2014年数学解题能力展示(原迎春杯):四年级复赛试卷(含答案)
- 格式:docx
- 大小:168.19 KB
- 文档页数:6
2021年“迎春杯〞数学解题能力展示复赛试卷〔小高组〕一、填空题Ⅰ〔每题8分,共40分〕1.〔8分〕定义一种新运算a☆b满足:a☆b=b×10+a×2,那么2021☆130=.2.〔8分〕从1999年到2021年的12年中,物价涨幅为150%〔即1999年用100元能购置的物品,2021年要比原来多花150元才能购置〕.假设某个企业的一线员工这12年来工资都没有变,按购置力计算,相当于工资下降了%.3.〔8分〕如图中大圆的半径是20厘米,7个小圆的半径都是10厘米.那么阴影图形的面积是平方厘米〔π取3.14〕.4.〔8分〕某届“数学解题能力展示〞读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别、小学的两个组共占总人数的,不是小学高年级组的占总人数的.那么小学中年级组参赛人数为人.5.〔8分〕如图是一个除法竖式,这个除法竖式的被除数是多少?二、填空题Ⅱ〔每题10分,共50分〕6.〔10分〕算式1!×3﹣2!×4+3!×5﹣4!×6+…+2021!×2021﹣2021!×2021+2021!的计算结果是.7.〔10分〕春节临近.从2021年1月17日〔星期一〕起工厂里的工人陆续回家过年,与家人团聚.假设每天离厂的工人人数相同,到1月31日,厂里还剩下工人121名,在这15天期间,统计工厂工人的工作量是2021个工作日〔一人工作一天为1个工作日,工人离厂当天及以后不需要统计〕,其中周六、日休息,且无人缺勤,那么截止到1月31日,回家过年的工人共有人.8.〔10分〕有一个整数,它恰好是它的约数个数的2021倍,这个整数的最小值是.9.〔10分〕一个新建5层楼房的一个单元每层有东西2套房:各层房号如下图,现已有赵、钱、孙、李、周五家入住,一天他们5人在花园中聊天:赵说:“我家是第3个入住的,第1个入住的就住我对门.〞钱说:“只有我一家住在最高层.〞孙说:“我家入住时,我家的同侧的上一层和下一层都已有人入住了.〞李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.〞周说:“我家住在106号,104号空着,108号也空着.〞他们说的话全是真话,设第1、2、3、4、5家入住的房号的个位数依次为A、B、C、D、E,那么五位数=.10.〔10分〕6支足球队,每两队间至多比赛一场如果每队恰好比赛了2场,那么符合条件的比赛安排共有种.三、填空题Ⅲ〔每题12分,共60分〕11.〔12分〕0~9可以组成两个五位数A和B,如果A+B的和是一个末五位数字相同的六位数,那么A×B的不同取值共有个.12.〔12分〕甲乙两人分别从A、B两地同时出发,在A、B往返行走;甲出发的同时,丙也从A出发去B.当甲乙两人第一次迎面相遇在C地时,丙还有100米才到C;当丙走到C时,甲又往前走了108米;当丙到B时,甲乙正好第二次迎面相遇.那么A、B两地间的路程是多少米?13.〔12分〕如图,大正方形被分成了面积相等的五块.假设AB长为3.6厘米,那么大正方形的面积为平方厘米.14.〔12分〕用36个3×2×1的实心小长方体拼成一个6×6×6的大正方体,在各种拼法中,从大正方体外的某一点看过去最多能看到个小长方体.15.〔12分〕平面中有15个红点,在这些红点间连一些线段,一个红点连出了几条线段,就在这个红点上标几.所有标有相同数的红点之间互不连线,那么这15个红点间最多连了条线段.2021年“迎春杯〞数学解题能力展示复赛试卷〔小高组〕参考答案与试题解析一、填空题Ⅰ〔每题8分,共40分〕1.〔8分〕定义一种新运算a☆b满足:a☆b=b×10+a×2,那么2021☆130=5322.【解答】解:根据分析可得,2021☆130=130×10+2021×2=1300+4022=5322;故答案为:5322.2.〔8分〕从1999年到2021年的12年中,物价涨幅为150%〔即1999年用100元能购置的物品,2021年要比原来多花150元才能购置〕.假设某个企业的一线员工这12年来工资都没有变,按购置力计算,相当于工资下降了60%.【解答】解:100+100×150%=100+150=250〔元〕1﹣100÷250=1﹣40%=60%答:按购置力计算,相当于工资下降了60%.故答案为:60.3.〔8分〕如图中大圆的半径是20厘米,7个小圆的半径都是10厘米.那么阴影图形的面积是942平方厘米〔π取3.14〕.【解答】解:观察图象可知阴影局部的面积=7个小圆面积﹣一个大圆面积=7•π•102﹣π•202=300π=942,故答案为:942.4.〔8分〕某届“数学解题能力展示〞读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别、小学的两个组共占总人数的,不是小学高年级组的占总人数的.那么小学中年级组参赛人数为5250人.【解答】解:1﹣=,﹣=,12000×=5250〔人〕;答:小学中年级组参赛人数为5250人.故答案为:5250.5.〔8分〕如图是一个除法竖式,这个除法竖式的被除数是多少?【解答】解:由题意,除数的两个倍数分别是2□□和91□,如果2□□是除数的2倍,根据余数为130,除数为131以上,149以下,这样91□只能是除数的7倍,131×7=917,那么第三个被除数为91□或81□,它等于除数的某个倍数减1,只能是7倍减1,即916,被除数等于131×277﹣1=36286,经检验符合题意;如果2□□是除数的1倍,那么91□是除数的4倍,可能是912或916,除数可能是228或229,第三个被除数为91□或81□,除以除数之后余数为130,可能是228×3+130=814或229×3+130=817,被除数相应为228×143+130=32734或229×143+130=32877,但无论哪种,第一个差都是两位数,所以不符合题意.综上所述,被除数等于36286,除数为131,商为276.二、填空题Ⅱ〔每题10分,共50分〕6.〔10分〕算式1!×3﹣2!×4+3!×5﹣4!×6+…+2021!×2021﹣2021!×2021+2021!的计算结果是1.【解答】解:分组找规律:2021!×2021﹣2021!×2021+2021!=2021!〔2021﹣2021×2021+2021×2021〕=2021!那么2007!×2021﹣2021!×2021+2021!=2007!〔2021﹣2021×2021+2021×2021〕=2007!由奇数项向前裂变抵消规律得原式=2021!×2021﹣2021!×2021+2021!+…+5!×7﹣4!×6+3!×5﹣2!×4+1!×3=1!=1故答案为:17.〔10分〕春节临近.从2021年1月17日〔星期一〕起工厂里的工人陆续回家过年,与家人团聚.假设每天离厂的工人人数相同,到1月31日,厂里还剩下工人121名,在这15天期间,统计工厂工人的工作量是2021个工作日〔一人工作一天为1个工作日,工人离厂当天及以后不需要统计〕,其中周六、日休息,且无人缺勤,那么截止到1月31日,回家过年的工人共有120人.【解答】解:依题意可知:设每天回家的人数为x人,那么15天共走15x人,其中有2个周六周日共4天休息不工作.周末剩余人数为9x〔周六〕,8x〔周日〕,2x〔周六〕,x〔周日〕.121×11+〔3+4+5+6+7+10+11+12+13+14〕x=2021∴x=8,15x=120〔人〕故答案为:1208.〔10分〕有一个整数,它恰好是它的约数个数的2021倍,这个整数的最小值是16088.【解答】解:用列举法因为2021×8=16088,所以,满足条件的最小整数为16088,故答案为16088.9.〔10分〕一个新建5层楼房的一个单元每层有东西2套房:各层房号如下图,现已有赵、钱、孙、李、周五家入住,一天他们5人在花园中聊天:赵说:“我家是第3个入住的,第1个入住的就住我对门.〞钱说:“只有我一家住在最高层.〞孙说:“我家入住时,我家的同侧的上一层和下一层都已有人入住了.〞李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.〞周说:“我家住在106号,104号空着,108号也空着.〞他们说的话全是真话,设第1、2、3、4、5家入住的房号的个位数依次为A、B、C、D、E,那么五位数=69573.【解答】解:根据分析,因为104和108都空着,而孙的楼上楼下都有人了,所以孙住在左侧,只有钱一家住在最高层,说明剩余4人住在101,102,103,105,106,107,里面的6家,全空着的一层只能是第一层或第二层,这样才能使得孙和楼上楼下都有人.如果全空着的是第一层,那么李住在第二层的103,李氏最后入住的,所以孙住在107,且105和109都在这之前有人住了,赵是第三个入住的,所以孙一定是第四个入住的,根据钱的话,钱住在109,有对门的是105和106,周住在106,所以赵住在105,而且周的第一个入住的,故答案是:69573.10.〔10分〕6支足球队,每两队间至多比赛一场如果每队恰好比赛了2场,那么符合条件的比赛安排共有70种.