14.1.3积的乘方教学案
- 格式:doc
- 大小:26.00 KB
- 文档页数:1
14.1.3 积的乘方教学目标:1.理解积的乘方的意义;2.会运用积的乘方法则进行有关的计算;3.知道可逆用积的乘方法则进行简便运算;4.经历探究积的乘方法则的过程,体验从特殊到一般的研究问题的方法,培养分析问题、解决问题的能力.教学重点:积的乘方法则及其运用.教学难点:当整式运算中有积的乘方运算、幂的乘方、同底数幂的乘法和加减运算等多种运算时,正确运用有关法则进行计算.教学过程:一、复习回顾1.a n表示的意义是什么?表示n个a相乘2. 我们已经学过的幂的运算性质有哪些?同底数幂的乘法:a m·a n=a m+n幂的乘方:(a m)n=a mn (m,n都是正整数)二、问题引入若一个正方体的棱长是a,则它的体积是a3若棱长是102,则它的体积是(102)3若棱长是2×105 ,则它的体积是(2×105)3这个结果是幂的乘方的形式吗?三、知识精讲思考:(1) (2×3)2与22×32;(2) (2×5)3与23×53.填空:∵ (2×3)2 =___62__=__36___ 22×32 =__4×9___=___36__,∴ (2×3)2_=__22×32∵ (2×5)3 =__103___=__1000___ 23×53 =__8×125_____=___1000__,∴ (2×5)3__=_23×53运算结果有什么规律?(ab)2=(ab)∙(ab)=(a∙a)∙(b∙b)=a2b2(ab)3=(ab)∙(ab)∙(ab)=(a∙a∙a)∙(b∙b∙b)=a3b3猜想:(ab)n=?因此可得:(ab)n=a n b n(n为正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.四、典例精析例1.(1) (2a)3(2) (-ab)3 (3) (-xy2)2(1)原式=23a3 =8a3(2)原式=(-a)3b3= -a3b3(3)原式=(-x)2(-y2)2=x2y4注意:1.每个因式都要乘方。
14.1.3积的乘方-人教版八年级数学上册教案
一、教学目标
1.理解积的乘方的概念;
2.掌握积的乘方的计算方法;
3.能够运用积的乘方解决实际问题。
二、教学重难点
1.确定积的乘方的概念;
2.确定积的乘方的运算规则;
3.熟练掌握积的乘方的运算方法。
三、课前准备
1.教材《人教版八年级数学上册》;
2.教辅材料;
3.常规文具。
(黑板、粉笔等)
四、教学过程
(一)导入
1.引入积的概念,复习乘法运算;
2.向学生提问:1) 3×3×3×3的意义是什么? 2) 5×5×5×5×5的意义是什么?(二)讲授
1.讲解积的乘方的概念及其运算方法;
2.分析并解释积的乘方运算法则;
3.通过例题指导学生掌握积的乘方的运算方法。
(三)练习
1.完成课本上的练习题;
2.选做教辅材料上的练习题;
3.在教师的指导下,应用积的乘方解决实际问题。
(四)巩固
通过课堂练习、作业检查来巩固积的乘方的概念及其运算方法,并对学生的问题进行澄清和解答。
五、教学反思
本节课通过讲解积的乘方的概念及其运算方法,使学生掌握了积的乘方的基本概念和运算方法,能够应用积的乘方解决实际问题。
教学过程中重点讲解了积的乘方的运算规则,并且通过例题指导学生运用积的乘方解决问题,使学生能够在实际运用中理解积的乘方的概念。
在教学中,教师运用多种教学方式,例如导入、讲授、练习、巩固等环节,使学生在学习的过程中感受到积极向上的气氛,并且通过互动讨论等形式调动学生的思考能力,提高学生的学习效果。
第十四章整式的乘法与因式分解14.1 整式的乘法14.1.3 积的乘方一、教学目标【知识与技能】探索积的乘方的运算性质,能用积的乘方的运算性质进行计算.【过程与方法】经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.【情感、态度与价值观】培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.二、课型新授课三、课时第1课时四、教学重难点【教学重点】积的乘方运算法则的理解及其应用.【教学难点】积的乘方推导过程的理解和灵活运用.五、课前准备教师:课件、直尺、计算器等。
学生:直尺、计算器。
六、教学过程(一)导入新课若已知一个正方体的棱长为2×103 cm,你能计算出它的体积是多少吗?学生思考后列式:V=(2×103)3(cm3)教师提出问题:底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。
