Ansys在镀锌锅空间温度场分析中的应用
- 格式:pdf
- 大小:190.67 KB
- 文档页数:3
第24卷 第1期 邢台职业技术学院学报 V ol.24No.1 2007年2月 Journal of Xingtai Polytechnic College Feb. 2007 ANSYS在焊接温度场数值模拟中的应用王新彦,高军芳,刘兵群(邢台职业技术学院机电系,河北邢台054035)摘要:目前数值模拟技术已广泛应用于各生产研究领域,ANSYS是一种被广泛应用的有限元数值模拟软件,本文阐述了ANSYS在焊接温度场数值模拟中的几个应用技巧,合理使用这些技巧可以缩短模拟过程的时间,提高模拟精度。
关键词:ANSYS;数值模拟;应用技巧中图分类号:TP15;TG40 文献标识码:A 文章编号:1008—6129(2007)01—0054—03目前,在工程领域内常用的数值模拟方法有:有限元法、边界元法、离散元法和无限元法等,其中,发展最成熟,应用最广泛的是有限元法。
随着有限元技术的发展与应用,以及近年来由于计算机技术的突飞猛进,目前已经有了不少优秀的有限元计算分析软件,其中ANSYS, ABAQUS, ADINA, NASTRAN, MARC, SYSWBLD等可供焊接工作者选用。
不同软件处理问题的侧重点有所不同,在这些软件中,美国ANSYS公司的产品是一个涵盖最多工程领域的FEM软包。
该产品在结构分析、热分析、流体分析、电及电磁场分析方面都非常成功,目前已广泛应用于航天、汽车工业、生物医学、桥梁建筑、电子产品、重型机械等领域。
在实际的应用中,作者发现应用ANSYS软件时,任一环节的错误操作或遗漏都可能导致错误的结果,甚至退出计算。
要想保证软件能按照用户的思路运行。
除掌握了它的使用性能外,还需要一些技巧,本文阐述了几个重要的用ANSYS软件解决焊接温度场模拟问题的应用技巧,希望能对使用ANSYS研究焊接温度场的同行有所帮助。
一、ANSYS建模技术在焊接结构中,焊接接头处焊件的形状一般是长方体、圆柱体、空心圆柱体(管)等规则的形体,建模时采用自上而下的方法直接创建最高级的图元,当用户定义了一个体素时,程序会自动定义相关的面、线、和关键点。
!此APDL程序为本书第六章《太阳辐射作用下钢结构温度场分析》中例题6.2的相关程序!(1)建立工作文件名和工作标题/CLEAR !清除目前ANSYS中所有数据/COM,Thermal !过滤ANSYS的图形截面/FILENAME, TEMP_FIELD !定义工作文件名/TITLE, TEMPERATURE FIELD ANAL YSIS OF A STEEL MEMBER !定义工作标题*AFUN,DEG !设置程序中角单位为度!(2)定义单元类型/PREP7 !进入前处理模块ET,1,SOLID70 !定义热分析单元ET,2,MESH200 !定义网格划分单元KEYOPT,2,1,6 !定义单元2的第一个关键选项KEYOPT,2,2,0 !定义单元2的第二个关键选项!(3)定义材料性能参数MP,KXX,1,45 !定义钢材KXX方向的导热系数MP,KYY,1,45 !定义钢材KYY方向的导热系数MP,KZZ,1,45 !定义钢材KZZ方向的导热系数MP,DENS,1,7850 !定义钢材的密度MP,C,1,465 !定义钢材的比热容!(4)创建有限元模型LOCAL,11,0,0,0,0,0,0,30 !定义局部坐标系11CSYS,11 !激活局部坐标系11K,1,0,0,0 !定义矩形钢管的中心轴线中的关键点1K,2,0,1,0 !定义矩形钢管的中心轴线中的关键点2L,1, 2 !连接关键点1和2,生成矩形钢管的中心轴线k,3,0.5,0,0.5 !定义矩形钢管截面的关键节点3k,4,-0.5,0,0.5 !定义矩形钢管截面的关键节点4k,5,-0.5,0,-0.5 !定义矩形钢管截面的关键节点5k,6,0.5,0,-0.5 !定义矩形钢管截面的关键节点6k,7,0.48,0,0.48 !定义矩形钢管截面的关键节点7k,8,-0.48,0,0.48 !定义矩形钢管截面的关键节点8k,9,-0.48,0,-0.48 !定义矩形钢管截面的关键节点9k,10,0.48,0,-0.48 !定义矩形钢管截面的关键节点10k,11,0.5,0,0.48 !定义矩形钢管截面的关键节点11k,12,-0.5,0,0.48 !定义矩形钢管截面的关键节点12k,13,-0.5,0,-0.48 !定义矩形钢管截面的关键节点13k,14,0.5,0,-0.48 !定义矩形钢管截面的关键节点14!定义矩形钢管截面,为便于网格划分,分四部分创建A,3,4,12,11 !利用关键点3、4、12、11,生成面1A,5,6,14,13 !利用关键点5、6、14、13,生成面2A,11,7,10,14 !利用关键点11、7、10、14,生成面3A,8,12,13,9 !利用关键点8、12、13、9,生成面4!对矩形钢管截面进行网格划分AESIZE,all,0.02 !将所有面网格划分时的单元尺寸设置为0.02m MSHAPE,0,2D !利用四边形单元进行网格划分MSHKEY,1 !采用映射网格划分单元AMESH,ALL !对所有网格进行划分单元TYPE,1 ! 定义单元属性EXTOPT,ESIZE,10,1, !在体生成的方向上单元分割为10份EXTOPT,ACLEAR,1 !在体生成时清除面单元网格EXTOPT,ATTR,0,0,0 !使用有MA T命令定义的材料属性赋给单元MA T,1 !定义单元的材料属性VDRAG,1,2 ,3 , 4, , ,1 !拉伸建立体并形成SOLID70实体单元CSYS,0 ! 激活笛卡尔坐标系!