【解答】解:6支球队分2组每组3支,这3支球队间相互比赛:分组方法:〔6×5×4〕÷〔3×2×1〕÷2=10〔选3支球队和剩3支球队重复,所以除2〕;6支球队围成圈,相邻的球队之间比赛:方法:5×4×3×2×1÷2=60 〔顺时针与逆时针重复,所以除2〕,所以符合条件的比赛安排共有10+60=70种.答:符合条件的比赛安排共有70种.故答案为:70.三、填空题Ⅲ〔每题12分,共60分〕11.〔12分〕0~9可以组成两个五位数A和B,如果A+B的和是一个末五位数字相同的六位数,那么A×B的不同取值共有384个.【解答】解:依题意可知:六位数字的首位一定是1,根据弃九法后5位都是7.所以这两个五位数的首位之和是17.后四个数字和为7的数字两两配对.把和为7的数字两两配对,首位是9的那个五位数有8×6×4×2=384〔种〕.根据不同情况下两个五位数的差不同,差小积大,这384个乘积也各不相同.故答案为:384.12.〔12分〕甲乙两人分别从A、B两地同时出发,在A、B往返行走;甲出发的同时,丙也从A出发去B.当甲乙两人第一次迎面相遇在C地时,丙还有100米才到C;当丙走到C时,甲又往前走了108米;当丙到B时,甲乙正好第二次迎面相遇.那么A、B两地间的路程是多少米?【解答】解:甲从A走到C时,丙走了100÷=1250〔米〕,AC的距离为1250×=1350〔米〕,甲乙速度之和是丙的速度的3倍,那么乙的速度是丙的〔3﹣〕倍,BC的距离为1250×〔3﹣〕=2400〔米〕,所以AB的距离为1350+2400=3750〔米〕答:A、B两地间的路程是3750米.13.〔12分〕如图,大正方形被分成了面积相等的五块.假设AB长为3.6厘米,那么大正方形的面积为1156平方厘米.【解答】解:根据分析,设正方形边长为一个单位,如图,因为正方形分成面积相等的五份,故每一份的面积都等于,故AG=,D到FH的距离=C到EF的距离=,因为A到左边EG的距离等于A到上边EF的距离的,所以C到EG的距离也等于C 到EF的距离的,即;C到FH的距离为1﹣=,类似,D到右边FH的距离为,因为C到EF的距离:C到右边FH的距离==10:21,故D到EF的距离也等于D到FH的距离的,即:×=,故D到GH的距离=1﹣=;又三角形BDH的面积=,故BH==,AB=1﹣﹣=÷=34〔厘米〕,正方形的面积=34×34=1156平方厘米.故答案是:1156.14.〔12分〕用36个3×2×1的实心小长方体拼成一个6×6×6的大正方体,在各种拼法中,从大正方体外的某一点看过去最多能看到31个小长方体.【解答】解:如图,为了从外面看到的个数最多,需要使外面看到的长方形尽可能“深入〞正方形里面,结果如下:共6×3+3×4+3×1+1=31〔个〕.故答案为:31.15.〔12分〕平面中有15个红点,在这些红点间连一些线段,一个红点连出了几条线段,就在这个红点上标几.所有标有相同数的红点之间互不连线,那么这15个红点间最多连了85条线段.【解答】解:将15个点分为5组,每组分别有1,2,3,4,5个点,〔1×14+2×13+3×12+4×11+5×10〕÷2=170÷2=85〔条〕答:这15个红点间最多连了85条线段.故答案为:85.。
五年级试卷分析答案:1C、2A、3B、4D、5D、6B、7C、8B、9A、10A、11C、12B、13C、14D、15A试卷分析:第一题:计算。
计算与简单的最值结合,此题保留的是2.5,那么学生只要想到保留2.5最大是几就可以,就是2.55,那运用最基本的除法就可以得到正确答案了。
考察学生的计算功底。
第二题:几何图形的分割。
此题如果出现在填空题就完全是图形分割了,只要把原图分割成相同的小三角形或者三角形和四边形,那么就可以轻易的数出结果。
不过此题出现在选择题中,观察一下,发现阴影部分要比白色部分略少,也就是说阴影部分占总体应该小于一半,选项中只有1个小于一半,就可以轻易得出答案。
考察图形分割。
第三题:分数应用题。
对于分数百分的一系列问题,一定要找准单位1,对于单位1,我们可以设为1也可以设为N,此题将单位1设为4份会变得特别容易。
考察分数应用题和基本解法。
第四题:计算。
此题是课本教材内会涉及到的知识点,但是大多数都只说被除数和除数同时扩大或缩小,商会如何变化,但很少提及余数问题。
在整数范围内,余数是会随被除数和除数一起变化的,只要知道这个知识点,此题就会非常容易。
考察除法的性质。
第五题:计算。
此题有2种解法,第一种是利用同余,就是利用9的余数和11的余数来判断答案,比较简单;第二种解法是直接算,直接算也是比较容易得出答案的,因为数不大,而且和两个11相乘,只要连续写2次,错位相加就可以得到答案。
考察学生的计算能力、数论知识。
第六题:概念题。
此题是考察学生对分数概念的理解,分数中有真分数、假分数,还有真分数化简后的最简真分数,学生很容易弄混,此题也是基础知识的延伸,难度较小。
考察学生基础知识。
第七题:数字谜。
此题与六年级试题重复。
对于大多数的数字谜问题,都需要学生分类讨论,需要用代数的思想帮助解题,整体难度不大,但是有一些做题小技巧,平时数学基本功比较好的学生比较容易解决。
比如此题只问末尾和,很容易就从题中看出除数的末尾为1,这样就可以直接得到答案。
2014年“迎春杯”数学解题能力展示复赛试卷(六年级)一、选择题(每小题8分,共32分)1.(8分)算式的计算结果是()A.B.C.D.2.(8分)对于任何自然数,定义ni=1×2×3×…×n.那么算式2014i﹣3i的计算结果的个位数字是()A.2 B.4 C.6 D.83.(8分)童童在计算有余数的除法时,把被除数472错看成了427,结果商比原来小5,但余数恰好相同,那么这个余数是()A.4 B.5 C.6 D.74.(8分)如图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG 和PQRS.那么正八边形中阴影部分的面积()A.B.C.D.二、选择题(每题10分,共70分)5.(10分)如图所示竖式成立时的除数与商的和为()A.589 B.653 C.723 D.7336.(10分)甲乙丙三人进行一场特殊的真人CS比赛,规定:第一枪由乙射出,射击甲或者丙,以后的射击过程中,若甲被击中一次,则甲可以有6发子弹射击乙或丙,若乙被击中一次,则乙可以有5发子弹射击甲或丙,若丙被击中一次,则丙可以有4发子弹射击甲或乙,比赛结束后,共有16发子弹没有击中任何人?则甲乙丙三人被击中的次数有()种不同的情况.A.1 B.2 C.3 D.47.(10分)甲乙二人进行下面的游戏.二人先约定一个整数N,然后由甲开始,轮流把1,2,3,4,5,6,7,8,9这九个数字之一填入下面任一方格中:□□□□□□,每一方格只填入一个数字,形成一个数字可以重复的六位数.若这个六位数能被N整除,乙胜;否则甲胜.当N小于15时,使得乙有必胜策略的N有()A.5 B.6 C.7 D.88.(10分)在纸上任意写一个自然数,把这张纸旋转180度,数值不变,如0、11、96、888等,我们把这样的数称为“神马数”.在所有五位数中共有()个不同的“神马数”.A.12 B.36 C.48 D.609.(10分)如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,…,依此类推,由正n边形“扩展”而来的多边形的边数记为a n(n≥3 ),则+++…+=,那么n=()A.2014 B.2015 C.2016 D.201710.(10分)如图所示,五边形ABCEF面积是2014平方厘米,BC与CE垂直于C点,EF与CE垂直于E点,四边形ABDF是正方形,CD:ED=3:2,那么,三角形ACE的面积是()平方厘米.A.1325 B.1400 C.1475 D.150011.(10分)甲乙两车分别从A、B两地同时出发,相向而行,甲车的速度大于乙车.甲行驶了60千米后和乙车在C点相遇.此后甲车继续向前行驶,乙车掉头与甲车同向行驶.那么当甲车到达B地时,甲乙两车最远相距()千米.A.10 B.15 C.25 D.30三、选择题(每题12分,共48分)12.(12分)在“爸爸去哪儿”的节目中有一个任务,五个参加任务的孩子(天天、石头、Kimi、Cindy、Angela)需要换爸爸(每个小朋友可以选择除了自己爸爸之外其他四位父亲中的任何一位),那么最终五人有()种不同的选择结果.A.40 B.44 C.48 D.5213.(12分)老师在黑板上从1开始将奇数连续地写下去,写了一长串数后,擦去了其中的两个数,将这些奇数隔成了3串,已知第二串比第一串多1个数,第三串比第二串多1个数,且第三串奇数和为4147,那么被划去的两个奇数的和是()A.188 B.178 C.168 D.15814.(12分)从一张大方格纸上剪下5个相连的方格(只有一个公共顶点的两个方格不算相连),要使剪下的图形可折叠为一个无盖的正方体,则共可以剪出()种不同的图形(经过旋转或翻转相同的图形视为同一种).A.8 B.9 C.10 D.1115.(12分)老师把某两位数的六个不同因数分别告诉了A~F六个聪明诚实的同学.A和B同时说:我知道这个数是多少了.C和D同时说:听了他们的话,我也知道这个数是多少了.E:听了他们的话,我知道我的数一定比F的大.F:我拿的数的大小在C和D之间.那么六个人拿的数之和是()A.141 B.152 C.171 D.1752014年“迎春杯”数学解题能力展示复赛试卷(六年级)参考答案与试题解析一、选择题(每小题8分,共32分)1.