静定结构位移计算习题
- 格式:doc
- 大小:1.45 MB
- 文档页数:3
静定结构位移计算试题一、是非判断:1.变形体虚功原理仅适用于线弹性体系,不适用于非线弹性体系。
( ) 2.虚功中的力状态和位移状态是彼此独立无关的,这两个状态中的任何一个都可看作是虚设的。
( ) 3.功的互等定理仅适用于线弹性体系,不适用于非线弹性体系。
( ) 4.位移反力互等定理对线弹性的静定结构和超静定结构均适用。
( ) 5.图1-5(a)、(b)各杆EA 相同,则两图中C 点的竖向位移相等。
( )题1-5图 题1-6图6.如图题1-6所示斜梁EI =常数,则截面A 的转角EIql A 243=ϕ(顺时针)。
( ) 7.图题1-7(a)、(b) 各杆EA 相同,则两图中C 点的竖向位移相等。
( )题1-7图8.M P 图、M 图1-8(a)、(b)所示,EI=常数。
下列图乘结果是正确的:)85323221(1l al l al EI CH ⨯+⨯=∆。
( )题1-8图 9.图题1-9中,下列图乘结果是正确的:)31(1))(31(132221111y b l EI y b a l y b l EI ⨯+⨯-+⨯。
( )10.图1-10中,下列图乘结果是正确的:)85323221(1d bc d ac EI ⨯+⨯。
( )11.对于静定结构,没有内力就没有变形。
( ) 12.对于静定结构,没有变形就没有位移。
( )13.用单位荷载法计算结构位移时,用于计算外力虚功的广义力是虚设的广义单位力,而相应的广义位移是拟求的实际位移。
( )q(a)(b)l a aqABP (b)M 图题1-9图 题1-10图14.如果结构是由线弹性材料制成的,但在有温度变化的情况下,功的互等定理不成立。
( ) 二、填空1.虚功原理有两种不同的应用形式,即 原理和 原理。
其中 原理等价于变形协调条件。
2.位移计算时,虚拟广义单位力的原则是使外力虚功的值恰好等于 值。
3.用图乘法计算梁和刚架位移的适用条件是 。
4.如图2-4所示结构支座A 下沉a ,支座B 向右移动b ,则结点C 、D 的相对转角为 。
第5章 静定结构位移计算§5 – 1 基本概念5-1-1 虚拟单位力状态构造方法●虚拟单位力状态构造方法:(1)去掉所有荷载重画一个结构; (2)标出所求位移矢量;(3)该矢量变成单位力,即得虚拟单位力状态。
如图3-1a 刚架求C 点竖向位移CV ∆和C 截面转角C ϕ,图3-1b 和图3-1c 为求相应位移所构造的虚拟单位力状态。
5-1-2 位移计算公式虚拟单位力作用下,引起的内力和支座反力:N Q ,,,Ri F M F F实际荷载作用下,引起的内力:NP P QP ,,F M F●位移计算一般公式N Q Ri i F du Md F ds F c ∆ϕγ=++-∑∑∑∑⎰⎰⎰●荷载作用产生位移的计算公式Q N QP NP Pk F F F F M M ds ds ds EA EI GA∆=++∑∑∑⎰⎰⎰ 1、梁或刚架结构 PM M ds EI∆=∑⎰ 2、桁架结构 N NPF F ds EA∆=∑⎰图3-1虚拟单位力状态)a ()b ()c (2 结构力学典型例题解析3、混合结构N NP PF F MM ds ds EA EI∆=+∑∑⎰⎰ ●支座移动引起位移计算公式Ri i F c ∆=-∑●温度引起位移计算公式()N 0tF t dx Mdx hα∆∆α=+±∑∑⎰⎰()N 0Mtt lF A hα∆∆α=+±∑∑式中:0,,t t α∆为线膨胀系数形心温度温差,h 截面高度M A 虚拟状态弯矩图面积●有弹性支座情况的位移计算公式()P RPR 0RPR M M Fds F EI kAy F F EI k∆=+⨯±=+⨯∑∑⎰∑∑5-1-3 图乘法图乘法公式:0P()Ay MM dx EI EI±∆==∑∑⎰图乘法公式条件:●等截面直杆且EI=常数 ●求 y 0图形必须为一条直线 正负号确定:面积A 与y 0同侧取“+”号注意:求面积的图形要会求面积和形心位置。
结构力学-位移法习题1.确定用位移法计算下图所示结构的基本未知量数目,并绘出基本结构。
2.判断题1)位移法基本未知量的个数与结构的超静定次数无关。