(5)计算日照时间内,即14个小时内的空气的温度值*DIM,t_outdoor,,14 !定义室外空气温度数组为t_outdoor*DO,t,6,19 !给室外空气温度数组t_outdoor赋值*SET,t_outdoor(t-5),35+5*sin(15*(t-5)-45)*ENDDO!(6)计算日照时间内,即14个小时内地面的温度值*DIM,t_earth,,14 !定义地面的温度值数组为t_earth*DO,t,6,19 !给日照时间内地面温度值数组赋值*SET,t_earth(t-5),36+8*sin(15*(t-5)-45)*ENDDO!(7)定义14个时刻太阳高度角正弦数组altitudea1=23.44 !定义太阳赤纬角23.44a2=36.26 !定义地理纬度为北纬36.26*DIM,altitude,,14 !定义日照时间内太阳高度角的正弦值数组为altitude *DO,i,1,14,1aa=cos(a2)*cos(15*(i-1)-90)*cos(a1)aa1=sin(a2)*sin(a1) !根据书中公式()计算太阳高度角正弦值*SET,altitude(i),aa+aa1*ENDDO!(8)定义14个时刻的太阳方位角余弦数组azimuth并赋值,*DIM,azimuth,,14*DO,i,1,14,1aa=sin(a1)*cos(a2)-cos(a1)*sin(a2)*cos(15*(i-1)-90)aa2=sqrt(1-altitude(i)**2)*SET,azimuth(i),aa/aa2*ENDDO!(9)定义14个时刻的太阳方位角角度数组angle并赋值*DIM,angle,,14*DO,i,1,7,1*SET,angle(i),acos(azimuth(i))*ENDDO*DO,i,8,14,1*SET,angle(i),2*180-acos(azimuth(i))*ENDDO!(11)太阳辐射强度计算的基本参数设置*SET,factorc,0.138 !太阳散射辐射系数*SET,pg,0.35 !地面或者水平面的太阳辐射反射率*SET,factor_a,1370*(1+0.034) !地外太阳直射辐射值*SET,factor_b,0.42 !定义大气消光系数!(12)定义14个时刻的地面太阳辐射直射强度数组GND并赋值*DIM,GND,,14*DO,m,1,14,1*SET,GND(m),factor_a/exp(factor_b/altitude(m))*ENDDO!(13)定义14个时刻结构表面太阳辐射荷载的几何参数*DIM,cos_surf,,4 !表面方位角余弦值*DIM,cos_angle,,4 !表面方位角角度值*DIM,cos_title,,4 !倾角余弦值*DIM,title_angle,,4 !倾角角度值!利用面5上的三个关键点,计算面5的表面方位角余弦、表面方位角弧度、倾角余弦和倾角弧度值kp_1=4 !将面5中的关键点4的编号赋给参数kp_1kp_2=3 !将面5中的关键点3的编号赋给参数kp_2kp_3=16 !将面5中的关键点16的编号赋给参数kp_3k1x=kx(kp_1) !提取关键点4的X坐标值k1y=ky(kp_1) !提取关键点4的Y坐标值k1z=kz(kp_1) !提取关键点4的Z坐标值k2x=kx(kp_2) !提取关键点3的X坐标值k2y=ky(kp_2) !提取关键点3的Y坐标值k2z=kz(kp_2) !提取关键点3的Z坐标值k3x=kx(kp_3) !提取关键点16的X坐标值k3y=ky(kp_3) !提取关键点16的Y坐标值k3z=kz(kp_3) !提取关键点16的Z坐标值!参考空间解析几何相关知识,计算面5的a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=0a4=sqrt(a1**2+a2**2+a3**2)*set,cos_surf(1),abs(a2)/a4cosx=normkx(kp_3,kp_2,kp_1)cosy=normky(kp_3,kp_2,kp_1)*if,cosx,lt,0,and,cosy,lt,0,then*set,cos_angle(1),acos(cos_surf(1))*elseif,cosx,gt,0,and,cosy,gt,0,then*set,cos_angle(1),acos(cos_surf(1))+180*elseif,cosx,lt,0,and,cosy,gt,0,then*set,cos_angle(1),180-acos(cos_surf(1))*else*set,cos_angle(1),360-acos(cos_surf(1))*endifcosz=normkz(kp_3,kp_2,kp_1)*(-1)*set,cos_title(1),cosz*set,title_angle(1),acos(cosz)!利用面21上的三个关键点,计算面21的表面方位角余弦、表面方位角弧度、倾角余弦和倾角弧度值kp_1=13 !将面21中的关键点13的编号赋给参数kp_1kp_2=12 !将面21中的关键点12的编号赋给参数kp_2kp_3=22 !将面21中的关键点22的编号赋给参数kp_3k1x=kx(kp_1) !提取关键点13的X坐标值k1y=ky(kp_1) !提取关键点13的Y坐标值k1z=kz(kp_1) !提取关键点13的Z坐标值k2x=kx(kp_2) !提取关键点12的X坐标值k2y=ky(kp_2) !提取关键点12的Y坐标值k2z=kz(kp_2) !提取关键点12的Z坐标值k3x=kx(kp_3) !提取关键点22的X坐标值k3y=ky(kp_3) !