(8分)算式的计算结果是()A.B.C.D.【解答】解:===故选:D.2.(8分)对于任何自然数,定义ni=1×2×3×…×n.那么算式2014i﹣3i的计算结果的个位数字是()A.2 B.4 C.6 D.8【解答】解:由新定义:ni=1×2×3×…×n得:2014i=1×2×3×4×5×…×2013×2014=1×3×4×6×7×8×…×2013×2014×10所以1×3×4×6×7×8×…×2013×2014×10是10的倍数,所以2014i的个位数为0;3i=1×2×3=6所以2014i﹣3i的个位数也就为:10﹣6=4故选:B.3.(8分)童童在计算有余数的除法时,把被除数472错看成了427,结果商比原来小5,但余数恰好相同,那么这个余数是()A.4 B.5 C.6 D.7【解答】解:(472﹣427)÷5=45÷5=9472÷9=52 (4)答:这个余数是4.故选:A.4.(8分)如图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG 和PQRS.那么正八边形中阴影部分的面积()A.B.C.D.【解答】解:根据分析,将图中阴影部分进行等积变形,由图不难发现,阴影部分和空白部分的面积刚好相等,正八边形中阴影部分的面积占:故选:A.二、选择题(每题10分,共70分)5.(10分)如图所示竖式成立时的除数与商的和为()A.589 B.653 C.723 D.733【解答】解:依题意可知用字母表示如图:S首先判断A=0,B=4.再根据除数的2倍是四位数,那么E是大于4的.除数与D 的积是三位数,那么D就是小于2的非零数字,即D=1.再根据顺数第三行最后一位为1可以确定D和C的取值为(1,1).根据C=1,B=4,那么商的十位数字就是4,根据有余数推理E=5.再根据除数的2倍的数字中有6.那么除数的十位数字可能是3或者8.枚举得知除数是581商是142.581+142=723.故选:C.6.(10分)甲乙丙三人进行一场特殊的真人CS比赛,规定:第一枪由乙射出,射击甲或者丙,以后的射击过程中,若甲被击中一次,则甲可以有6发子弹射击乙或丙,若乙被击中一次,则乙可以有5发子弹射击甲或丙,若丙被击中一次,则丙可以有4发子弹射击甲或乙,比赛结束后,共有16发子弹没有击中任何人?则甲乙丙三人被击中的次数有()种不同的情况.A.1 B.2 C.3 D.4【解答】设甲乙丙分别被击中x、y、z次,则三人分别发射6x、5y+1,4z 次依题意有方程:6x+5y+1+4z﹣(x+y+z)=16化简得:5x+4y+3z=15,先考虑x的取值,x=3,1,01)当x=3时,y=z=0;不合题意,舍去;2)当x=1时,y=1,z=2;3)当x=0时,y=3,z=1;或4)x=0,y=0,z=5(不合题意,舍去)甲乙丙三人被击中的次数有2种不同的情况,故选B.7.(10分)甲乙二人进行下面的游戏.二人先约定一个整数N,然后由甲开始,轮流把1,2,3,4,5,6,7,8,9这九个数字之一填入下面任一方格中:□□□□□□,每一方格只填入一个数字,形成一个数字可以重复的六位数.若这个六位数能被N整除,乙胜;否则甲胜.当N小于15时,使得乙有必胜策略的N有()A.5 B.6 C.7 D.8【解答】解:若N是偶数,甲只需第一次在个位填个奇数,乙必败只需考虑N是奇数.N=1,显然乙必胜.N=3,9,乙只需配数字和1﹣8,2﹣7,3﹣6,4﹣5,9﹣9即可.N=5,甲在个位填不是5的数,乙必败.N=7,11,13,乙只需配成=×1001=×7×11×13,故选:B.8.(10分)在纸上任意写一个自然数,把这张纸旋转180度,数值不变,如0、11、96、888等,我们把这样的数称为“神马数”.在所有五位数中共有()个不同的“神马数”.A.12 B.36 C.48 D.60【解答】解:设这个数为,A位可以填11,88,69,96,4种情况,B位可以填00,11,88,69,96,5种情况,C位可以填0,1,8,3种情况,根据分步计数原理,可得在所有五位数中共有4×5×3=60(个),故选:D.9.(10分)如图,第(1)个多边形由正三角形“扩展”而来,边数记为a3,第(2)个多边形由正方形“扩展”而来,边数记为a4,…,依此类推,由正n边形“扩展”而来的多边形的边数记为a n(n≥3 ),则+++…+=,那么n=()A.2014 B.2015 C.2016 D.2017【解答】解:a3=3(2+2)=3×4,a4=4(2+3)=4×5,a5=5(2+4)=5×6,…a n=n(n+1),∴+++…+=,∴﹣+﹣+﹣+…+﹣=,∴﹣=,∴n+1=2017,∴n=2016.10.(10分)如图所示,五边形ABCEF面积是2014平方厘米,BC与CE垂直于C点,EF与CE垂直于E点,四边形ABDF是正方形,CD:ED=3:2,那么,三角形ACE的面积是()平方厘米.A.1325 B.1400 C.1475 D.1500【解答】解:作正方形ABCD的“弦图”,如右图所示,假设CD的长度为3a,DE的长度为2a,那么BG=3a,DG=2a,根据勾股定理可得BD2=BG2+DG2=9a2+4a2=13a2,所以,正方形ABDF的面积为13a2;因为CD=EF,BC=DE,所以三角形BCD和三角形DEF的面积相等为3a2;又因为五边形ABCEF面积是2014平方厘米,所以13a2+6a2=2014,解得a2=106,三角形ACE的面积为:5a×5a÷=a2,即×106=1325.11.(10分)甲乙两车分别从A、B两地同时出发,相向而行,甲车的速度大于乙车.甲行驶了60千米后和乙车在C点相遇.此后甲车继续向前行驶,乙车掉头与甲车同向行驶.那么当甲车到达B地时,甲乙两车最远相距()千米.A.10 B.15 C.25 D.30【解答】解:依题意可知:假设甲走60千米时,乙走了a千米,甲到达B地时,乙车应走千米.此时甲、乙相差最远为a﹣=×(60﹣a).和一定,差小积大,60﹣a=a,a=30.甲、乙最远相差30﹣=15(千米)故选:B.三、选择题(每题12分,共48分)12.(12分)在“爸爸去哪儿”的节目中有一个任务,五个参加任务的孩子(天天、石头、Kimi、Cindy、Angela)需要换爸爸(每个小朋友可以选择除了自己爸爸之外其他四位父亲中的任何一位),那么最终五人有()种不同的选择结果.A.40 B.44 C.48 D.52【解答】解:设五个爸爸分别是A,B,C,D,E,五个孩子分别是a,b,c,d,e,a有4种选择,假设a选择B,接着让b选择,有两种可能,选择A和不选择A,(1)选择A,c,d,e 选择三个人错排,(2)不选择A,则b,c,d,e,选择情况同4人错排.所以S5=4(S4+S3).同理S4=3(S3+S2),S3=2(S2+S1),而S1=0(不可能排错),S2=0,所以S3=2,S4=9,S5=44,故选:B.13.(12分)老师在黑板上从1开始将奇数连续地写下去,写了一长串数后,擦去了其中的两个数,将这些奇数隔成了3串,已知第二串比第一串多1个数,第三串比第二串多1个数,且第三串奇数和为4147,那么被划去的两个奇数的和是()A.188 B.178 C.168 D.158【解答】解:设第一段有n个,则第2段有n+1个,那么第一个擦的奇数是2n+1,第二个擦的奇数是4n+5,被划去的两个奇数的和为:2n+1+4n+5=6n+6,6n+6是6的倍数,在四个选项中只有168是6的倍数,符合要求.故选:C.14.(12分)从一张大方格纸上剪下5个相连的方格(只有一个公共顶点的两个方格不算相连),要使剪下的图形可折叠为一个无盖的正方体,则共可以剪出()种不同的图形(经过旋转或翻转相同的图形视为同一种).A.8 B.9 C.10 D.11【解答】解:依题意可知:剪下来的图形如图所示:共8种.故选:A.15.(12分)老师把某两位数的六个不同因数分别告诉了A~F六个聪明诚实的同学.A和B同时说:我知道这个数是多少了.C和D同时说:听了他们的话,我也知道这个数是多少了.E:听了他们的话,我知道我的数一定比F的大.F:我拿的数的大小在C和D之间.那么六个人拿的数之和是()A.141 B.152 C.171 D.175【解答】解:70+35+14+10+7+5=141【答案】A声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 17:59:51;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
