m第4章正弦交流电路
- 格式:ppt
- 大小:1.91 MB
- 文档页数:72
二单元正弦交流电路引言正弦交流电的产生:正弦交流电路:含有正弦电源而且电路各部分所产生的电压和电流均按正弦规律变化的电路。
因为交流电可以利用变压器方便地改变电压、便于输送、分配和使用。
所以,在生产和生活中普遍应用正弦交流电。
着重讨论和分析交流电路的基本概念、基本规律和基本分析方法。
随时间按正弦规律变化的交流电压、电流、电动势称为正弦电压、电流、电动势。
正弦量:正弦电压、电流、电动势统称为正弦量。
Riab)sin(m i t I i ψω+=规定电流参考方向如图:iωtiψ正半周:电流实际方向与参考方向相同负半周:电流实际方向与参考方向相反+-最大值角频率初相角正弦量的三要素课题1正弦交流电的基本概念一、正弦量的三要素表达式:波形:用带有下标m 的大写字母表示:I m 、U m 、E m有效值:一个交流电流的做功能力相当于某一数值的直流电流的做功能力,这个直流电流的数值就叫该交流电流的有效值。
用大写字母表示:I 、U 、 E1. 最大值描述正弦量变化范围的参数。
tiT最大值I m⎰=Tdti TI 021正弦量最大值与有效值的关系EE m 2=II m 2=UU m 2=2. 角频率ω描述正弦量变化快慢的参数。
单位:rad/s周期(T ): 变化一个循环所需要的时间,单位(s)。
频率( f ): 单位时间内的周期数单位(Hz)。
三者间的关系示为:=2π/T =2πfωTωt 2ππtiTT/2我国和大多数国家采用50Hz 作为电力工业标准频率(简称工频),少数国家采用60Hz 。
iωt)sin(i m t I i ψω+=iψt =0 时的相位角称为初相角或初相位。
i ψ同频率正弦量的相位角之差,用ϕ表示。
二、相位差:180±取值范围:相位差可反映同频率正弦量超前滞后关系。
180±相位差的取值范围:3. 初相iψ影响初相得因素:项前负号(±180°)Cos (90 °))sin(1m ψtωU u +=如:)()(21ψωψωϕ+-+=t t 21ψψ-=若21>-=ψψϕ电压超前电流ϕ或电流滞后电压ϕuiu iϕωtO)2ψ+=t ωI i sin(m电流超前电压︒-=-=9021ψψϕ︒90电压与电流同相021=-=ψψϕ电流超前电压ϕ021<-=ψψϕ电压与电流反相︒=-=18021ψψϕu iωt ui ϕOu iωtui 90°O u i ωtui Oωtui u i O一、复数1. 复数的表示形式A = a + j b1)代数形式:为虚数单位1j -=ϕcos A a =ϕsin A b =22ba A +=ab=ϕtan aAb+1+jϕA实部虚部ϕA A =2)极坐标形式:模幅角2. 两种形式的互换代数极坐标代数极坐标课题2正弦量的相量表示法3. 复数运算(熟记公式)111j b a A +=222j b a A +=1)加减运算(用代数形式):则()()212121j b b a a A A ±+±=±设则222ϕA A =111ϕA A =212121ϕϕ+=⋅A A A A 212121ϕϕ-=A A A A 设2)乘除运算(用极坐标形式):1A 2A 3A 321A A A ++思考如何用作图的方法得到复数的差?3)复数的相等111j b a A +=222j b a A +=21a a =如果21b b =则21A A =222ϕA A =111ϕA A =如果21A A =21ϕϕ=则21A A =4. 旋转因子(模为1,辐角为的复数)ϕ一个复数乘以ϕj e等于把其逆时针旋转角。
tωAi /A222032πtAi /A 2032π6πA102i 1i 第四章 正弦交流电路[练习与思考]4-1-1 在某电路中,()A t i 60 314sin 2220-=⑴指出它的幅值、有效值、周期、频率、角频率及初相位,并画出波形图。
⑵如果i 的参考方向选的相反,写出它的三角函数式,画出波形图,并问⑴中各项有无改变? 解:⑴ 幅值 A I m 2220有效值 A I 220= 频率 3145022f Hz ωππ=== 周期 10.02T s f== 角频率 314/rad s ω=题解图4.01 初相位 s rad /3πψ-=波形图如题解图4.01所示(2) 如果i 的参考方向选的相反, 则A t i ⎪⎭⎫ ⎝⎛+=32 314sin 2220π,初相位改变了,s rad /32πψ=其他项不变。
波形图如题解图 4.02所示。
题解图4.02 4-1-2 已知A )120314sin(101 -=t i ,A )30314sin(202 +=t i⑴它们的相位差等于多少?⑵画出1i 和2i 的波形。
并在相位上比较1i 和2i 谁超前,谁滞后。
解:⑴ 二者频率相同,它们的相位差︒-=︒-︒-=-=1503012021i i ψψϕ (2)在相位上2i 超前,1i 滞后。
波形图如题解图4.03所示。
题解图4.03+14-2-1 写出下列正弦电压的相量V )45(sin 2201 -=t u ω,)V 45314(sin 1002+=t u 解:V U ︒-∠=•4521101 V U ︒∠=•4525024-2-2 已知正弦电流)A 60(sin 81+=t i ω和)A 30(sin 62-=t i ω,试用复数计算电流21i i i +=,并画出相量图。
解:由题目得到Aj j j j I I I m m m ︒∠=+=-++=︒-︒+︒+︒=︒-∠+︒∠=+=•••1.231093.32.9)32.5()93.64()30sin 630cos 6()60sin 860cos 8(30660821 所以正弦电流为)A 1.23(sin 101+=t i ω 题解图4.04 相量图如题解图4.04所示。