提取关键点22的Y坐标值k3z=kz(kp_3) !提取关键点22的Z坐标值a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=0a4=sqrt(a1**2+a2**2+a3**2)*set,cos_surf(1),abs(a2)/a4cosx=normkx(kp_3,kp_2,kp_1)cosy=normky(kp_3,kp_2,kp_1)*if,cosx,lt,0,and,cosy,lt,0,then*set,cos_angle(2),acos(cos_surf(2))*elseif,cosx,gt,0,and,cosy,gt,0,then*set,cos_angle(2),acos(cos_surf(2))+180*elseif,cosx,lt,0,and,cosy,gt,0,then*set,cos_angle(2),180-acos(cos_surf(2))*else*set,cos_angle(2),360-acos(cos_surf(2))*endifcosz=normkz(kp_3,kp_2,kp_1)*(-1)*set,cos_title(2),cosz*set,title_angle(2),acos(cosz)!利用面18上的三个关键点,计算面18的表面方位角余弦、表面方位角弧度、倾角余弦和倾角弧度值kp_1=11 !将面18中的关键点11的编号赋给参数kp_1kp_2=14 !将面18中的关键点14的编号赋给参数kp_2kp_3=21 !将面18中的关键点21的编号赋给参数kp_3k1x=kx(kp_1) !提取关键点11的X坐标值k1y=ky(kp_1) !提取关键点11的Y坐标值k1z=kz(kp_1) !提取关键点11的Z坐标值k2x=kx(kp_2) !提取关键点14的X坐标值k2y=ky(kp_2) !提取关键点14的Y坐标值k2z=kz(kp_2) !提取关键点14的Z坐标值k3x=kx(kp_3) !提取关键点21的X坐标值k3y=ky(kp_3) !提取关键点21的Y坐标值k3z=kz(kp_3) !提取关键点21的Z坐标值a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=0a4=sqrt(a1**2+a2**2+a3**2)*set,cos_surf(1),abs(a2)/a4cosx=normkx(kp_3,kp_2,kp_1)cosy=normky(kp_3,kp_2,kp_1)*if,cosx,lt,0,and,cosy,lt,0,then*set,cos_angle(3),acos(cos_surf(3))*elseif,cosx,gt,0,and,cosy,gt,0,then*set,cos_angle(3),acos(cos_surf(3))+180*elseif,cosx,lt,0,and,cosy,gt,0,then*set,cos_angle(3),180-acos(cos_surf(3))*else*set,cos_angle(3),360-acos(cos_surf(3))*endifcosz=normkz(kp_3,kp_2,kp_1)*(-1)*set,cos_title(3),cosz*set,title_angle(3),acos(cosz)!利用面10上的三个关键点,计算面10的表面方位角余弦、表面方位角弧度、倾角余弦和倾角弧度值kp_1=6 !将面10中的关键点6的编号赋给参数kp_1kp_2=5 !将面10中的关键点5的编号赋给参数kp_2kp_3=19 !将面10中的关键点19的编号赋给参数kp_3k1x=kx(kp_1) !提取关键点6的X坐标值k1y=ky(kp_1) !提取关键点6的Y坐标值k1z=kz(kp_1) !提取关键点6的Z坐标值k2x=kx(kp_2) !提取关键点5的X坐标值k2y=ky(kp_2) !提取关键点5的Y坐标值k2z=kz(kp_2) !提取关键点5的Z坐标值k3x=kx(kp_3) !提取关键点19的X坐标值k3y=ky(kp_3) !提取关键点19的Y坐标值k3z=kz(kp_3) !提取关键点19的Z坐标值a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=0a4=sqrt(a1**2+a2**2+a3**2)*set,cos_surf(1),abs(a2)/a4cosx=normkx(kp_3,kp_2,kp_1)cosy=normky(kp_3,kp_2,kp_1)*if,cosx,lt,0,and,cosy,lt,0,then*set,cos_angle(4),acos(cos_surf(4))*elseif,cosx,gt,0,and,cosy,gt,0,then*set,cos_angle(4),acos(cos_surf(4))+180*elseif,cosx,lt,0,and,cosy,gt,0,then*set,cos_angle(4),180-acos(cos_surf(4))*else*set,cos_angle(4),360-acos(cos_surf(4))*endifcosz=normkz(kp_3,kp_2,kp_1)*(-1)*set,cos_title(4),cosz*set,title_angle(4),acos(cosz)!(14)定义日照时间内14个时刻的构件表面太阳方位角数组并计算赋值*dim,angle_surf,,4,14 !