2019数学解题能力展示(原迎春杯)七年级复赛真题
- 格式:doc
- 大小:348.00 KB
- 文档页数:2
第五届全国中学生数理化学科能力展示活动 七年级数学解题技能展示试题及解答 试卷说明:1、本试卷共计15题,满分为120分 2、考试时间为120分钟 一、选择题(共6小题,每题6分,共36分) 1、在“桑迪”飓风中,一家美国商店的某种商品被歹徒偷走了1/5,被水损坏了1/6.剩下的全部售出,结果这种商品还盈利14%。
那么这种商品的售价与进价之比为 . A. 9:5 B. 2:1 C. 3:2 D. 5:3解:设进价为a ,售价为b,则 a(1+14%)=b(1-1/5-1/6), 114%·a=19/30·b, b:a=9:5. 2、一种叫“快乐”的微生物由快乐细胞组成。
1个快乐细胞每次裂变为5个快乐细胞,这5个快乐细胞中的每一个又可依次裂变为5个快乐细胞,依次类推。
那么在一定时间内,1个快乐细胞可以裂变为( )个快乐细胞。
A. 2012 B. 2013 C. 2014 D. 2015解: 因为, 625=54 < (2012-2015) < 55 =3075 所以625个快乐细胞未完全裂变,设其中有x 个已裂变,则裂变总数为 (625-x )+5x=625+4x=4(156+x )+1 符合条件的只有(B ) 3、机器猫跑7步与机器狗跑5步的路程相同;机器狗跑11步与机器人跑7步路程相同。
机器猫跑5步的时间与机器狗跑3步的时间;机器狗跑7步的时间与机器人跑5步的时间相同。
那么机器猫、机器人的速度之比为( ) A. 33:35 B. 25:21 C. 35:33 D. 49:55 解:设机器猫每步跑a 米,速度为x 米/秒;设机器狗每步跑b 米,速度为y 米/秒;设机器人每步跑c 米,速度为z 米/秒. 7a=5b,11b=7c; a:c=5:11. 又:5a/x=3b/y,7b/y=5c/z;从而5a/3x=b/y=5c/7z;x:y=7a/3c=7/3·5/11 =35:33 4、1233+78被111除的商和余数分别是( )。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.三角形的周长为15cm,其三边的长均为整数,当其中一条边长为3cm时,则不同形状的三角形共有()A.2种B.3种C.4种D.5种【答案】A【解析】根据三角形的两边之和大于第三边,根据周长是15厘米,可知最长的边要小于7.5厘米,进而得出三条边的情况.【详解】解:∵三角形中一边的长为3cm,且另外两边长的值均为整数,∴有两种情况:当三角形的最长边为7时,三条边分别是3cm、5cm、7cm,当三角形的最长边为6时,三条边分别是3cm、6cm、6cm.故选A.【点睛】本题考查学生对三角形三边关系的理解及运用能力,注意不能构成三角形的情况一定要排除.2.如图,点E在BC的延长线上,下列条件中能判断AD∥BC的是()A.∠1=∠3 B.∠2=∠4C.∠B=∠DCE D.∠B+∠BCD=180°【答案】B【解析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:由∠2=∠4,可得AD∥CB;由∠1=∠3或∠B=∠DCE或∠B+∠BCD=180°,可得AB∥DC;故选B.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.3.如图,从边长为+a b的正方形纸片中剪去一个边长为-a b的正方形(a b>),剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则该长方形的面积是( )A .4abB .2abC .2bD .2a【答案】A 【解析】利用大正方形的面积减去小正方形的面积即可,解题时注意完全平方公式的运用.【详解】(a+b )2-(a-b )2=a 2+2ab+b 2-a 2+2ab-b 2=4ab.故选A.【点睛】本题主要考查了平方差公式的几何背景,关键是根据题意列出式子,运用完全平方公式进行计算,要熟记公式.4.下列运算中正确的是( )A .(﹣ab )2=2a 2b 2B .(a+1)2=a 2+1C .a 6÷a 2=a 3D .(﹣x 2)3=﹣x 6 【答案】D【解析】根据积的乘方、完全平方公式、同底数幂的除法和幂的乘方即可得出答案.【详解】根据积的乘方,(﹣ab )2=a 2b 2,故A 项错误;根据完全平方公式,(a+1)2=a 2+2a+1,故B 项错误;根据同底数幂的除法, a 6÷a 2=a 4,故C 项错误;根据幂的乘方,(﹣x 2)3=﹣x 6,故D 项正确.【点睛】本题考查积的乘方、完全平方公式、同底数幂的除法和幂的乘方,解题的关键是熟练掌握积的乘方、完全平方公式、同底数幂的除法和幂的乘方.5.下列计算正确的是( ).A .2233a a -=B .236a a a ⋅=C .