()2)位移法可用于求解静定结构的内力。
()3)用位移法计算结构由于支座移动引起的内力时,采用与荷载作用时相同的基本结构。
()4)位移法只能用于求解连续梁和钢梁,不能用于求解桁架。
()3.已知下图所示钢架的结点B产生转角,试用位移法概念求解所作用外力偶M。
4.若下图所示结构结点B向右产生单位位移,试用位移法概念求解应施加的力。
5.已知钢架的弯矩图如下图所示,各杆常数,杆长,试用位移法概念直接计算结点B的转角。
6.用位移法计算下图所示的连续梁,作弯矩图和剪力图。
EI=常数。
7.用位移法计算下图所示结构,作弯矩图。
常数。
8.用位移法计算下图所示各结构,并作弯矩图。
常数。
9.利用对称性计算下图所示结构,作弯矩图。
常数。
10.下图所示等截面连续梁,,已知支座C下沉,用位移法求作弯矩图。
11.下图所示的刚架支座A下沉,支座B下沉,求结点D的转角。
已知各杆。
12.试用位移法计算下图所示结构,并绘出其内力图。
13.试用位移法计算下图所示结构,并绘出其内力图。
14.试用位移法计算图示结构,并绘出M图。
15.试用位移法计算图示结构,并绘出M图。
16.试利用对称性计算图示刚架,并绘出M图。
6m 6m9ml lq(a)4m 4m4m(b)10kN/m6m6m 6m 6m6m(a)8m 4m 4m 4m 4m20kN/m17. 试计算图示结构在支座位移作用下的弯矩,并绘出M 图。
18. 试用位移法计算下图所示结构,并绘出其内力图。
19. 试用位移法求作下列结构由于温度变化产生的M 图。
已知杆件截面高度h =0.4m ,EI =2×104kN ·m 2,α=1×10-5。
20.试计算图示具有牵连位移关系的结构,并绘出M 图。
3EI lA D CB l EI EIϕl Δ=ϕa 2aa 2aaF P6m 4m A B C +20℃0℃ +20℃0℃ 20kN8m 8m 6m 3m A C D EB F G EI 1=∞EI 1=∞ 3EI3EI 3EI EI。
6-1 求图示桁架AB 、AC 的相对转角,各杆EA 为常量。
解:(1)实状态桁架各杆的轴力如图(b )所示。
(b)(a)N(d )(c)题6-1N N(2)建立虚设单位力状态如(c )所示,求AB 杆的转角。
1113(2)82i P iAB i i P a P a P a N N l P a a a E A EA EA EA EAϕ⋅⋅⋅⋅-⋅-⋅⋅⋅==++⨯=∑(↺)(3)建立虚设单位力状态如(d )所示,求AC 杆的转角。
113(2)()(72i P i AC i iP a P a N N lPa a E A EA EA EAϕ⋅⋅⋅-⋅-⋅⋅==+⨯=∑(↺)故,AB 、AC 的相对转角为两杆转角之差:8(7(10.414AB AC P P P PEA EA EA EAϕϕϕ+-=-=-==-(夹角减小)6-2 求半圆曲梁中点K 的竖向位移。
只计弯曲变形。
EI 为常数。
方法一 解:(1)荷载作用下的实状态的约束反力如图(a )所示。
以任意半径与水平坐标轴的顺时针夹角为自变量,其弯矩方程为:sin (0)P M θθπ=-≤≤Pr(2)建立虚设单位力状态如(b )所示,其弯矩方程为:[]1cos )(0)2211cos()cos )()222i M πθθππθθθπ⎧≤≤⎪⎪=⎨⎪-=≤≤⎪⎩(r -r r -r (r +r(a)题6-2(3)积分法求半圆曲梁中点K 的竖向位移。
20233220022311cos )(sin )cos )(sin )2211cos )sin cos )sin sin sin 2)sin sin 2)2222cos 2i V Pk Pr Pr M M ds rd rd EIEI EI Pr Pr d d d d EI EI Pr EI πππππππππθθθθθθθθθθθθθθθθθθθ⋅-⋅-⋅∆==+⎡⎤⎡⎤=-⋅+⋅=-+⋅⎢⎥⎢⎥⎣⎦⎣⎦=-∑⎰⎰⎰⎰⎰⎰⎰(r -r (r +r (-(+(-(+(-11320211cos 2)cos cos 2)442Pr EI πππθθθ⎡⎤⎢⎥+-+=-↑⎢⎥⎣⎦()( 方法二:本题也可以只算纵向对称轴左边,再乘2。