积的乘方如何运算呢?能不能找到一个运算法则?(出示课件2)(二)探索新知1.创设情境,探究积的乘方的法则教师问1:请同学们完成下面的题目计算:(1)x2·x5;(2)y2n·y n+1;(3)(x4)3;(4)(a2)3·a5.学生回答:(1)x7;(2)y3n+1;(3)x12;(4)a11.教师问2:同底数幂的乘法法则,幂的乘方法则是什么?学生回答:同底数幂的乘法法则:底数不变,指数相加;a m·a n= a m+n( m,n都是正整数).幂的乘方法则:底数不变,指数相乘. (a m)n= a mn (m,n都是正整数).教师问3:地球半径约为6.4×103km,球的体积计算公式为:V=4πr3,你知道3地球的体积大约是多少吗?(出示课件4)学生独立思考问题3并口答:体积应是V=4π(6.4×103) 3 km3.3教师问4:结果是幂的乘方形式吗?学生讨论后回答:底数是6.4和103的乘积,虽然103是幂,但总体来看不是幂的乘方.教师讲解:如何运算呢?本节课我和同学们一起来探究积的乘方的运算.教师问4:计算:(3×4)2和32×42,看一下他们的结果,你发现了什么?学生计算后回答:它们的结果相等,即(3×4)2=32×42教师问5:下列两题有什么特点?(出示课件7)(1)(ab)2;(2)(ab)3学生回答:底数为两个因式相乘,积的形式.教师问6:你猜想一下它们的结果是多少呢?学生回答:(ab)2=a2b2,则(ab)3=a3b3,教师问7:你能证明上边的猜想吗?(出示课件8)学生讨论并回答:(ab)2=(ab)·(ab) (乘方的意义)=(aa) ·(bb) (乘法交换律、结合律)=a2b2 (同底数幂相乘的法则)同理:(ab)3=(ab)·(ab) ·(ab) (乘方的意义)=(aaa) ·(bbb) (乘法交换律、结合律)=a3b3(同底数幂相乘的法则)教师问8:同学们试着猜想一下:(ab)n =?(出示课件9)学生猜想:(ab)n =a n b n.教师问9:你能用你学过的知识验证你的猜想吗?从运算结果看能发现什么规律?师生共同讨论后解答如下:因此可得:(ab)n=a n b n(n为正整数).教师总结:得到结论:(出示课件10)积的乘方:(ab)n=a n·b n(n是正整数),即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.教师问10:前面提出问题中正方体的体积V=(2×103)3它不是最简形式,根据发现的规律如何计算呢?学生解答:可作如下运算:V=(2×103)3=23×(103)3=23×103×3=8×109cm3.教师问11:三个或三个以上的积的乘方等于什么?学生讨论后回答:三个或三个以上的因式的积的乘方也具有这一性质.如(abc)n=a n·b n·c n(n为正整数);教师讲解:积的乘方等于积中“每一个”因式乘方的积,防止有的因式漏掉乘方出现错误;教师问12:积的乘方的法则:(ab)n=a n·b n(n是正整数),把等式的左右两边一换可以得到:a n·b n=(ab)n(n为正整数).这样成立吗?师生共同讨论后解答如下:积的乘方法则可以进行逆运算.即:a n·b n=(ab)n(n为正整数).总结点拨:分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.例1:计算: (出示课件11)(1)(2a)3;(2)(–5b)3;(3)(xy2)2;(4)(–2x3)4.师生共同解答如下:解:(1)原式= 23a3= 8a3;(2)原式= (–5)3b3 = –125b3;(3)原式= x2(y2)2 =x2y4;(4)原式= (–2)4(x3)4 =16x12.总结点拨:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.例2 计算: (出示课件14)(1) –4xy2·(xy2)2·(–2x2)3;(2) (–a3b6)2+(–a2b4)3.师生共同解答如下:解:(1)原式= –4xy2·x2y4·(–8x6)=[–4×(–8)]x1+2+6y2+4=32x9y6;(2)原式=a6b12+(–a6b12) =[1+(–1)]a6b12=0总结点拨:涉及积的乘方的混合运算,一般先算积的乘方,再算乘法,最后算加减,然后合并同类项.