表面太阳方位角计算*do,m,1,14*do,j,1,4,1*set,angle_surf(j,m),abs(cos_angle(j)-angle(m))*enddo*enddo!(15)定义日照时间内14个时刻的构件表面太阳入射角数组并计算赋值*dim,cos_ps,,4,14!计算入射角*do,m,1,14cosp=sqrt(1-altitude(m)**2)*do,j,1,4,1dd1=altitude(m)*cos(title_angle(j))dd2=cosp*cos(angle_surf(j,m))*sin(title_angle(j))*set,cos_ps(j,m),dd1+dd2*enddo*enddo!(16)定义日照时间内14个时刻的构件表面与水平面之间夹角的余弦值数组并计算赋值*dim,cos_ph,,4!表面与水平面之间的夹角的余弦!利用面5上的三个关键点,计算面5水平面之间的夹角的余弦值并赋值给cos_ph(1)kp_1=4 !将面21中的三个关键点13的编号分别赋给参数kp_1kp_2=3 !将面21中的三个关键点12的编号分别赋给参数kp_2kp_3=16 !将面21中的三个关键点22的编号分别赋给参数kp_3k1x=kx(kp_1) !提取关键点4的X坐标值k1y=ky(kp_1) !提取关键点4的Y坐标值k1z=kz(kp_1) !提取关键点4的Z坐标值k2x=kx(kp_2) !提取关键点3的X坐标值k2y=ky(kp_2) !提取关键点3的Y坐标值k2z=kz(kp_2) !提取关键点3的Z坐标值k3x=kx(kp_3) !提取关键点16的X坐标值k3y=ky(kp_3) !提取关键点16的Y坐标值k3z=kz(kp_3) !提取关键点16的Z坐标值a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=(k2x-k1x)*(k3y-k1y)-(k3x-k1x)*(k2y-k1y)a4=sqrt(a1**2+a2**2+a3**2)*set,cos_ph(1),abs(a3)/a4!利用面21上的三个关键点,计算面21水平面之间的夹角的余弦值并赋值给cos_ph(2) kp_1=13 !将面21中的三个关键点13的编号分别赋给参数kp_1kp_2=12 !将面21中的三个关键点12的编号分别赋给参数kp_2kp_3=22 !将面21中的三个关键点22的编号分别赋给参数kp_3k1x=kx(kp_1) !提取关键点13的X坐标值k1y=ky(kp_1) !提取关键点13的Y坐标值k1z=kz(kp_1) !提取关键点13的Z坐标值k2x=kx(kp_2) !提取关键点12的X坐标值k2y=ky(kp_2) !提取关键点12的Y坐标值k2z=kz(kp_2) !提取关键点12的Z坐标值k3x=kx(kp_3) !提取关键点22的X坐标值k3y=ky(kp_3) !提取关键点22的Y坐标值k3z=kz(kp_3) !提取关键点22的Z坐标值a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=(k2x-k1x)*(k3y-k1y)-(k3x-k1x)*(k2y-k1y)a4=sqrt(a1**2+a2**2+a3**2)*set,cos_ph(2),abs(a3)/a4!利用面18上的三个关键点,计算面18水平面之间的夹角的余弦值并赋值给cos_ph(3) kp_1=11 !将面21中的三个关键点13的编号分别赋给参数kp_1kp_2=14 !将面21中的三个关键点14的编号分别赋给参数kp_2kp_3=21 !将面21中的三个关键点21的编号分别赋给参数kp_3k1x=kx(kp_1) !提取关键点11的X坐标值k1y=ky(kp_1) !提取关键点11的Y坐标值k1z=kz(kp_1) !提取关键点11的Z坐标值k2x=kx(kp_2) !提取关键点14的X坐标值k2y=ky(kp_2) !提取关键点14的Y坐标值k2z=kz(kp_2) !提取关键点14的Z坐标值k3x=kx(kp_3) !提取关键点21的X坐标值k3y=ky(kp_3) !提取关键点21的Y坐标值k3z=kz(kp_3) !提取关键点21的Z坐标值a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=(k2x-k1x)*(k3y-k1y)-(k3x-k1x)*(k2y-k1y)a4=sqrt(a1**2+a2**2+a3**2)*set,cos_ph(3),abs(a3)/a4!利用面10上的三个关键点,计算面10水平面之间的夹角的余弦值并赋值给cos_ph(4) kp_1=6 !将面21中的三个关键点6的编号分别赋给参数kp_1kp_2=5 !将面21中的三个关键点5的编号分别赋给参数kp_2kp_3=19 !将面21中的三个关键点19的编号分别赋给参数kp_3k1x=kx(kp_1) !提取关键点6的X坐标值k1y=ky(kp_1) !提取关键点6的Y坐标值k1z=kz(kp_1) !提取关键点6的Z坐标值k2x=kx(kp_2) !提取关键点5的X坐标值k2y=ky(kp_2) !提取关键点5的Y坐标值k2z=kz(kp_2) !提取关键点5的Z坐标值k3x=kx(kp_3) !提取关键点19的X坐标值k3y=ky(kp_3) !提取关键点19的Y坐标值k3z=kz(kp_3) !提取关键点19的Z坐标值a1=(k2y-k1y)*(k3z-k1z)-(k3y-k1y)*(k2z-k1z)a2=(k3x-k1x)*(k2z-k1z)-(k2x-k1x)*(k3z-k1z)a3=(k2x-k1x)*(k3y-k1y)-(k3x-k1x)*(k2y-k1y)a4=sqrt(a1**2+a2**2+a3**2)*set,cos_ph(4),abs(a3)/a4!