()326a a =D .623+=a a a 【答案】C【解析】根据整式的加减与幂的运算法则逐一解答判断.【详解】A. 22232a a a -=,故错误;B. 23235a a a a +⋅==,故错误;C. ()326a a =,该选项正确;D. 62a a ,不是同类项,不能相加减,故错误.故选:C.【点睛】本题主要考查了整式的加减与幂的运算,熟练运用法则进行计算是关键.6.如图,点A,B为定点,直线l∥AB,P是直线l上一动点.对于下列各值:①线段AB的长②△PAB的周长③△PAB的面积④∠APB的度数其中不会随点P的移动而变化的是()A.①③B.①④C.②③D.②④【答案】A【解析】求出AB长为定值,P到AB的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB不断发生变化、∠APB的大小不断发生变化.【详解】解:∵A、B为定点,∴AB长为定值,∴①正确;当P点移动时,PA+PB的长发生变化,∴△PAB的周长发生变化,∴②错误;∵点A,B为定点,直线l∥AB,∴P到AB的距离为定值,故△APB的面积不变,∴③正确;当P点移动时,∠APB发生变化,∴④错误;故选:A.【点睛】本题考查了平行线的性质,等底等高的三角形的面积相等,平行线间的距离的运用,熟记定理是解题的关键.7.下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【答案】A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.8.如图中∠1、∠2不是同位角的是()A .B .C .D .【答案】D【解析】同位角的定义:在截线的同侧,并且在被截线的同一方的两个角是同位角,依此即可求解.【详解】A、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意B、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的一边不在同一条直线上,不是同位角,符合题意.故选:D.【点睛】此题考查同位角、内错角、同旁内角,解题关键在于掌握判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.9.已知关于x的不等式组513(1)138222x xx x a+>-⎧⎪⎨≤-+⎪⎩恰好有两个整数解,则实数a的取值范围是()A.﹣4≤a<﹣3 B.﹣4 C.0≤a<1 D.a≥﹣4 【答案】A【解析】首先解不等式组513(1)138222x xx x a+>-⎧⎪⎨≤-+⎪⎩求得解集,然后根据不等式组只有两个整数解,则可以得到一个关于a的不等式组求得a的范围.【详解】解不等式5x+1>3(x﹣1),得:x>﹣2,解不等式12x≤8﹣32x+2a,得:x≤a+4,∵不等式组恰好有两个整数解,∴不等式组的整数解为﹣1、0,则0≤a+4<1,解得:﹣4≤a<﹣3,故选A.【点睛】本题考查一元一次不等式组的整数解,熟练掌握不等式组的解法是解题的关键.10.如图,,射线交于点,若,则的度数是()A.B.C.D.【答案】B【解析】根据两直线平行,同旁内角互补可求出∠AFD的度数,然后根据对顶角相等求出∠2的度数.【详解】∵AB∥CD,∴∠1+∠AFD=180°,∵∠1=115°,∴∠AFD=65°,∵∠2和∠AFD是对顶角,∴∠2=∠AFD=65°,故选:B.【点睛】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.二、填空题题11.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满.【答案】32 15【解析】设1个进口1小时开进x辆车,1个出口1小时开出y辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 、y ,进一步代入求得答案即可.【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得: 82375%23275%x y a x y a ()()-=⎧⎨-=⎩解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩. 则60%a÷(2x-y )=60%a÷(316a×2332-a )=3215(小时). 故答案为3215. 【点睛】本题考查了二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键.12.若方程组23133530.9a b a b -=⎧⎨+=⎩的解为8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解为_______. 