第4章静定结构的位移计算计算结构位移的目的结构在荷载作用下会产生内力,同时使其材料产生应变,以致结构发生变形。
由于变形,结构上各点的位置将会发生改变。
杆件结构中杆件的横截面除移动外,还将发生转动。
这些移动和转动称为结构的位移。
此外,结构在其他因素如温度改变、支座位移等的影响下,也都会发生位移。
b5E2RGbCAP例如图4—1a所示简支梁,在荷载作用下梁的形状由直变弯,如图4—1b所示。
这时,横截面的形心移动了一个距离,称为点的线位移。
同时截面还转动了一个角度,成为截面的角位移或转角。
p1EanqFDPw又如图4—2a所示结构,在内侧温度升高的影响下发生如图中虚线所示的变形。
此时,C点移至C点,即C点的线位移为C C。
若将C C沿水平和竖向分解<图4—2b),则分量C C和CC分别称为C点的水平位移和竖向位移。
同样,截面C还转动了一个角度,这就是截面C的角位移。
DXDiTa9E3d在结构设计中,除了要考虑结构的强度外,还要计算结构的位移以验算其刚度。
验算刚度的目的,是保证结构物在使用过程中不致发生过大的位移。
RTCrpUDGiT计算结构位移的另一重要目的,是为超静定结构的计算打下基础。
在计算超静定结构的反力和内力时,除利用静力平衡条件外,还必须考虑结构的位移条件。
这样,位移的计算就成为解算超静定结构时必然会遇到的问题。
5PCzVD7HxA此外,在结构的制作、架设等过程中,常须预先知道结构位移后的位置,以便采取一定的施工措施,因而也须计算其位移。
jLBHrnAILg本章所研究的是线性变形体系位移的计算。
所谓线性变形体系是位移与荷载成比例的结构体系,荷载对这种体系的影响可以叠加,而且当荷载全部撤除时,由何在引起的位移也完全消失。
这样的体系,变形应是微小的,且应力与应变的关系符合胡克定律。
由于变形是微小的,因此在计算结构的反力和内力时,可认为结构的几何形状和尺寸,以及荷载的位置和方向保持不变。
xHAQX74J0X功广义力和广义位移在力学中,功的定义是:一个不变的集中力所作的功等于该力的大小与其作用点沿力作用线方向所发生的分位移的乘积。
第七章结构的位移计算一、是非题1. 温度改变,支座移动和制造误差等因素在静定结构中引起内力。
( )2. 虚功中的力状态和位移状态是彼此独立无关的.这两个状态中的任意一个都可看作是虚设的( )3. 在小变形条件下,结构位移计算和变形位能计算均可应用叠加原理。
( )4. 变形体的虚功原理仅适用于线弹性体系,不适用于非线弹性体系。
( )5. 图示结构EI=常数,求K点的竖向位移时,由图乘法得:()6. 图示梁的跨中挠度为零。
( )7. 对于静定结构,没有内力就没有变形()8. 对于静定结构,没有变形就没有位移()9. 用单位载荷法计算结构位移时,勇于计算外力虚功的广立力是虚设的广义单位力,而相应的广义位移是拟求的实际位移()10. 如果结构是由线弹性材料制成的,但在温度变化的情况下,功的互等定理不成立()11. 竖向荷载P分别作用于A点和B点时。
B点产生的竖向位移是不同的。
( )12.变形体体系虚功方程推导过程中,微元体上外力的刚体位移总虚功为零,是基于变形协调条件()13. 图(a)和图(b)两弯矩图图乘结果为()14.功的互等定理、位移互等定理、反力互等定理只适用于线弹性体系。
〔 )15.计算静定结构由于温度改变引起的位移时,不计剪切变形项是由于剪力较小。
( )二、填空题1. 图示桁架各杆EA相同,C点承受水平荷载P后,则CA和CB杆的夹角的改变量为______。
2. 图示刚架中,C、D两点的相对线位移等于______,两点距离______。
3. 虚功原理有两种不同的应用形式,即___________原理和_____________原理,其中_____________原理等价于变形协调条件。
4. 应用图乘法求杆件结构的位移时,各图乘的杆段必须满足如下三个条件:_________;_________;_________5. 结构与荷载如图所示,各杆EI相同,铰C处的竖向位移为________6. 图示刚架C点的竖向位移求得为,如各杆刚度EI减小一倍,C点的竖向位移为_________。
习题
一.选择题
4-1 与图示结构上的广义力相对应的广义位移为( C )。
A .