(17)定义日照时间内的14个时刻的4个面的太阳直射强度数组并计算赋值*dim,vertical,,4,14!定义表面太阳辐射直射强度数组*do,m,1,14,1*do,j,1,4,1*if,cos_ps(j,m),gt,0,then*set,vertical(j,m),gnd(m)*cos_ps(j,m)*else*endif*enddo*enddo!(18)定义日照时间内的14个时刻的4个面的太阳辐射散射强度数组并计算赋值*dim,diffuse,,4,14!定义表面太阳辐射散射强度数组*DIM,fuhao,,4 !定义*do,m,1,14,1!利用面5上的三个关键点,计算当前时刻的面5的太阳辐射散射强度并赋值给diffuse(1,m) kp_1=4 !将面5中的三个关键点4的编号分别赋给参数kp_1kp_2=3 !将面5中的三个关键点3的编号分别赋给参数kp_2kp_3=16 !将面5中的三个关键点16的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,lt,0,then*set,fuhao(j),100*set,diffuse(1,m),gnd(m)*factorc*(1+cos_ph(1))/2*else*set,diffuse(1,m),0*set,fuhao(1),0*endif*enddo*do,m,1,14,1kp_1=13 !将面21中的三个关键点13的编号分别赋给参数kp_1kp_2=12 !将面21中的三个关键点12的编号分别赋给参数kp_2kp_3=22 !将面21中的三个关键点22的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,lt,0,then*set,fuhao(j),100*set,diffuse(2,m),gnd(m)*factorc*(1+cos_ph(2))/2*else*set,diffuse(2,m),0*set,fuhao(2),0*endif*enddo*do,m,1,14,1kp_1=11 !将面18中的三个关键点11的编号分别赋给参数kp_1kp_2=14 !将面18中的三个关键点14的编号分别赋给参数kp_2kp_3=21 !将面18中的三个关键点21的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,lt,0,then*set,diffuse(3,m),gnd(m)*factorc*(1+cos_ph(3))/2*else*set,diffuse(3,m),0*set,fuhao(3),0*endif*enddo*do,m,1,14,1kp_1=6 !将面10中的三个关键点6的编号分别赋给参数kp_1kp_2=5 !将面10中的三个关键点5的编号分别赋给参数kp_2kp_3=19 !将面10中的三个关键点19的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,lt,0,then*set,fuhao(j),100*set,diffuse(4,m),gnd(m)*factorc*(1+cos_ph(4))/2*else*set,diffuse(4,m),0*set,fuhao(4),0*endif*enddo!(19)定义日照时间内的14个时刻的4个面的太阳辐射反射强度数组并计算赋值*dim,reflect,,4,14!表面太阳辐射反射强度*do,m,1,14,1kp_1=4 !将面5中的三个关键点4的编号分别赋给参数kp_1kp_2=3 !将面5中的三个关键点2的编号分别赋给参数kp_2kp_3=16 !将面5中的三个关键点16的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,gt,0,then*set,reflect(1,m),gnd(m)*(cos(22.76*3.14/180)+factorc)*pg*(1-cos_ph(1))/2*else*set,reflect(1,m),0*endif*enddo*do,m,1,14,1kp_1=13 !将面21中的三个关键点13的编号分别赋给参数kp_1kp_2=12 !将面21中的三个关键点12的编号分别赋给参数kp_2kp_3=22 !将面21中的三个关键点22的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,gt,0,then*set,reflect(2,m),gnd(m)*(cos(22.76*3.14/180)+factorc)*pg*(1-cos_ph(2))/2*else*set,reflect(2,m),0*endif*enddo*do,m,1,14,1kp_1=11 !将面18中的三个关键点11的编号分别赋给参数kp_1kp_2=14 !将面18中的三个关键点14的编号分别赋给参数kp_2kp_3=21 !将面18中的三个关键点21的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,gt,0,then*set,reflect(3,m),gnd(m)*(cos(22.76*3.14/180)+factorc)*pg*(1-cos_ph(3))/2*else*set,reflect(3,m),0*endif*enddo*do,m,1,14,1kp_1=6 !将面10中的三个关键点6的编号分别赋给参数kp_1kp_2=5 !