【答案】 6.32.2x y =⎧⎨=⎩【解析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩; 又∵8.31.2a b =⎧⎨=⎩, ∴ 28.31 1.2x y +=⎧⎨-=⎩, 解得 6.32.2x y =⎧⎨=⎩. 故答案为 6.32.2x y =⎧⎨=⎩【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛. 13.某校在一次期末考试中,随机抽取七年级30名学生的数学成绩进行分析,其中5名学生的数学成绩达90分以上.据此估计该校七年级360名学生中期末考试数学成绩达90分以上的学生约有_______名.【答案】1【解析】先求出随机抽取的30名学生中成绩达到90分以上的所占的百分比,再乘以31,即可得出答案.【详解】解:∵随机抽取30名学生的数学成绩进行分析,有5名学生的成绩达90分以上,∴七年级31名学生中期末考试数学成绩达108分以上的学生约有5360=6030⨯(名) 故答案为:1.【点睛】此题考查了用样本估计总体,用样本估计整体让整体×样本的百分比即可.14.在△ABC 中, ∠C=60º, BC= 6, AC= 4, AD 是高, 将△ACD 沿着AD 翻折, 点C 落在点E 上, 那么BE 的长是_________;【答案】1【解析】先解直角△ACD ,得出CD=1,再根据翻折的性质得到DE=CD=1,那么由BE=BC-CD-DE 即可求解.【详解】如图,在直角△ACD 中,∵∠ADC=90°,∠C=60°,∴∠DAC=30°,∴CD=12AC=12×4=1. ∵将△ACD 沿着AD 翻折,点C 落在点E 上,∴DE=CD=1,∵BC=6,∴BE=BC-CD-DE=6-1-1=1.故答案是:1.【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等.也考查了直角三角形的性质. 15.若x m =时,多项式224x x n ++的值为-4,则x m =-吋,该多项式的值为____________.【答案】1【解析】将x =m 代入代数式得:x 2+4x +n 2=−4,继而知(m +2)2=−n 2≥0,据此得m =2、n =0,进一步求解可得.【详解】将x =m 代入代数式得:x 2+4x +n 2=−4,则m2+4m+4=−n2,即(m+2)2=−n2,∵(m+2)2≥0,∴n=0,m=−2,则当x=−m=2时,x2+4x+n2=x2+4x=4+8=1,故答案为:1.【点睛】本题考查代数式求值,非负数的性质等知识,解题的关键是灵活运用所学知识解决问题.∠+∠+∠=_____°.16.如图,AB∥DE,则BAC ACD CDE【答案】360【解析】作辅助线CF∥AB,即可根据两直线平行同旁内角互补【详解】如图过点C作CF∥AB,∵CF∥AB,∠BAC+∠ACF=180°(同旁内角互补)又∵AB∥DE∴CF∥DE∴∠FCD+∠CDE=180°(同旁内角互补)∠+∠+∠=180°+180°=360°∴BAC ACD CDE【点睛】此题考查平行线的性质,解题关键在于做辅助线17.我市出租车收费按里程计算,3千米以内(含3千米)收费10元,超过3千米,每增加1千米加收2元,则当x≥3时,车费y(元)与x(千米)之间的关系式为_____.【答案】y=2x+4【解析】根据题意列出给关系式即可.【详解】由题意可知当x≥3时,车费y(元)与x(千米)之间的关系式为y=10+2(x-3)=2x+4【点睛】此题主要考查函数关系式的表示,解题的关键是根据题意找到等量关系.三、解答题18.如图,点B 、F 、C 、E 在直线l 上(F 、C 之间不能直接测量),点A 、D 在l 异侧,测得AB DE =,AB ∥DE ,A D ∠=∠.(1)求证:ABC ∆≌DEF ∆;(2)若10BE m =,3BF m =,求FC 的长度.【答案】(1)见解析;(2)FC=4m .【解析】(1)先证明∠ABC=∠DEF ,然后利用ASA 进行证明即可;(2)根据全等三角形的对应边相等可得BC=EF ,继而可得BF=EC ,从而即可求得答案.【详解】(1)∵AB ∥DE ,∴∠ABC=∠DEF ,在△ABC 与△DEF 中,ABC DEF AB DEA D ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF ;(2)∵△ABC ≌△DEF ,∴BC=EF ,∴BF+FC=EC+FC ,∴BF=EC.∵BE=10m ,BF=3m ,∴FC=10﹣3﹣3=4m.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题的关键.19.计算(1)(2a 4)2÷a 3-a 2·a 3 ;(2)2a 2b (-3b 2c )÷(4ab 3)【答案】(1)3a 5 (2)-3 2ac【解析】(1)根据整式混合运算即可求出结果;(2)单项式乘以单项式和单项式除以单项式即可求出答案.