细胞等等。
真是小身材大智慧,巧妙地调动了微观世界的力量。
二、为什么粒径这么重要?你肯定想,这么小的东西能有多大用处呢?纳米粒的粒径直接决定了它的表现和效果。
像颗粒越小,它的比表面积就越大,接触到其他物质的机会也就越多。
这就像你泡茶,如果茶叶很多,茶味会更加浓郁。
如果只有一点点茶叶,那水就是淡淡的。
所以,纳米粒子的粒径越小,它能做的事情也越多,效果就越强。
粒径的大小还能影响它在身体里的“旅行”路线。
你想象一下,一颗纳米粒子就像一只小小的旅行者,它需要穿越血管,进入细胞,完成它的任务。
如果粒子太大,它就很难顺利通过这些通道,反而可能被体内的免疫系统当作“异物”给干掉。
如果粒子太小,虽然能顺利通过,但可能缺乏足够的力量去完成任务。
所以,掌握好粒径的“黄金分割”至关重要。
说到这里,不得不提一下,科学家们在研发纳米技术时,真的得拿出点智慧和耐心。
调控粒径的技术难度可想而知。
如果粒子大小不合适,可能会导致药效不足,甚至出现副作用。
搞定粒径这个问题,真的是个技术活,得心细,不能马虎。
三、粒径和应用的关系纳米粒的应用,听起来就很酷,实际上背后是非常讲究的。
拿药物传递来说,粒径的大小决定了药物如何进入体内、如何释放。
纳米材料粒度分析一、实验原理纳米颗粒材料(粒径<100nm )是纳米材料中最重要的一种,可广泛用于纳米复合材料制备中的填料、光催化颗粒、电池电极材料、功能性分散液等。
粒径(或粒度)是纳米颗粒材料的一个非常重要的指标。
测试颗粒粒径的方法有许多种,其中,电子显微镜法和激光光散射法均可用纳米材料粒度的测试,电子显微镜法表征纳米材料比较直观,可观察到纳米颗粒的形态,但需要通过统计计数(一般需统计1000个以上颗粒的粒径)方法来得到颗粒粒径,比较烦琐费时,尤其是在纳米颗粒的粒径分布较宽时,统计得到的粒径及粒径分布误差将增大。
激光光散射法得到的纳米颗粒粒径具有较好的统计意义,制样简单,测试速度快,但激光光散射法无法观察到颗粒形态,在测试非球形颗粒时测试误差也较大。
因此,上述两种纳米材料的测试方法各有优缺点。
本实验选用激光光散射法测试纳米材料的粒径及粒径分布。
所用仪器为Beckman-coulter N4 Plus 型激光粒度分析仪。
图1为N4 Plus 型激光粒度分析仪的测量单元组成图,主要由HeNe 激光光源、聚焦透镜、样品池、步进马达、光电倍增管(PMT)、脉冲放大器和鉴别器(PAD)、数字自相关器、6802微处理器和计算机组成。
图1 N4 Plus 型激光粒度测试仪的测量单元组成图N4 Plus 型激光粒度分析仪的测量原理主要基于颗粒的布朗(Brownian)运动和光子相关光谱(Photon Correlation Spectroscopy, PCS)现象。
在溶液中,粒子由热导致与溶剂分子发生随机碰撞所产生的运动称为布朗运动,由于布朗运动,粒子在溶液中可发生扩散移动。
在恒定温度及某一浓度下,粒子的平移扩散系数与颗粒的粒径成反比,即符合Stokes-Einstein 方程:d3Tk D B πη=(1)式中k B 为玻尔兹曼常数(1.38×10-16erg/︒K),T 为温度(︒K),η为分散介质(或稀释剂)粘度(poise),d 为颗粒粒径(cm)。
纳米粒度分析纳米粒度分析是一种用于测量和分析纳米颗粒的技术。
纳米粒度是指颗粒的尺寸在1至100纳米之间。
纳米颗粒具有独特的物理和化学性质,因此对其进行准确的尺寸分析对于研究和应用纳米材料非常重要。
纳米粒度分析可以通过不同的方法进行,其中常用的包括光学显微镜、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、动态光散射(DLS)和激光粒度分析仪(LPA)。