将面10中的三个关键点5的编号分别赋给参数kp_2kp_3=19 !将面10中的三个关键点19的编号分别赋给参数kp_3cos=normkz(kp_3,kp_2,kp_1)*if,cos,gt,0,then*set,reflect(4,m),gnd(m)*(cos(22.76*3.14/180)+factorc)*pg*(1-cos_ph(4))/2*else*set,reflect(4,m),0*endif*enddo!(20)定义日照时间内的14个时刻的4个面的太阳辐射总强度数组并计算赋值*dim,radi_all,,4,14!表面辐射总强度*do,m,1,14,1*do,j,1,4,1*set,radi_all(j,m),(vertical(j,m)+diffuse(j,m)+reflect(j,m))*0.55*enddo*enddo!(21)定义日照时间内的14个时刻的4个面的太阳辐射等效生热率数组并计算赋值!等效生热率*dim,heat_eq,,4,14*do,m,1,14,1*do,j,1,4,1*set,heat_eq(j,m),radi_all(j,m)/0.02*enddo*enddofinish!(21) 进入求解器,设置求解选项进行数值计算/soluantype,trans !设置求解类型瞬态热分析trnopt,full ! 指定瞬态分析的求解方法为完全法timint,on ! 打开时间积分效应tunif,32.5 !设置构件的初始温度为32.5摄氏度outres,all ! 将除SV AR和LOCI以外的所有计算数据写入数据库和文件中!求解参数设定value_1=0.8 ! 定义构件的辐射发射率参数value_2=5.67e-8 !定义斯蒂芬-玻尔慈曼常数参数value_3=value_1*value_2 !将value_1和value_2相乘并赋值给value_3*dim,long_wave,,4,840 !求解过程中,每个荷载步中给四个外表面所施加的长波辐射强度*dim,node_num1,,2000 !拱上实体包含的节点编号数组*dim,node_temp1,,2000 !拱上实体包含节点的温度值数组l=0*do,m,1,14,1*do,r,3600,3600,3600time,(m-1)*3600+rl=l+1nsubst,1,100,1 !设置每个荷载的子步数数为1,最大值为100,最小值为1autots,on ! 打开自动时间步长跟踪eqslv,JCG !指定方程求解器为JCGkbc,0 !使用递增方式加载!施加对流荷载sfa,5,,conv,10,t_outdoor(m) !给面5定义当前荷载步的对流换热系数及周围环境温度sfa,21,,conv,10,t_outdoor(m) !给面21定义当前荷载步的对流换热系数及周围环境温度sfa,18,,conv,10,t_outdoor(m) !给面18定义当前荷载步的对流换热系数及周围环境温度sfa,10,,conv,10,t_outdoor(m) !给面10定义当前荷载步的对流换热系数及周围环境温度!施加太阳辐射荷载bfv,1,HGEN,heat_eq(1,m)+long_wave(1) !给体1施加当前荷载步的等效生热率bfv,4,HGEN,heat_eq(2,m)+long_wave(2) !给体4施加当前荷载步的等效生热率bfv,3,HGEN,heat_eq(3,m)+long_wave(3) !给体3施加当前荷载步的等效生热率bfv,2,HGEN,heat_eq(4,m)+long_wave(4) !给体2施加当前荷载步的等效生热率solvevsel,s,,,1 !选择编号为1的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(1),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(1))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(1))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(1,l),value_4/0.03 !计算长波辐射净强度的等效生热率allselvsel,s,,,4 !选择编号为4的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(2),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(2))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(2))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(2,l),value_4/0.03 !计算长波辐射净强度的等效生热率allselvsel,s,,,3 !选择编号为3的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(3),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(3))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(3))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(3,l),value_4/0.03 !计算长波辐射净强度的等效生热率allselvsel,s,,,2 !选择编号为2的体元素eslv,r !