【详解】(1)原式=4a 8÷a 3- a 2·a 3=4a 5-a 5=3a 5(2)原式=-6a 2b 3c ÷(4ab 3)= -3 2ac【点睛】本题考查整式混合运算和单项式乘以单项式、单项式除以单项式,熟练掌握其定义即可.20.如图,ABC 的顶点坐标分别为(2,1)A -,(3,2)B --,(1,2)C -.把ABC 向上平移4个单位长度,再向右平移3个单位长度,得到A B C '''.(1)在图中画出A B C ''',并写出点A ',B ',C '的坐标;(2)连接A C '和A A ',求出三角形AA C '的面积.【答案】(1)图详见解析,(1,5)A '、(0,2)B '、(4,2)C ';(2)212【解析】(1)把ABC 向上平移4个单位长度,再向右平移3个单位长度即可,然后根据平面直角坐标系即可得出结论;(2)由平面直角坐标系可得:A C ''=7,点A 到A C ''的距离为3,然后根据三角形的面积公式计算即可.【详解】解:(1)平移得到A B C '''如图所示.由平面直角坐标系可知:(1,5)A '、(0,2)B '、(4,2)C '(2)由平面直角坐标系可得:A C ''=7,点A 到A C ''的距离为3∴S 三角形1217322AA C '=⨯⨯=【点睛】此题考查的是图形的平移和求三角形的面积,掌握图形平移的画法和三角形的面积公式是解决此题的关键.21.某学校准备在升旗台的台阶上铺设一种红色的地毯(含台阶的最上层),已知这种地毯的批发价为每平方米40元,升旗台的台阶宽为3米,其侧面如图所示.请你帮助测算一下,买地毯至少需要多少元?【答案】1680【解析】如图,平移线段,构成一个矩形,长,宽分别为6.4米,3.8米,所以地毯的长度为6.4+3.8+3.8=14(米),地毯的面积为14×3=42(平方米),所以买地毯至少需要42×40=1680(元).答:买地毯至少需要1680元.22.解下列方程(组)(1)23521x y x y +=⎧⎨-=-⎩ (2)231x x=- 【答案】(1)11x y =⎧⎨=⎩;(2)3x =. 【解析】(1)方程组利用代入消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解.【详解】解: (1) 23521x y x y +=⎧⎨-=-⎩①②, 由②得,21x y =-③,解得1y =,将1y =代入③得,1x =,11x y =⎧∴⎨=⎩; (2)去分母得233x x =-,解得:3x =,经检验: 3x =是原方程的解,∴方程的解为3x =.【点睛】此题考查了解二元一次方程组和解分式方程,熟练掌握方程或方程组的解法是解本题的关键. 23.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A (非常喜欢)、B (比较喜欢)、C (一般)、D (不喜欢)四个等级对活动评价.图1和图2是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为 ;(2)条形统计图中存在错误的是 (填A 、B 、C 中的一个),并在图中加以改正;(3)在图2中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?【答案】(1)200;(2)C (3)D 的人数为30人;(4)360人.【解析】(1)根据A 、B 的人数和所占的百分比求出抽取的学生人数,并判断出条形统计图A 、B 长方形是正确的;(2)根据(1)的计算判断出C 的条形高度错误,用调查的学生人数乘以C 所占的百分比计算即可得解; (3)求出D 的人数,然后补全统计图即可;(4)用总人数乘以A 、B 所占的百分比计算即可得解.【详解】解:(1)∵40÷20%=200,∴此次调查的学生人数为200;(2)由(1)可知C条形高度错误,应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50,即C的条形高度改为50;故答案为200;C;(3)D的人数为:200×15%=30;(4)600×60%=360(人).答:该校对此活动“非常喜欢”和“比较喜欢”的学生有360人.考点:条形统计图;用样本估计总体;扇形统计图.24.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.AE与BC相等吗?为什么?【答案】AE=BC,理由见解析.【解析】分析:由DE∥AB可得∠ADE=∠BAC,结合AD=BA,DE=AC证得△ADE≌△BAC即可得到AE=BC.详解:AE=BC,理由如下:∵DE∥AB,∴∠ADE=∠BAC.∵在△ADE和△BAC中,AD BAADE BACDE AC=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△BAC(SAS).∴AE=BC.点睛:能由DE∥AB得到∠ADE=∠BAC,进而结合已知条件由“SAS”证得△ADE≌△BAC是解答本题的关25.