每种方法都有其特定的优点和限制,因此选择适当的方法取决于样品类型、尺寸范围和分析需求。
光学显微镜是一种便捷且经济的测量方法,可以直接观察和测量粒子在固定载玻片上的大小。
然而,由于光学显微镜的分辨率限制,只能测量大约200纳米以上的粒子。
透射电子显微镜(TEM)和扫描电子显微镜(SEM)是两种使用电子束的技术,可以提供更高的分辨率和更精确的粒子尺寸分析。
TEM通过通过样品的透射电子图像来进行分析,可以达到纳米尺度以下的分辨率。
SEM通过扫描电子束并检测从样品表面散射出的电子来获取图像和尺寸数据。
这两种方法可以对纳米颗粒进行直接的形貌和尺寸分析,但需要较复杂的样品制备和仪器操作。
动态光散射(DLS)是一种常用的液相纳米颗粒尺寸分析方法。
这种方法通过测量悬浊液中颗粒在热扰动下的光散射来确定粒子的尺寸分布。
DLS具有非接触测量、速度快和样品制备简单的优点,适用于纳米颗粒的溶液样品。
激光粒度分析仪(LPA)是一种利用粒子在激光束中散射光的方法进行尺寸分析的技术。
该仪器通过测量颗粒散射光的角度和强度来确定颗粒的尺寸分布。
LPA可以对固体和液体样品进行尺寸分析,且具有较高的分辨率和较广的尺寸范围。
除了上述方法,还有一些其他的纳米粒度分析技术,例如X射线衍射(XRD)、原子力显微镜(AFM)和场发射扫描电子显微镜(FESEM)。
这些方法在特定情况下也可以用于纳米颗粒的尺寸分析。
总而言之,纳米粒度分析是研究和应用纳米材料的重要手段。
选择合适的分析方法取决于样品类型、尺寸范围和分辨率要求等因素。
纳米颗粒表征实验方法与技巧随着纳米科技的快速发展,纳米颗粒表征成为了研究和应用领域中一项重要的任务。
纳米颗粒表征是指对纳米颗粒的大小、形状、结构、表面性质以及其他相关属性进行精确测量和评估的过程。
有效的纳米颗粒表征实验方法与技巧对于研究和应用纳米材料具有重要意义。
本文将介绍几种常见的纳米颗粒表征实验方法与技巧。
一、粒径分析纳米颗粒的粒径分析是纳米颗粒表征中最基本的一项工作。
粒径分布对于纳米颗粒的物理性质和应用可能起到决定性作用。
目前常用的纳米颗粒粒径分析方法包括动态光散射(DLS)、静态光散射(SLS)、透射电镜(TEM)以及场发射扫描电子显微镜(FESEM)等。
动态光散射(DLS)是一种非侵入性、实时测量纳米颗粒粒径的技术。
它通过测量纳米颗粒在溶液中受到的热运动引起的散射光强变化来确定颗粒的粒径大小。
静态光散射(SLS)则是在透射光或反射光下,测量散射光强与颗粒直径的关系,并借助距离和散射角度关系的模型计算颗粒的粒径。
透射电镜(TEM)和场发射扫描电子显微镜(FESEM)则通过电子束的照射,利用电子的衍射现象和投影成像原理来观察纳米颗粒的结构和形貌,并进行粒径测量。
这些方法的优点在于能够获得高分辨率的显微图像和准确的纳米颗粒粒径。
二、表面性质分析纳米颗粒表面性质对其在多种领域的应用起着重要作用。
纳米颗粒的表面性质可以通过高分辨电子能谱(HREELS)、X射线光电子能谱(XPS)以及红外光谱等方法进行分析。
高分辨电子能谱(HREELS)是一种通过测量电子在表面与振动分子之间的能量损失来分析表面结构和反应的技术。
它被广泛应用于研究纳米颗粒的表面化学反应和表面态的变化。
X射线光电子能谱(XPS)则通过测量材料的光电子发射谱来分析样本的表面成分。
这种分析方法对于研究纳米颗粒的表面元素和元素化合物的组成非常有用。
红外光谱则通过测量样品在红外波段的吸收和散射来分析纳米颗粒的表面化学键和官能团。
红外光谱可以提供有关纳米颗粒表面上化学键和官能团类型的信息。