例3:如何简便计算(0.04)2022×[(–5)2022]2?(出示课件15)师生共同解答如下:解法一:(0.04)2022×[(–5)2022]2=(0.22)2022 × 54044=(0.2)4044× 54044=(0.2 ×5)4044=14044=1解法二:(0.04)2022×[(–5)2022]2=(0.04)2022 × (25)2022=(0.04× 25)2022=12022=1总结点拨:(出示课件16)①逆用积的乘方公式a n·b n=(ab)n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.②一般转化为底数乘积是一个正整数,再进行幂的计算较简便.(三)课堂练习(出示课件20-24)1.计算(–x2y)2的结果是( )A.x4y2B.–x4y2C.x2y2D.–x2y22.下列运算正确的是( )A. x•x2=x2B. (xy)2=xy2C. (x2)3=x6D. x2+x2=x43. 计算:(1) 82024×0.1252023= ________;(2) (-3)2023×(-1)2022 ________;3(3) (0.04)2023×[(–5)2023]2=________.4. 判断:(1)(ab2)3=ab6 ( ) (2) (3xy)3=9x3y3( ) (3) (–2a2)2=–4a4( ) (4) –(–ab2)2=a2b4( ) 5.计算:(1) (ab)8 ; (2) (2m)3; (3) (–xy)5;(4) (5ab2)3; (5) (2×102)2; (6) (–3×103)3.6. 计算:(1) 2(x3)2·x3–(3x3)3+(5x)2·x7;(2)(3xy2)2+(–4xy3) · (–xy) ;(3)(–2x3)3·(x2)2.7. 如果(a n•b m•b)3=a9b15,求m, n的值.参考答案:1.A2.C3.(1)8;(2)-3;(3)14.(1)×(2)×(3)×(4)×5. 解:(1)原式=a8b8;(2)原式= 23·m3=8m3;(3)原式=(–x)5·y5= –x5y5;(4)原式=53·a3·(b2)3=125a3b6;(5)原式=22×(102)2=4 ×104;(6)原式=(–3)3×(103)3= –27 ×109= –2.7 ×1010.6.(1)解:原式=2x6·x3–27x9+25x2·x7= 2x9–27x9+25x9 = 0;(2)解:原式=9x2y4 +4x2y4=13x2y4;(3)解:原式= –8x9·x4 =–8x13.7. 解:∵(a n•b m•b)3=a9b15,∴(a n)3•(b m)3•b3=a9b15,∴a 3n•b 3m•b3=a9b15 ,∴a 3n•b 3m+3=a9b15,∴3n=9 ,3m+3=15.∴n=3,m=4.(四)课堂小结今天我们学了哪些内容:积的乘方法则:(ab)n=a n·b n(n是正整数).使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘. 注意点:(1)注意防止符号上的错误;(2)三个或三个以上的因式的积的乘方也具有这一性质;(3)积的乘方法则也可以逆用.(五)课前预习预习下节课(14.1.4)98页到99页的相关内容。
人教版八年级上册14.1.3积的乘方教学设计一、教学背景本教学设计是针对人教版八年级数学教材第14章第1节“积的乘方”中的14.1.3节进行的设计,是该章节中的核心知识点。
学生在初学的时候可能会比较抵触,因此需要巧妙的设计,使学生能够理解和掌握这个知识点。
我们可以通过合理安排教学步骤、选择合适的教学方法、考虑学生的心理、增强学生的兴趣,来达到教学的目的。
二、教学目标1.知识目标了解积的乘方的概念,掌握积的乘方的运算法则及其性质。
2.能力目标通过类比、归纳等方法,培养学生的抽象思维能力和逻辑推理能力。
3.情感目标通过教学,激发学生学习数学的兴趣,提高学生的自信心和学习兴趣,增强学生对数学的喜爱。
三、教学重难点1.重点掌握积的乘方的运算法则及其性质,掌握乘方的基本计算方法。
2.难点让学生理解和掌握抽象的概念,使学生能够在实际问题中应用乘方的基本运算法则。
四、教学步骤1.导入(5分钟)教师通过提问的方式,引导学生回忆乘方的基本运算法则,并简单介绍一下积的乘方的概念。