已知任意一个三角形的三个内角的和是180°,如图1,在ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O.(1)若∠A=70°,求∠BOC的度数;(2)若∠A=α,求∠BOC的度数;(3)如图2,若BO、CO分别是∠ABC、∠ACB的三等分线,也就是∠OBC=13∠ABC,∠OCB=13∠ACB,∠A=α,求∠BOC的度数.【答案】(1)125°;(2)90°+12α;(3)120°+13α【解析】(1)根据三角形的内角和定理求出∠ABC+∠ACB,根据角平分线的定义求出∠OBC+∠OCB,根据三角形内角和定理求出即可;(2)根据三角形的内角和定理求出∠ABC+∠ACB,根据角平分线的定义求出∠OBC+∠OCB,根据三角形内角和定理求出即可;(3)根据三角形的内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,根据三角形内角和定理求出即可.【详解】(1)∵∠A=70°,∴∠ABC+∠ACB=180°-∠A=110°,∵在△ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=55°,∴∠BOC=180°-(∠OBC+∠OCB)=125°;(2)∵∠A=α,∴∠ABC+∠ACB=180°-∠A=180°-α,∵在△ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°-α)=90°-12α,∴∠BOC=180°-(∠OBC+∠OCB)=180°-(90°-12α)=90°+12α;(3)∵∠A=α,∴∠ABC+∠ACB=180°-∠A=180°-α,∵∠OBC=13∠ABC,∠OCB=13∠ACB,∴∠OBC+∠OCB=13(∠ABC+∠ACB)=13(180°-α)=60°-13α,∴∠BOC=180°-(∠OBC+∠OCB)=180°-(60°-13α)=120°+13α.【点睛】考查了三角形的内角和定理和角平分线的定义,能求出∠OBC+∠OCB是解此题的关键,求解过程类似.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列不等式的变形中,变形错误的是()A.若a>b,则b<a B.若a>b,则a+c>b+cC.若ac2>bc2,则a>b D.若﹣x>a,则x>﹣a【答案】D【解析】根据不等式的性质进行计算并作出正确的判断.【详解】解:A、若a>b,则b<a,正确;B、若a>b,则a+c>b+c,正确;C、若ac2>bc2,则a>b,正确;D、若﹣x>a,则x<﹣a,错误.故选D.【点睛】本题考查不等式的性质.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.如图,在下列条件中,不能判定直线a与b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【答案】C【解析】解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【点睛】A.120°B.110°C.70°或110°D.70°【答案】D【解析】根据平行线的性质得出∠1=∠2=70°.【详解】∵a∥b,∴∠1=∠2,∵∠1=70°,∴∠2=70°,故选D.【点睛】本题考查了平行线的性质,能根据平行线的性质得出∠1+∠2=180°是解此题的关键.4.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确的求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.7989(1) 799(1)x xx x+<+-⎧⎨+>-⎩D.7989(1) 799(1)x xx x+<+-⎧⎨+≥-⎩【答案】C【解析】不到8棵意思是植树棵树在0棵和8棵之间,包括0棵,不包括8棵,关系式为:植树的总棵树≥(x-1)位同学植树的棵树,植树的总棵树<8+(x-1)位同学植树的棵树,把相关数值代入即可.【详解】(x-1)位同学植树棵树为9×(x-1),∵有1位同学植树的棵数不到8棵.植树的棵数为(7x+9)棵,∴可列方程组为:.故选C【点睛】本题考查了列一元一次不等式组,得到植树总棵树和预计植树棵树之间的关系式是解决本题的关键;理解“有1位同学植树的棵数不到8棵”是解决本题的突破点.的长度y与运动时间x的关系如图2所示,若ABC的面积为4,a则AB的长为()A.4a B.4C.8a D.8【答案】D【解析】根据y与x的函数图象,可知BC边上的高为a,结合三角形的面积公式,求出BC的值,即可得到答案.【详解】由y与x的函数图象可知:当AD⊥BC时,AD=a,∵ABC的面积为4a,∴142BC a a⋅⋅=,解得:BC=1,∵ABC是等边三角形,∴AB= BC=1.故选D.