目录第1届“迎春杯”数学竞赛刊赛试题... .............................................................. . 1 第2届“迎春杯”数学竞赛决赛试题... .............................................................. . 5 第3届“迎春杯”数学竞赛决赛试题... .............................................................. . 8 第4届“迎春杯”数学竞赛决赛试题... ............................................................ .. 10 第5届“迎春杯”数学竞赛决赛试题... ............................................................ .. 11 第6届“迎春杯”数学竞赛决赛试题... ............................................................ .. 13 第7届“迎春杯”数学竞赛决赛试题... ............................................................ .. 16 第8届“迎春杯”数学竞赛决赛试题... ............................................................ .. 18 第9届“迎春杯”数学竞赛决赛试题... ............................................................ .. 20 第10 届“迎春杯”数学竞赛决赛试题... .......................................................... (23)第11 届“迎春杯”数学竞赛初赛试题... ........................................................... (25)第11 届“迎春杯”数学竞赛决赛试题... ........................................................... (27)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (29)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (31)第13 届“迎春杯”数学竞赛初赛试题... .......................................................... (33)第13 届“迎春杯”数学竞赛决赛试题... .......................................................... (35)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (37)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (39)第15 届“迎春杯”数学竞赛初赛试题... .......................................................... (41)第15 届“迎春杯”数学竞赛决赛试题... .......................................................... (43)第16 届“迎春杯”数学科普活动日区县邀请赛试题... .................................. (45)第17 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 47 第18 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 50 第19 届“迎春杯”数学科普活动日计机交流试题... ....................................... . 52 第19 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 54 第20 届“迎春杯”数学科普活动日试题... ....................................................... .. 55 第21 届“迎春杯”数学科普活动日解题能力展示初赛试题... ...................... (57)第21 届“迎春杯”数学解题能力展示读者评选活动复试计算机交流试题... (58)第22 届“迎春杯”数学解题能力展示读者评选活动中年级初试试题... ..... .. 60 第22 届“迎春杯”数学解题能力展示读者评选活动中年级复试试题... ..... .. 62 第22 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 64第22 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 66第23 届“迎春杯”数学解题能力展示评选活动中年级初试试题... .............. . 69第23 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 71第23 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 73第23 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 75第24 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 77第24 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 79第24 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 81第24 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 83第24 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 85第24 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 88第25 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 90第25 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 92第25 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 94第25 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 96第25 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 98第25 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 100 第26 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 102 第26 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 104 第26 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 106 第26 届“迎春杯”数学解题能力展示评选活动五年级初试试题... ........... .. 108 第26 届“迎春杯”数学解题能力展示评选活动六年级初试试题... ........... .. 110 第26 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 112 第27 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 114 第27 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 116 第27 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 118第 27届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 122 第 27届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 124 第 28届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 126 第 28届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 128 第 28届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 130 第 28届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 132 第 28届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 134 第 28届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 136 第 29届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 138 第 29届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 140 第 29届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 141 第 29届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 143 第 29届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 144 第 29届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 145第 1 届“迎春杯”数学竞赛刊赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。