B 点水平位移;B .A 点水平位移;
C .AB 杆的转角;
D .AB 杆与AC 杆的相对转角
P P
题4-1图
题4-2图
4-2 图示结构加P1F 引起位移11Δ、21Δ,再加P2F 又产生新的位移12Δ、22Δ,两个力所作的总功为( C )。
A .22P21211P1)(ΔF ΔΔF W ++=;
B .22P21211P12
1)(ΔF ΔΔF W ++=;
C .22P212P111P12
12
1ΔF ΔF ΔF W +
+=
; D .)()(2221P21211P1ΔΔF ΔΔF W +++=
4-3 变形体虚功原理适用于( B )。
A .线弹性体系;
B .任何变形体;
C .静定结构;
D .杆件结构 4-4 图示结构中,位移之间的关系成立的有( D )。
A .643θθθ+=,82ΔΔ=,74θθ=;
B .315θθ+=∆,86ΔΔ=,921θθθ=+
C .642θθ+=∆,85ΔΔ=,93θθ=;
D .642θθ+=Δ,68θ=Δ,973θθθ+=
4-5 下面说法中正确的一项是(D )。
A .图乘法适用于任何直杆结构;
B .虚功互等定理适用于任何结构;
C .单位荷载法仅适用于静定结构;
D .位移互等定理仅适用于线弹性结构 二.填充题
4-6 若使图示结构的A 点竖向位移为零,则应使P1F 与P2F 的比值为P2P1/F F = 16/5。
P2
题4-6图
题4-7图
4-7 图示结构中,AB 杆的温度上升t 度,已知线膨胀系数为α,则C 点的竖向位移为 4ALT 。
4-8 上题结构中的AB 杆,由于加热而伸长了Δ,则由此产生的C 点竖向位移为 2 。
4-9 上题结构中的AB 杆,由于制作时作长了Δ,则由此产生的C 点竖向位移为 。
三.计算题
4-10 试求图示桁架A 点竖向位移。
已知各杆截面相同,2
2
m 10
5.1-⨯=A ,210GPa =E 。
题4-10图
题4-11图
4-11试求图示桁架A点竖向位移。
EA=常数。
4-12试求图示结构的指定位移。
(a)
中点竖向位移
(b)
A点竖向位移
(c)
A点竖向位移
题4-12图
4-13试求图示结构的指定位移。
(a) A点水平位移
(b) A点竖向位移
(c) 铰A两侧截
面相对转角对水平位移
题4-13图4-14试求图示结构的指定位移。
(a) A点竖向位移
(c) A点竖向位移
题4-14图
题4-15图4-15试求图示结构AB两截面间的相对竖向位移、相对水平位移和相对转角。
已知:q=10kN/m,l=5m,2
5m
kN
10
6.2⋅
⨯
=
EI。
4-16试求图示结构A点竖向位移。
题4-16图
题4-17图
4-17 试求图示结构由于支座位移产生的A点水平位移。
已知:1cm
1
=
c,2cm
2
=
c,
0.001rad
3
=
c。
4-18 试求图示结构支座位移引起的铰C两侧截面的相对转角。
题4-18图题4-19图4-19 图示结构内部温度升高t度,外侧温度不变,试求C点竖向位移。
参考答案
4-1 C ; 4-2 C ; 4-3 B ; 4-4 D ; 4-5 D
4-6 16/5; 4-7 4αtl (↑); 4-8 Δ22(↑);
4-9 Δ22(↑);通过本题思考一下制作误差引起的位移的计算方法。
4-10 1.48mm (↓); 4-11
EA
d F P )
55(82
1+(↓);
4-12 (a )
EI ql
3
121(⌒
);
EI
ql
4
3845
(↓) (b )EI
ql
4
241(↑)
(c )
EI ql
4
247(↓)
4-13 (a )EI
l F 3
P 127(←);
(b )
EI
ql
4
2411(↓)
(c )0 (d )
EI ql
4
241(→ ←)
4-14 (a )EI
l F 3
P 3
11(↓)
(b )
EI
ql
3
19225(⌒
)
(c )
1
3
P 37EI l
F 2
3
P 31EI l
F +。