选择当前所选体元素上的所有单元nsle,r !选择当前所选单元上的所有节点*get,node_total,node,0,count ! 提取当前所选节点的个数*get,node_num1(1),node,0,num,min ! 提取当前所选节点中节点的最小编号,并赋值给变量node_num1(1)*do,n,2,node_total,1*get,node_num1(n),node,node_num1(n-1),nxth ! 将当前所选择的节点的编号赋值给数组node_num1*enddo*do,f,1,node_total,1*get,node_temp1(f),node,node_num1(f),temp ! 提取当前所选节点的节点温度值,并赋值给数组node_temp1*enddototal=0*do,f,1,node_total,1total=total+node_temp1(f) ! 计算当前所选节点的温度值之和,并赋值给变量total*enddotarea=total/node_total+273 ! 计算当前所选节点温度值的平均值,并赋值给tareatsky=t_outdoor(m)-6+273 !计算当前时刻的天空温度值,并赋值给tsky*if,fuhao(4),eq,100,thenvalue_4=value_3*((tsky**4-tarea**4)*(1+cos_ph(4))/2) !计算与天空之间值长波辐射净强度*elsevalue_4=value_3*((t_earth(m)**4-tarea**4)*(1-cos_ph(4))/2) !计算与地面之间值长波辐射净强度*endif*set,long_wave(4,l),value_4/0.03 !计算长波辐射净强度的等效生热率allsel*enddo*enddo在土木工程结构中,温度应力在很多情况下对结构的影响很大。
基于ANSYS的温度场仿真分析引言:在工程领域中,温度场分布的仿真分析是一项重要的工作。
温度场分布的准确预测和优化设计对于许多工业过程和产品的设计和改进至关重要。
在这里,我们将介绍一种基于ANSYS软件的温度场仿真分析方法。
一、ANSYS软件简介ANSYS是一种广泛使用的通用有限元分析(FEA)软件。
它提供了强大的功能,可以进行多种物理和工程仿真分析。
其中,温度场分布的仿真分析是ANSYS的一个主要功能之一二、温度场仿真分析的步骤1.几何建模:使用ANSYS的几何模块进行物体的几何建模。
可以通过绘制二维或三维几何形状来定义和创建模型。
2.网格划分:对几何模型进行网格划分,将其划分为小的单元,以便进行离散化计算。
网格划分的质量直接影响到仿真结果的准确性和计算速度。
3.边界条件设置:根据具体的问题,设置物体表面的边界条件。
边界条件包括固定温度、传热系数、对流换热等。
边界条件设置的准确与否对温度场的分布有重要影响。
4.材料属性定义:为物体的各个部分定义材料属性,包括热导率、热容量等。
这些属性是模型中的重要参数,直接影响到温度场的分布。
5.求解和后处理:设置求解算法和参数,开始进行仿真计算。
求解器根据网格和边界条件,通过计算方程的数值解确定温度场的分布。
计算完成后,可以进行后处理,生成温度场分布的图表和报告。
三、温度场仿真分析的应用温度场仿真分析在多个工程领域中得到广泛应用。
以下是几个示例:1.电子设备散热优化:通过温度场仿真分析,可以评估电子设备中的热量分布,优化散热设计,确保电子设备的正常运行和寿命。
2.汽车发动机冷却系统:通过温度场仿真分析,可以预测汽车发动机冷却系统中的温度分布,优化冷却器的大小和位置,提高冷却效果。
3.空调系统设计:通过温度场仿真分析,可以预测房间内的温度分布,优化空调系统的风口布置和参数设置,实现舒适的室内温度。
4.熔炼和混合过程优化:通过温度场仿真分析,可以预测熔炼和混合过程中的温度分布,优化加热和冷却控制,提高生产效率和产品质量。
实验名称:温度场有限元分析一、实验目的1. 掌握Ansys分析温度场方法2. 掌握温度场几何模型二、问题描述井式炉炉壁材料由三层组成,最外一层为膨胀珍珠岩,中间为硅藻土砖构成,最里层为轻质耐火黏土砖,井式炉可简化为圆筒,筒内为高温炉气,筒外为室温空气,求内外壁温度及温度分布。
井式炉炉壁体材料的各项参数见表1。
表1 井式炉炉壁材料的各项参数三、分析过程1. 启动ANSYS,定义标题。
单击Utility Menu→File→Change Title菜单,定义分析标题为“Steady-state thermal analysis of submarine”2.定义单位制。
在命令流窗口中输入“/UNITS, SI”,并按Enter 键3. 定义二维热单元。
单击Main Menu→Preprocessor→Element Type→Add/Edit/Delete 菜单,选择Quad 4node 55定义二维热单元PLANE554.定义材料参数。
单击Main Menu→Preprocessor→Material Props→Material Models菜单5. 在右侧列表框中依次单击Thermal→Conductivity→Isotropic,在KXX文本框中输入膨胀珍珠岩的导热系数0.04,单击OK。
6. 重复步骤4和5分别定义硅藻土砖和轻质耐火黏土砖的导热系数为0.159和0.08,点击Material新建Material Model菜单。
7.建立模型。
单击Main Menu→Preprocessor→Modeling→Create→Areas→Circle→By Dimensions菜单。