“迎春杯”历年题目分类解析(四年级)(学而思名师解题)1答案:5操作问题:将1、3、5、7、9 称为奇数格,将2、4、6、8称为偶数格。
开始时奇数格总和比偶数格总和大5, 而每一次变化并不影响这个结果所以A=5点评:操作题目,要寻找不变量,进行突破2答案:161提示:从里到外层数逐渐增加,差值逐渐增大,表n可以看成是n层,可以得到:N=1S1=1N=2S2=1+8X1X2N=3S3=1+8X(1X2+2X3)N=4S4=1+8X(1X2+2X3+3X4)=161N=5S5=1+8X(1X2+2X3+3X4+4X5)N=6S6=1+8X(1X2+2X3+3X4+4X5+5X6)=561由于差值逐渐增大,差值为400的情况只可能出现在前面,所以N=4符合要求。
题目:3答案:2346奇数位和是2345×1005,每个偶数位比它对应的奇数位大1,所以1005个偶数位比1005个奇数位大1005,那么偶数位和是2345×1005+1005=2346×1005,平均数自然是23464答案:30点评:此题难度不大,通过奇偶分析可得5个连续数应为3偶2奇,不难通过尝试得到4+5+6=7+8,结果是30题目:10月16日试题答案:第一题:446点评:排成一排,空隙数量比球多一个,所以去掉1红之后1红—2黄—6蓝(2008-1)÷9×2=446第二题:60点评:一笔画问题结合行程,难度不大,只需算出总路程即可,图中共4个奇点,而A进A出的要所有点均是偶点,需要多走两条连接奇点的线才能保证所有点都变成偶点,那么需要多走两次260 即(480×3+200×3+260×4+260×2)÷60=60(分)注:在高年级学过勾股定理之后,260米的边长是可以计算出来的,不需题目给出条件10月17日试题:10月17日试题答案:第一题:28第二题:2682(其它年级所占的是5份少78人,标准和差倍)10月21日试题:10月21日试题答案:第一题:20第二题:49点评:从这两天可以看出,应用题在迎春杯中考察还是相对简单的,如果孩子能够熟练掌握方程,做出第一、第二档的应用题应该难度不大10月22日试题:第一题:24第二题:30点评:这两道题都是标准的列方程解应用题,在四年级迎春杯初赛中,题号比较靠前的应用题请特别注意方程的应用10月23日试题:10月23日试题答案:第一题:48(提示:画线段图,最后三段剩下的刚好是等差数列,公差是两段线段)第二题:21(提示:1个男生会有左右两个牵手,共60次牵手,男女牵手共18次,男男牵手则有(60-18)÷2=21(次)那么就会分成21组,此题难度还是比较大的)10月24日试题:10月24日试题答案:第一题:7提示:此题考察鸡兔同笼多个动物打包思想有四脚蛇是双头龙的2倍,把2个四脚蛇和1个双头龙打1个包作为新动物,包是4头12脚发现4头12脚正好是4只三脚猫,所以包的新动物和三脚猫一样,这三个动物和一起算做1个,其实本题相当于对三脚猫和独角兽做鸡兔同笼,可求出独角兽的只数(160-58)÷(3-1)=5158-51=7第二题:英语提示:应用题和逻辑推理结合问题,采取枚举法,让9本分别是数学、语文、英语、历史,进行尝试计算,只有9本是英语书时4个数不重复,其余均有重复10月28日试题——数字谜今天开始进入数字谜阶段~中年级最重要的是加法数字谜!10月28日试题答案:第一题:10第二题:3010月29日试题:10月31日题目1.(2013年四年级组第9题)2.(2013年三年级组第6题)10月31日答案1、20342、3135(提示:这两道题都可以通过尝试得到,但如果掌握弃9法的话,做出来将会非常简单)1.2.11月4日题目——计数篇1.(2013四年级第6题)2.(2013三年级第10题)(此题难度很大,当年正确率不超过1%)11月4日答案1、7(特别提示:本题当年答案5也算作正确了,因为4=1+3,6=1+5这两组偶数不算作和)2、3211月5日答案1、62、21000昨天这两道题目不难哈!~ 11月6日题目11月6日答案:1、30(提示:实际操作法很有效哦!)2、30(提示:湖人只能在第6场或第7场获胜,所以比分是4:2或4:3,之后用树形图方法分两类讨论)11月7日题目:11月8日试题答案:第一题:18种第二题:25128(提示:这道题方法真的是一点一点算的,没有特别简单的解法,类似的题目华杯总决赛也考过,而且数比今天这个还大!)11月11日试题——逻辑推理11月13日试题:(点评:这次的两道题都是从六年级的考题当中摘下来的,难度虽然很大,但从知识点上四年级绝对可以)1、2、7192511月14日题目:11月14日答案11月18日题目(标准鸡兔同笼)(从本周开始,做一些杯赛最爱考的配套类型题目哈)1、在某电视机厂质量检测评比中,每生产出一台合格电视机记5分,每生产出一台不合格电视机扣10分。
2010年“迎春杯”数学解题能力展示初赛试卷(三年级)一、填空题Ⅰ(每题8分,共40分)1.(8分)计算:1×15+2×14+3×13+4×12+5×11+6×10+7×9+8×8=.2.(8分)如图中共有个三角形.3.(8分)甲、乙、丙三人锯同样粗细的木棍,分别领取8米,10米,6米长的木棍,要求都按2米的规格锯开,劳动结束后,甲、乙、丙分别锯了24、25、27段,那么锯木棍速度最快的比速度最慢的多锯次.二、填空题Ⅱ(每题10分,共40分)4.(10分)某校三年级和四年级各有两个班.三年级一班比三年级二班多4人,四年级一班比四年级二班少5人,三年级比四年级少17人,那么三年级一班比四年级二班少人.5.(10分)老师桌上有一大叠作业本,其中有162本不是一班的,143本不是二班的,一班和二班的共有87本,那么二班的作业本共有本.6.(10分)有8名小朋友,他们每人头上戴着一顶红帽子或蓝帽子.如果一名小朋友看到另外3名或3名以上的小朋友戴着红帽子,就拿一个红气球,否则就拿一个蓝气球.结果这些小朋友中既有拿红气球的,也有小朋友有拿蓝气球的,那么一共有名小朋友戴红帽子.7.(10分)六个人传球,每两人之间至多传一次,那么这六个人最多共进行次传球.三、填空题(每题12分,共36分)8.(12分)把0﹣9这十个数字填到如图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有种可能的取值.9.(12分)从1﹣9这9个数字中选出8个不同的数字填入右面的方格中,使得竖式成立.其中的四位数最大可能是.10.(12分)在左下表中,在有公共边的两格内的数同时加上1或同时减去1叫做一次操作.经过有限次操作后左下表变为右下表,那么右下表中A 处的数是.2010年“迎春杯”数学解题能力展示初赛试卷(三年级)参考答案与试题解析一、填空题Ⅰ(每题8分,共40分)1.(8分)计算:1×15+2×14+3×13+4×12+5×11+6×10+7×9+8×8=372 .【解答】解:1×15+2×14+3×13+4×12+5×11+6×10+7×9+8×8=15+28+39+48+55+60+63+64=372故答案为:372.2.(8分)如图中共有20 个三角形.【解答】解:根据分析可得,图中有三角形:12+6+2=20(个)答:图中共有 20个三角形..故答案为:20.3.(8分)甲、乙、丙三人锯同样粗细的木棍,分别领取8米,10米,6米长的木棍,要求都按2米的规格锯开,劳动结束后,甲、乙、丙分别锯了24、25、27段,那么锯木棍速度最快的比速度最慢的多锯 2 次.【解答】解:甲:8÷2=4(段)4﹣1=3(次)3×(24÷4)=3×6=18(次)乙:10÷2=5(段)5﹣1=4(次)4×(25÷5)=4×5=20(次)丙:6÷2=3(段)3﹣1=2(次)2×(27÷3)=2×9=18(次)18=18<2020﹣18=2(次)答:锯木棍速度最快的比速度最慢的多锯 2次.故答案为:2.二、填空题Ⅱ(每题10分,共40分)4.(10分)某校三年级和四年级各有两个班.三年级一班比三年级二班多4人,四年级一班比四年级二班少5人,三年级比四年级少17人,那么三年级一班比四年级二班少9 人.