2.讲解(20分钟)教师向学生详细讲解积的乘方的定义和运算法则,通过示例等方式让学生更好地理解和掌握概念。
3.练习(25分钟)教师出示一些例题,让学生通过计算获得对问题的认识和理解。
通过针对性的练习,加强学生对概念的掌握,巩固所学知识点。
4.归纳总结(10分钟)让学生在展示他们的解题方法后,归纳总结积的乘方的基本规律和性质,加深对概念的理解。
5.实际应用(15分钟)根据教师的引导,学生进行实际应用练习,解决实际问题,以便掌握积的乘方在实际问题中的应用。
6.小结与反思(5分钟)教师进行思考,总结今天的教学,让学生对所学知识点和教学方法进行总结,反馈意见和建议,以便在以后的教学中做出改进。
五、教学评价与反思教学评价是教学活动的重要组成部分,这样可以让我们了解学生的学习情况、教学效果和教学方法是否合理有效。
在教学中、教师可以对学生的计算能力、抽象思维能力等进行评价。
《14.1.3 积的乘方》教学设计武威第九中学:张天娥教学目标1.知识与技能:能准确理解并掌握积的乘方运算性质,灵活运用这一性质进行相关计算。
2.过程与方法:通过探索积的乘方运算法则的过程,知道这一法则是由乘方的意义和乘法的交换律结合律以及同底数幂相乘的法则推到而来,从而发展学生推理能力和有条理的表达能力。
理解学习这一法则,进一步体会幂的意义,体会数学的转化思想,理解“特殊与一般”的数学归纳方法。
3.情感、态度与价值:在发展推理能力和有条理的表达能力的同时,进一步让学生体会学习数学的方法和兴趣,提高学生学习数学的信心,感受数学的简洁美。
重、难点与关键1.重点:理解并正确熟练地运用积的乘方运算法则2.难点:积的乘方运算法则的探索过程及其应用方法。
3.关键:要突破这个难点,教师应该在引导这个推导过程时,步步深入,•层层引导,而不该强硬地死记公式,只有在理解的情况下,才可以对积的乘方的运算性质灵活地应用。
教学方法采用“探究新知,交流归纳,实例探究,讲练结合”的方法,让学生在互动中掌握知识。
教学过程一、创设情境,复习旧知课堂演练1.计算:(1) 10×102× 103 =______ ;(2) (x5 )2=_________.2.(1)同底数幂的乘法:a m·a n=_________ ( m,n都是正整数)。
(2)幂的乘方:(a m)n=_________ (m,n都是正整数)教师活动:利用联系提问学生复习在前面学过的同底数幂的运算法则;幂的乘方运算法则。
学生活动:踊跃举手发言,解说老师的提问.二、直接导入,探究新知问题1 计算:(1)(2×3)2 (2)(2a)3学生探究教师提问:这种形式为积的乘方,我们学过的幂的乘方的运算性质适用吗? 问题2 根据乘方的意义及乘法交换律、结合律进行计算:(1)(ab)2 (2)(ab)3同学们思考怎样计算(ab)2 ,每一步的根据是什么?师生完成计算领会这两个幂的运算法则.教师质疑:(ab)n =?推理验证:(ab )n ==a n b归纳总结:积的乘方法则:(ab )n =a n b n (n 为正整数),这就是说,积的乘方等于积的每个因式分别乘方,再把所得的幂相乘。
14.1.3 积的乘方教学案
一、学习目标:1.会进行积的乘方的运算。
.
2.理解积的乘方运算法则,能解决一些实际问题.
二、重点难点
重点:积的乘方运算法则及其应用.
难点:幂的运算法则的灵活运用
三、合作学习
提出问题,创设情境
若已知一个正方体的棱长为1.1×103cm,•你能计算出它的体积是多少吗?
导入新课
四、精讲精练
精讲:
例1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a( )b( )
(2)(ab)3=______=_______=a( )b( )
(3)(ab)n=______=______=a( )b( )(n是正整数)
积的乘方等于各因式乘方的积(ab)n = a( n )b( n )(n是正整数)a n b n=(ab)n
1、随堂练习
(1)(2a)3 = (2)(-5b)3=
(3)(xy2)2 = (4)(-2x3)4= (5)(-2x2y)3 =(6)(1/3)100×(-3)100 =
(7)(-0.125)2008×82009+(-0.25)3 ×26
2、拓展延伸
1、a n -5(a n +1b3m-2)2+(a n -1b m -2)3(-b3m+2)
2、(-9)3(-2/3)3(1/3)3
3、-0.2514×230
4、[-2(-x n-1)]3
五、小结:积的乘方运算法则。