在RAD1文本框中输入0.86,在RAD2文本框中输入0.86-0.065,在THERA1文本框中输入-3,在THERA2文本框中输入3,单击APPL Y按钮。
8.重复第7步,输入RAD1=0.86-0.065,RAD2=0.86-0.245,单击APPL Y;输入RAD1=0.86-0.245,RAD2=0.86-0.36,单击OK。
ANSYS有限元分析软件在热分析中的应用随着科学技术的不息进步,有限元分析成为了工程领域中必不行少的工具之一。
其中,ANSYS有限元分析软件以其强大的功能和可靠的计算结果,被广泛应用于热分析领域。
本文将介绍,并探讨其优点和局限性。
热分析是指对物体在不同温度条件下的热力学和热物理学性能进行计算和分析的过程。
在各个工程领域中,如航空航天、建筑、汽车等,热分析对于确保产品的安全性和可靠性至关重要。
而ANSYS有限元分析软件作为一款强大的工程分析工具,具备了强大的计算能力和准确的结果输出,被广泛应用于热分析。
起首,主要包括两个方面:传热分析和热应力分析。
在传热分析中,ANSYS能够计算物体在不同温度条件下的热传导、热对流和热辐射等热传输过程,从而得到物体内部和表面的温度分布和热流分布。
在热应力分析中,ANSYS能够计算物体在不同温度条件下的热应力和热应变分布,从而评估物体受热载荷引起的变形和应力集中状况。
其次,具有一些明显的优点。
起首,ANSYS具备了强大的计算能力,能够对复杂的几何外形和边界条件进行精确的计算。
其次,ANSYS提供了丰富的材料库,可以模拟各种不同材料在热条件下的性能变化。
此外,ANSYS还提供了直观的后处理工具,可以便利地对计算结果进行可视化和分析。
最后,ANSYS的界面友好,易于进修和使用,便利工程师进行热分析。
然而,ANSYS有限元分析软件在热分析中也存在一定的局限性。
起首,由于计算过程中需要进行离散化处理,ANSYS的计算结果可能存在一定的误差。
其次,由于热分析涉及到复杂的物理过程和边界条件,对模型的建立和参数的选择要求较高,需要阅历丰富的工程师进行指导和调整。
此外,ANSYS的使用需要一定的计算资源和时间,对计算机性能有一定的要求。
综上所述,ANSYS有限元分析软件在热分析中具有广泛的应用前景。
随着科学技术的进步和ANSYS的不息进步,其在热分析中的功能以及计算结果的准确性将会得到进一步提高。
ANSYS温度场分析步骤
基于ANSYS12.0的钢板加热过程分析
一.问题描述
2000mm*2000mm*100mm的钢板,初始温度为20℃,放入温度为1120℃的加热炉内加热,已知其换热系数125W/㎡*K,钢板的比热为460J/kg*℃,密度为7850kg/m 3,导热系数为50W/m*K,计算钢板1800s后的温度场分布。
二.问题分析
此问题属于热瞬态分析(载荷随时间变化),选用SOLID70三维六面体单元进行有限元分析。
SOLID70——三维热实体,具有8各节点,每个节点一个温度自由度。
该单元可用于三维的稳态或瞬态的热分析问题。
三.操作步骤
1.定义分析文件名
Utility Menu>File>Change Jobname,输入Example。
2.定义单元类型
Main Menu>Preprocesor>Element Type>Add/Edit/Delete,选择SOLID70三维六面体单元进行有限元分析。
3.定义材料属性
①传导系数
②材料密度
③材料比热
4.建立几何模型
5.设置单元密度
6.划分单元
7.施加对流换热载荷
8.施加初始温度
9.设置求解选项
10.温度偏移量设置
11.输出控制
12.存盘
13.求解
14.显示温度场分布云图
四.总结
本例介绍了应用ANSYS对钢板加热过程进行瞬态热分析的基本步骤,应用此方法可对各种零件加热过程的温度场分布进行分析。
ANSYS有限元分析软件在热分析中的应用随着科学技术的不断发展,工程领域的热分析越来越重要。
热力学、热传导、热对流、辐射传热等问题是工程领域中需要解决的关键问题之一。
ANSYS有限元分析软件作为一款功能强大、使用广泛的工程分析工具,在热分析领域发挥着重要的作用。
ANSYS有限元分析软件是一种基于有限元理论的数值计算工具。
它通过将一个复杂的物理问题划分成一个个简单的子域,然后将这些子域用有限元进行离散,再通过数值计算方法求解模型的应力、应变等物理场。
在热分析中,ANSYS能够非常准确地模拟材料的温度分布、热流量分布以及传热过程等问题,为工程师提供必要的设计信息。
在热分析中,ANSYS可以解决一系列不同的问题。
首先,它可以模拟材料的温度分布。
通过定义不同的材料参数和边界条件,ANSYS可以准确地计算出材料在不同情况下的温度分布,并可以用图形的形式进行展示。
这对于工程师来说非常有用,因为他们可以根据这些温度分布来判断材料是否会出现过热或者过冷的问题,从而进行相应的调整。
其次,ANSYS还可以模拟热流量的分布。
在实际工程中,热流量的分布是一个很重要的参数。
通过分析热流量的分布情况,工程师可以判断热量的传输是否合理,从而优化设计,提高效率。
ANSYS可以非常准确地计算出热流量的分布,并提供相应的图像展示,方便工程师观察和分析。
此外,ANSYS还可以模拟热对流传热问题。
热对流传热是指通过流体的对流而传递热量的现象。
在实际工程中,热对流非常常见,比如汽车发动机的冷却系统等。
ANSYS可以根据流体的流动特性和边界条件,准确地计算出热对流传热的情况,并提供相应的结果分析。
这对于工程师来说非常重要,他们可以通过这些结果来评估流体的冷却效果是否达到设计要求。
最后,ANSYS还可以模拟辐射传热问题。
辐射传热是指通过辐射而传递热量的现象,是热传导和热对流之外的一种重要传热方式。
在一些高温环境中,辐射传热非常显著,比如高温工业炉等。