【解答】解:4+17=21(人)(21+5)÷2=26÷2=13(人)13﹣4=9(人)答:三年级一班比四年级二班少9人.故答案为:9.5.(10分)老师桌上有一大叠作业本,其中有162本不是一班的,143本不是二班的,一班和二班的共有87本,那么二班的作业本共有53 本.【解答】解:162﹣143=19(本)(87+19)÷2=106÷2=53(本)答:二班的作业本共有53本.故答案为:53.6.(10分)有8名小朋友,他们每人头上戴着一顶红帽子或蓝帽子.如果一名小朋友看到另外3名或3名以上的小朋友戴着红帽子,就拿一个红气球,否则就拿一个蓝气球.结果这些小朋友中既有拿红气球的,也有小朋友有拿蓝气球的,那么一共有 3 名小朋友戴红帽子.【解答】解:假如有1名或2名小朋友戴红帽子,那么小朋友都要拿出蓝气球;假如有3名小朋友戴红帽子,那么戴红帽子的小朋友都会拿出蓝气球,而戴蓝帽子的小朋友会拿出红气球;符合题意.假如有4名或4名以上的小朋友戴红帽子,那么小朋友都要拿出红气球;所以一共有3名小朋友戴红帽子.答:一共有3名小朋友戴红帽子.故答案为:3.7.(10分)六个人传球,每两人之间至多传一次,那么这六个人最多共进行15 次传球.【解答】解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.三、填空题(每题12分,共36分)8.(12分)把0﹣9这十个数字填到如图的圆圈内,使得五条线上的数字和构成一个等差数列,而且这个等差数列的各项之和为55,那么这个等差数列的公差有 3 种可能的取值.【解答】解:根据分析,等差数列之和刚好比五个顶点的数字之和多了0+1+2+3+…+9即45,设顶点分别为A、B、C、D、E,则有A+B+C+D+E=55﹣45=10,在0~9数字中,只有0+1+2+3+4=10,故A、B、C、D、E分别只能是0~4中的一个数字,则除此之外的其它五条边上的数位45﹣10=35,设所形成的等差数列的首项为a,公差为d,根据求和公式得:=55化简得:a+2d=11∵a≥0 11≥0+1+5=6 且11为奇数,a只能取7、9或11,∴∴d=2、1或0,求出对应的公差值为:2、1或0,具体填法如图:公差为2的情况:,公差为0的情况:,公差为1的情况:,故答案是:3.9.(12分)从1﹣9这9个数字中选出8个不同的数字填入右面的方格中,使得竖式成立.其中的四位数最大可能是1769 .【解答】解:首先分析四位数的千位数字是1,此时还有2﹣9共8个数字,再看个位的三个数的和的尾数是0,可以找出(2,3,5),(3,8,9),(4,7,9),(5,6,9),(5,7,8)共5种.再看2010十位数字是1是一定有进位的,在结果中的百位是0,四位数字的百位最大只能是7,三位数的百位数字可以是2,再看2010的十位数字是1,考虑个位有2的进位,需要十位的两个数字和为9.四位数的十位最大是6,现在所用的数字是1,2,7,3,6,最大个位是4,7,9组合个位是9即可.即:四位数最大是1769.故答案为:176910.(12分)在左下表中,在有公共边的两格内的数同时加上1或同时减去1叫做一次操作.经过有限次操作后左下表变为右下表,那么右下表中A 处的数是 5 .【解答】解:依题意可知:经过以上步骤发现最后一个图中共9个方格,一个数字是5,其余的8个方格数字均为1,共4组,分别同时加到2010即可.那么A就是5.方法二:首先发现第一个图中的数字差是5,根据同增同减差不变可知A =5.故答案为:5声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:08:54;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
2014“数学花园探秘(原数学解题能力展示)”网络评选活动试题小学四年级(2013年12月17日)一.填空题(每小题8分,共32分)1.甲、乙、丙在猜一个两位数:甲说:它不是7的倍数,而且它比40大;乙说:它是奇数,而且它比50大;丙说:它是偶数,而且它比60大.如果他们三个每个人都只说对了一半,那么这个数是.2.如图,机器人走迷宫,每步都是从个一小正方形的中心走到与它有公共边的小正方形的中心,不能穿过黑色粗线.图中①②③④处有财宝,机器人必须走到财宝所在小正方形才能取走财宝.如果每个小正方形的边长是1厘米,机器人要从A走到B,途中还需要取走所有财宝,最少走厘米.3.如图,6个完全相同的小正六边形围成1圈,以这6个正六边形的中心为顶点,构成一个大正六边形.如果每个小正六边形的面积是60,那么该大正六边形面积是.4.雾霾天狐狸、兔子和狗熊去卖口罩.狐狸说:“狗熊卖1元一个,我就卖4元一个;狗熊卖2元一个,我就卖8元一个;狗熊卖3元一个,我就卖12元一个;……”兔子说:“我卖的价格是狐狸的一半.”结果他们卖了相同数量的口罩,共卖了210元.那么狐狸卖了元.二.填空题(每小题12分,共36分)5.如图,一只蚂蚁要从三棱柱的一个顶点A 沿棱走到另一个顶点B ,每个点最多经过一次,那么这只蚂蚁有__________种不同的爬行路线.AB6.下面的数字谜中,相同的字母代表相同的数字,不同的字母代表不同的数字,那么“欢乐迎春”所代表的四位数是.+迎春迎乐乐欢春迎春迎乐欢7.平面上有8个点,其中任意三个点不在同一条直线上.将其中一些点用线段连结起来,使每个点与其他点连结的线段不超过3条.最多可连条线段.三.填空题(每小题16分,共32分)8.一个池塘里有一些乌龟,它们每个白天都会睡半天,有些上午睡,有些下午睡.睡觉时,有些乌龟只会把四条腿缩进壳里,有些乌龟会把头和腿都缩进壳里.有一天,上午共可数出20个头,60条腿,下午共可以数出17个头,40条腿.那么睡觉时只把四条腿缩进壳里的乌龟共有只.9.在一个5×5的方格中,我们把从1个格沿横竖方向的最短路线走到另一个格所需要的步数叫做这两个格之间的距离.例如:左图中,A 格和B 格之间的距离是5,B 格和C 格之间的距离是3,A 格和C 格之间的距离是4.那么,右图中,如果要满足所有1之间的距离都是1,所有2之间的距离都是2,……,所有5之间的距离都是5.那么,在其它空格中填入尽可能多的数,并且满足条件,那么数都填好后,这个5×5方格内所有数的和最大是.54321CB A四.亲子互动操作题(20分)10.用火柴棒可以摆出数字,每个数字的摆法如图所示:飞飞按照这种规则,用30根火柴棒摆出了八位数20131217,如下图.之后飞飞移动了其中的一根火柴棒的位置,于是这30根火柴棒组成了一个新的八位数,那么新的八位数可能有种不同的取值.。
2021年“迎春杯〞数学解题能力展示初赛试卷〔四年级〕一、填空题1.〔8分〕计算:12+34×56+7+89=.2.〔8分〕骆驼有两种,背上只有一个驼峰的单峰骆驼和背上有两个驼峰的双峰骆驼,单峰骆驼比拟高大,四肢较长,在沙漠中可走可跑;双峰骆驼四肢短粗,适合在沙漠和雪地中行走.有一群骆驼有23个驼峰,60只脚,这些骆驼有只.3.〔8分〕在如图的每个方框中填入一个数字,使得乘法竖式成立.那么,这个算式的乘积是.4.〔8分〕A、B、C三人采西瓜.A与B所采西瓜的个数之和比C少6个;B与C所采西瓜的个数之和比A多16个;C与A所采西瓜的个数之和比B多8个;请问他们共采西瓜个.二、填空题5.〔10分〕30名同学按身高由低到高排成一队,相邻两个同学的身高差相同.前10名同学的身高和是12.5米,前20名同学的身高和是26.5米,那么这30名同学的身高和是米.6.〔10分〕正方形ABCD与长方形BEFG如图放置,AG=CE=2厘米,那么正方形ABCD 的面积比长方形BEFG的面积大平方厘米.7.〔10分〕红、黄、蓝3种颜色的球分别有11、12、17个,每次操作可以将2个不同颜色的球换成2个第三种颜色的球,那么在操作过程中,红色球至多有个.8.〔10分〕宁宁、蕾蕾和凡凡三人合租一辆轿车从学校回家〔如图〕,他们约定:共同乘坐的局部所产生的车费由乘坐者平均分摊;单独乘坐的局部所产生的车费,由乘坐者单独承当.结果,三人承当的车费分别为10元、25元、85元,宁宁家距离学校12公里,凡凡家距离学校公里.三、填空题9.〔12分〕甲乙二人相距30米面对面站好,两人玩“石头、剪子、布〞.胜者向前走3米,负者向后退2米,平局两人各向前走1米,玩了15局后,甲距出发点17米,乙距出发点2米.甲胜了次.10.〔12分〕在羊羊运动会上,喜羊羊、沸羊羊、懒羊羊、暖羊羊和灰太郎进行了400米赛跑,赛完结束后,五人谈论比赛结果.第一名说:“喜羊羊跑得比懒羊羊快.〞第二名说:“我比暖羊羊跑得快.〞第三名说:“我比灰太郎跑得快.〞第四名说:“喜羊羊比沸羊羊跑得快.〞第五名说:“暖羊羊比灰太郎跑得快.〞如果五人中只有灰太郎说了假话,那么喜羊羊得了第名.11.〔12分〕假设三位数〔其中a、b、c都是非零数字〕满足>>,那么称该三位数为“龙腾数〞,那么共有个“龙腾数〞.12.〔12分〕在边缘的每个空白格内都填入一个箭头,方格中的数字表示指向该数字的箭头个数,箭头的方向可以是上、下、左、右、左上、左下、右上、右下,但每个箭头必须指向一个数字,例如,图2的填法是图1的答案,请按照此规律在图3中填入箭头,那么指向右下方向的箭头共有个.2021年“迎春杯〞数学解题能力展示初赛试卷〔四年级〕参考答案与试题解析一、填空题1.〔8分〕计算:12+34×56+7+89=2021.【解答】解:12+34×56+7+89=12+1904+7+89=1916+7+89=1923+89=2021;故答案为:2021.2.〔8分〕骆驼有两种,背上只有一个驼峰的单峰骆驼和背上有两个驼峰的双峰骆驼,单峰骆驼比拟高大,四肢较长,在沙漠中可走可跑;双峰骆驼四肢短粗,适合在沙漠和雪地中行走.有一群骆驼有23个驼峰,60只脚,这些骆驼有15只.【解答】解:60÷4=15〔只〕,答:一共有15只.故答案为:15.3.〔8分〕在如图的每个方框中填入一个数字,使得乘法竖式成立.那么,这个算式的乘积是837.【解答】解:依题意可知:根据结果的尾数是7,推理出第一个乘数的个位是7,再根据乘积的结果首位是2.可推理出第一个乘数是27;再根据27乘以一个数字尾数是1同时是2位数,那么只能是27×3=81;所以27×31=837.故答案为:8374.〔8分〕A、B、C三人采西瓜.A与B所采西瓜的个数之和比C少6个;B与C所采西瓜的个数之和比A多16个;C与A所采西瓜的个数之和比B多8个;请问他们共采西瓜18个.【解答】解:根据分析,第一句可知,C﹣〔A+B〕=6;第二句可知,B+C﹣A=16;第三句可知,C+A﹣B=8;将三个等式加起来得:〔A+B﹣C〕+〔B+C﹣A〕+〔C+A﹣B〕=﹣6+16+8⇒2〔A+B+C〕﹣〔A+B+C〕=A+B+C=18∴他们共采西瓜18故答案是:18.二、填空题5.〔10分〕30名同学按身高由低到高排成一队,相邻两个同学的身高差相同.前10名同学的身高和是12.5米,前20名同学的身高和是26.5米,那么这30名同学的身高和是42米.【解答】解:根据分析,30名同学的身高是一个等差数列,设第n名同学的身高为a n,前n名同学的身高和为S n,那么S10=12.5米,S20=26.5米,根据等差数列的性质,S10=a1+a2+…a10;S20﹣S10=a11+a12+…+a20;S30﹣S20=a21+a22+…+a30.易知,S10;S20﹣S10;S30﹣S20是等差数列,得S20﹣S10﹣12.5=14米;S30﹣S20=S10+2×〔14﹣12.5〕=12.5+3=15.5米;⇒S30=S20+15.5=26.5+15.5=42米.∴这30名同学的身高和是42米.故答案是:42米.6.〔10分〕正方形ABCD与长方形BEFG如图放置,AG=CE=2厘米,那么正方形ABCD 的面积比长方形BEFG的面积大4平方厘米.【解答】解:根据分析,图中公共局部为长方形GHCB,故:正方形ABCD的面积﹣长方形BEFG的面积=长方形ADHG的面积﹣长方形EFHC的面积=AG×AD﹣CE×CH=2×AD﹣2×CH=2×〔AD﹣CH〕=2×〔CD﹣CH〕=2×DH=2×2=4〔平方厘米〕.故答案是:4.47.〔10分〕红、黄、蓝3种颜色的球分别有11、12、17个,每次操作可以将2个不同颜色的球换成2个第三种颜色的球,那么在操作过程中,红色球至多有39个.【解答】解:三种球的个数除以3的余数分别为2.0、2,任意操作一次后,除以3的余数均加2,因此黄色球和蓝色球除以3的余数不可能相同,即不能出现0个黄色球和0个蓝色球的情况,所以红色球的个数不可能有40个.经验证.前两次将红色球和蓝色球换成黄色球,球数变为9、16、15;再把黄色球和蓝色球换成红色球,球数变为39、1、0.所以操作过程中,红色球至多有39个.答:红色球至多有39个.故答案为:39.8.〔10分〕宁宁、蕾蕾和凡凡三人合租一辆轿车从学校回家〔如图〕,他们约定:共同乘坐的局部所产生的车费由乘坐者平均分摊;单独乘坐的局部所产生的车费,由乘坐者单独承当.结果,三人承当的车费分别为10元、25元、85元,宁宁家距离学校12公里,凡凡家距离学校48公里.【解答】解:[〔25﹣10〕×2+〔85﹣25〕]÷〔10×3÷12〕+12=[30+60]÷2.5+12=90÷2.5+12=36+12=48〔公里〕答:凡凡家距离学校48公里.三、填空题9.〔12分〕甲乙二人相距30米面对面站好,两人玩“石头、剪子、布〞.胜者向前走3米,负者向后退2米,平局两人各向前走1米,玩了15局后,甲距出发点17米,乙距出发点2米.甲胜了7次.【解答】解:依题意可知:那么如果有胜负那么前进1米,如果平局前进2米.他们共同15次前进19米.那么15局如果都是胜负局故有15米的距离.所以是有4局平局.11局胜负局.17﹣4=13〔米〕.根据11局胜负可前进13米.如果全部是赢需要进33米.数量差是33﹣13=20〔米〕每一局差5分,共是4局差20分.故甲是7胜4负.7×3﹣4×2=13〔米〕.故答案为:710.〔12分〕在羊羊运动会上,喜羊羊、沸羊羊、懒羊羊、暖羊羊和灰太郎进行了400米赛跑,赛完结束后,五人谈论比赛结果.第一名说:“喜羊羊跑得比懒羊羊快.〞第二名说:“我比暖羊羊跑得快.〞第三名说:“我比灰太郎跑得快.〞第四名说:“喜羊羊比沸羊羊跑得快.〞第五名说:“暖羊羊比灰太郎跑得快.〞如果五人中只有灰太郎说了假话,那么喜羊羊得了第二名.【解答】解:假设第三名为灰太狼,那么其他人说的都是真话.即暖羊羊比灰太狼快,第二名比暖羊羊快,而灰太狼就是第三名,此时暖羊羊介于第二名和第三名之间,矛盾.同理假设灰太狼是第五名,根据表达可知,也是矛盾的.所以,所以灰太狼一定是第四名.其他人说的都是正确的,接下来就有:喜羊羊比懒羊羊快、第二名比暖羊羊快、第三名比灰太狼快、沸羊羊比喜羊羊快、暖羊羊比太狼快.所以,沸羊羊是第一名、喜羊羊是第二名、暖羊羊是第三名、懒羊羊是第五名.、11.〔12分〕假设三位数〔其中a、b、c都是非零数字〕满足>>,那么称该三位数为“龙腾数〞,那么共有120个“龙腾数〞.【解答】解:根据分析,>>,那么a≥b≥c,分三种情况:①a=b>c时,有=36个;②a>b=c时,由>可知,c>a与题意矛盾,故不成立;③a>b>c时,a、b、c可以取1~9之间不相等的数,有=84个.综上,共有:36+84=120个“龙腾数〞.故答案是:120.12.〔12分〕在边缘的每个空白格内都填入一个箭头,方格中的数字表示指向该数字的箭头个数,箭头的方向可以是上、下、左、右、左上、左下、右上、右下,但每个箭头必须指向一个数字,例如,图2的填法是图1的答案,请按照此规律在图3中填入箭头,那么指向右下方向的箭头共有2个.【解答】解:根据题干分析可得:图3中填入箭头如下:那么指向右下方向的箭头共有2个.故答案为:2.。
2014年“迎春杯”数学解题能力展示复赛试卷(五年级)一、选择题(每题8分,共32分)1.(8分)一个最大的三位数除以一个整数,得到的商四舍五入保留一位小数后是2.5,除数最小是()A.400 B.396 C.392 D.3882.(8分)图中最大的正方形的面积为64,阴影部分的面积为()A.28 B.32 C.36 D.403.(8分)过年的时候,康康给客人倒啤酒,一瓶啤酒可以倒满4杯,球球倒酒的时候总是每杯中有半杯泡沫,啤酒倒成泡沫的体积会涨成原来的3倍,那么球球倒啤酒时,一瓶酒可以倒()杯.A.5 B.6 C.7 D.84.(8分)整数除法算式:a÷b=c…r,若a和b同时扩大3倍,则()A.r不变B.扩大3倍C.c和r都扩大3倍D.r扩大3倍二、选择题(每题10分,共70分)5.(10分)算式826446281×11×11的计算结果是()A.9090909091 B.909090909091C.10000000001 D.1000000000016.(10分)对于大于零的分数,有如下4个结论:①两个真分数的和是真分数;②两个真分数的积是真分数;③一个真分数与一个假分数的和是一个假分数;④一个真分数与一个假分数的积是一个假分数.其中正确的有()个.A.1 B.2 C.3 D.47.(10分)如图竖式成立时除数与商的和为()A.289 B.351 C.723 D.11348.(10分)将一个数加上或减去或乘或除一个一位数(0不是一位数)视为一次操作,比如53可以通过加3,除以7,除以8三次操作变成1.那么2014至少经过()次操作可变成1.A.4 B.5 C.6 D.79.(10分)我们定义像:31024、98567这样的五位数为位“神马数”,“神马数”是中间的数字最小,从中间往两边越来越大,且各位数字均不相同,那么,这样的五位数有()个.A.1512 B.3024 C.1510 D.302010.(10分)如图所示,五边形ABCEF面积是2014平方厘米,BC与CE垂直于C点,EF与CE垂直于E点,四边形ABDF是正方形,CD:ED=3:2,那么,三角形ACE的面积是()平方厘米.A.1325 B.1400 C.1475 D.150011.(10分)三位数N,分别减3、加4、除以5、乘6,得到四个整数,已知这四个数的数字和恰好是4个连续的自然数,那么满足条件的三位数N 有()个.A.8 B.6 C.4 D.2三、选择题(每题12分,共48分)12.(12分)如图是由15个点组成的三角形点阵,在右图中至少去掉()个点,就不会再出现以图中的点为顶点的正三角形了.A.6 B.7 C.8 D.913.(12分)甲、乙两人从A地出发,前往B地,当甲走了100米时,乙走了50米,当甲到达B地时,乙距离B地还差100米.甲到达B地后立即调头返回,两人在距离B地60米处相遇,那么,A、B两地的距离()米.A.150 B.200 C.250 D.30014.(12分)如图,一块草地被开垦出11块正六边形耕地,菲菲在这些耕地内种植向日葵、豌豆射手、闪电芦苇、冰冻西瓜4种植物,如果相邻的耕地种植的植物不能相同,她有()种不同的种植办法.(相邻耕地是指有公共边,每块耕地内只能种植一种植物)A.6912 B.6144 C.4608 D.422415.(12分)老师把某两位数的六个不同因数分别告诉了A~F六个聪明诚实的同学.A和B同时说:我知道这个数是多少了.C和D同时说:听了他们的话,我也知道这个数是多少了.E:听了他们的话,我知道我的数一定比F的大.F:我拿的数的大小在C和D之间.那么六个人拿的数之和是()A.141 B.152 C.171 D.1752014年“迎春杯”数学解题能力展示复赛试卷(五年级)参考答案与试题解析一、选择题(每题8分,共32分)1.(8分)一个最大的三位数除以一个整数,得到的商四舍五入保留一位小数后是2.5,除数最小是()A.400 B.396 C.392 D.388【解答】解:最大的三位数是9992.5是四舍五入取得.可以近似2.45﹣2.54这个区间,除数最小,商就最大.保留一位小数最大取得2.5的是无限接近2.5,2.54999÷整数≈2.54999÷2.54≈391.8符合条件的整数是392故选:C.2.(8分)图中最大的正方形的面积为64,阴影部分的面积为()A.28 B.32 C.36 D.40【解答】解:从上图中可以看出,阴影部分一共有28个小三角形,空白部分一共有36个小三角形.每个小三角形的面积是64÷(28+36)=1所以阴影部分的面积是28×1=28故选:A.3.(8分)过年的时候,康康给客人倒啤酒,一瓶啤酒可以倒满4杯,球球倒酒的时候总是每杯中有半杯泡沫,啤酒倒成泡沫的体积会涨成原来的3倍,那么球球倒啤酒时,一瓶酒可以倒()杯.A.5 B.6 C.7 D.8【解答】解:根据分析,可知1份的啤酒可以变成3份的泡沫.球球倒的啤酒一半是泡沫,那么我们可以把球球倒的每杯酒分成6份,那么每倒一杯酒只有4份.而一瓶啤酒可以倒4杯共有4×6=24份.球球倒的每杯酒为4份,她共可以倒的杯数为:24÷4=6.故选:B.4.(8分)整数除法算式:a÷b=c…r,若a和b同时扩大3倍,则()A.r不变B.扩大3倍C.c和r都扩大3倍D.r扩大3倍【解答】解:依题意可知a÷b=c…r转换形式为a=bc+r在等式左右两边同时扩大3倍3a=3(bc+r)=3bc+3r再转换成余数写法是3a÷3b=c…3r故选:D.二、选择题(每题10分,共70分)5.(10分)算式826446281×11×11的计算结果是()A.9090909091 B.909090909091C.10000000001 D.100000000001【解答】解:826446281×11×11=100000000001.故选:D.6.(10分)对于大于零的分数,有如下4个结论:①两个真分数的和是真分数;②两个真分数的积是真分数;③一个真分数与一个假分数的和是一个假分数;④一个真分数与一个假分数的积是一个假分数.其中正确的有()个.A.1 B.2 C.3 D.4【解答】解:①,错误,②两个小于1的数的积是小于1的,故正确,③,假分数大于1,加上一个数字还是大于1的.故正确,④,错误,故选:B.7.(10分)如图竖式成立时除数与商的和为()A.289 B.351 C.723 D.1134【解答】解:首先根据倒数第三行可以确定A=0,B=4;再根据顺数第三行最后一位为1可以确定,第一行D和C的取值为(1,1)或(3,7)或(9,9)或(7,3).根据除数的2倍是四位数,那么除数是大于500的数字,再根据第一个的结果是三位数,那么C和D只有是(1,1)符合条件.那么商的十位数字就是4才能满足个位是4,所以除数的百位数字只有5满足条件.再根据最后的四位数的十位数字是6,从而确定除数的十位数字是8.被除数为581×142=82502.581+142=723故选:C.8.(10分)将一个数加上或减去或乘或除一个一位数(0不是一位数)视为一次操作,比如53可以通过加3,除以7,除以8三次操作变成1.那么2014至少经过()次操作可变成1.A.4 B.5 C.6 D.7【解答】解:第一次操作构成最大除数9的倍数,2014+2=2016.第二步除法2016÷9=224.再根据224是8的倍数,第三步224÷8=28.第四步28÷7=4.第五部4÷4=1故选:B.9.(10分)我们定义像:31024、98567这样的五位数为位“神马数”,“神马数”是中间的数字最小,从中间往两边越来越大,且各位数字均不相同,那么,这样的五位数有()个.A.1512 B.3024 C.1510 D.3020【解答】解:0~9是个数中任意挑选5个都可以组成“神马数”,==251(种);在被挑选的5个数中,最小的放中间,剩下的4个数进行组合,从中任意挑选2个可以放在左边或者右边,=6(种);在此一定要注意:4个数中任选2个放在左边然后再放到右边数的顺序改变了.所以共有“神马数”252×6=1512(个).故选:A.10.(10分)如图所示,五边形ABCEF面积是2014平方厘米,BC与CE垂直于C点,EF与CE垂直于E点,四边形ABDF是正方形,CD:ED=3:2,那么,三角形ACE的面积是()平方厘米.A.1325 B.1400 C.1475 D.1500【解答】解:作正方形ABCD的“弦图”,如右图所示,假设CD的长度为3a,DE的长度为2a,那么BG=3a,DG=2a,根据勾股定理可得BD2=BG2+DG2=9a2+4a2=13a2,所以,正方形ABDF的面积为13a2;因为CD=EF,BC=DE,所以三角形BCD和三角形DEF的面积相等为3a2;又因为五边形ABCEF面积是2014平方厘米,所以13a2+6a2=2014,解得a2=106,三角形ACE的面积为:5a×5a÷=a2,即×106=1325.11.(10分)三位数N,分别减3、加4、除以5、乘6,得到四个整数,已知这四个数的数字和恰好是4个连续的自然数,那么满足条件的三位数N有()个.A.8 B.6 C.4 D.2【解答】解:考虑到一定会有进位、退位,设原数数字和为a,则﹣3,+4定不是差7,否则无法成为连续4个自然数,÷5说明末位为0或5,当末位为5时,﹣3,+4均不进位退位;当末位为0时,﹣3退位,符合,所以﹣3相当于数字和多6,a+6;+4相当于数字和多4,a+4;÷5相当于数字和×2,a×2;a×2,a+2,a+4连续,a×2为a+7,a+5,a+3中的一个,分类讨论得到a×2=a+5成立,所以a=5,数字和为5,尾数为0的有:500(舍去),410,320,230,140,共4个.故选:C.三、选择题(每题12分,共48分)12.(12分)如图是由15个点组成的三角形点阵,在右图中至少去掉()个点,就不会再出现以图中的点为顶点的正三角形了.A.6 B.7 C.8 D.9【解答】解:设最小正三角形的边长为1,如图1所示,以A为顶点可以组成边长为4、3、2、1的等边三角形,所以A点必须去掉,同理B、C也必须去掉.如图2所示(空白表示必须去掉的点),围成了四个边长为2的等边三角形和若干个边长为1的等边三角形,所以必须去掉O、D、E、F.因此共去掉了7个点.故选:B.13.(12分)甲、乙两人从A地出发,前往B地,当甲走了100米时,乙走了50米,当甲到达B地时,乙距离B地还差100米.甲到达B地后立即调头返回,两人在距离B地60米处相遇,那么,A、B两地的距离()米.A.150 B.200 C.250 D.300【解答】解:在最后100时甲走60米,乙走40米,两人的速度比是3:2CE段和DB段的路程差为50米,且路程比为3:2,设甲行走的DB段为3份路程,乙行走的CE段为2份路程,则50÷(3﹣2)=50米.甲3份路程是50×3=150米,A、B两地的距离=AD+DB=150+100=250米故选:C.14.(12分)如图,一块草地被开垦出11块正六边形耕地,菲菲在这些耕地内种植向日葵、豌豆射手、闪电芦苇、冰冻西瓜4种植物,如果相邻的耕地种植的植物不能相同,她有()种不同的种植办法.(相邻耕地是指有公共边,每块耕地内只能种植一种植物)A.6912 B.6144 C.4608 D.4224【解答】解:如图所示发现阴影六边形一圈是关键,中间选好种后,周围一圈3种植物,3×25﹣(A、F同色,相当于5个围一圈),5个围一圈=3×24﹣(4个围一圈),4个围一圈=3×23﹣(3个围一圈),3个围一圈=3×2×1=6,中间一圈3×25×[3×24﹣(3×23﹣3×2×1)]=66,所以总共有4×66×24=4224(种)故选:D.15.(12分)老师把某两位数的六个不同因数分别告诉了A~F六个聪明诚实的同学.A和B同时说:我知道这个数是多少了.C和D同时说:听了他们的话,我也知道这个数是多少了.E:听了他们的话,我知道我的数一定比F的大.F:我拿的数的大小在C和D之间.那么六个人拿的数之和是()A.141 B.152 C.171 D.175【解答】解:70+35+14+10+7+5=141【答案】A声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:00:36;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。