【点睛】本题主要考查等边三角形的性质以及函数的图象,理解函数图象上点的坐标的意义,是解题的关键.6.若一个等腰三角形的两边长分别为4和10,则这个三角形的周长为()A.18 B.22 C.24 D.18或24【答案】C【解析】分类讨论,等腰三角形的三边长可能为4,4,10或10,10,4,根据三角形两边和大于第三边,三角形两边差小于第三边,可知其三边长只可能为10,10,4,据此求其周长即可.【详解】解:等腰三角形的三边长可能为4,4,10或10,10,4,根据三角形两边和大于第三边,三角形两边差小于第三边,可知其三边长只可能为10,10,4,所以这个三角形的周长为10+10+4=24.故选C【点睛】本题考查了三角形三边的关系,注意分情况讨论,同时结合三角形的三边关系确定等腰三角形的三边长. 7.现在有住宿生若干名,分住若干间宿舍,若每间住4人,则还有19人无宿舍住;若每间住6人,则有一间宿舍不空也不满,若设宿舍间数为x则可以列得不等式组为()A.(419)6(1)1(419)6(1)6x xx x+--≥⎧⎨+--≤⎩B.(419)6(1)1(419)6(1)6x xx x+--≤⎧⎨+--≥⎩C .(419)6(1)1(419)6(1)5x x x x +--≤⎧⎨+--≥⎩D .(419)6(1)1(419)6(1)5x x x x +--≥⎧⎨+--≤⎩ 【答案】D【解析】根据已知条件易得学生总人数,不空也不满意思是一个宿舍人数在1人和5人之间,关系式为:总人数()1x --间宿舍的人数1≥;总人数()1x --间宿舍的人数5≤,把相关数值代入即可.【详解】解:∵若每间住4人,则还有19人无宿舍住,∴学生总人数为()419x +人,∵一间宿舍不空也不满,∴学生总人数()1x --间宿舍的人数在1和5之间,∴列的不等式组为:()()()()419611419615x x x x ⎧---≥⎪⎨---≤⎪⎩故选:D【点睛】考查列不等式组解决实际问题,理解“不空也不满”的意思是解决本题的突破点,得到相应的关系式是解决本题的关键.8.在中,,则等于( ) A . B . C . D .【答案】D【解析】可设∠A 的度数为x ,则∠B=2x ,∠C=3x ,再利用三角形的内角和求得x 的值即可.【详解】解:设∠A=x ,则∠B=2x ,∠C=3x ,∵∠A+∠B+∠C=180°,∴x+2x+3x=180°,解得x=30°.∴∠A=30°.故选D.【点睛】本题主要考查三角形的内角和,解此题的关键在于根据题意设出未知数,再利用三角形的内角和为180°求解即可.9.等腰三角形的一个角是80°,则它的顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.考点:等腰三角形的性质.10.将2x-y=1,用含有x的式子表示y,下列式子正确的是()A.y=1-2x B.y=2x-1 C.x=12y+D.x=12y-【答案】B【解析】把x看做已知数求出y即可.【详解】解:方程2x-y=1,解得:y=2x-1,故选:B.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.二、填空题题11.如图,在△ABC中,点D、E分别在AB、BC上,且DE∥AC,∠A=80°,∠BED=45°,则∠ABC=_____.【答案】55°.【解析】根据平行线的性质得到∠BED=∠C=45°,再根据三角形内角之和为180°即可求得∠ABC的度数.【详解】∵DE∥AC,∴∠BED=∠C=45°,又∵∠ABC+∠A+∠C=180°,∴∠ABC=180°﹣45°﹣80°=55°.故答案为:55°【点睛】本题考查了三角形的度数问题,掌握平行线的性质、三角形内角之和为180°是解题的关键.12.如图,直线l1∥l2,则∠1+∠2=____.【答案】30°【解析】分别过A、B作l1的平行线AC和BD,则可知AC∥BD∥l1∥l2,再利用平行线的性质求得答案.【详解】如图,分别过A、B作l1的平行线AC和BD,∵l1∥l2,∴AC∥BD∥l1∥l2,∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,∵∠EAB+∠FBA=125°+85°=210°,∴∠EAC+∠CAB+∠DBA+∠FBD=210°,即∠1+∠2+180°=210°,∴∠1+∠2=30°,故答案为30°.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.13.若买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买4支圆珠笔、4本日记本需_____元.【答案】12【解析】本题中因为买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元,则买3支圆珠笔、3本日记本共需4+5=9元,即买1支圆珠笔1、1本日记本需9÷3=3元,所以买4支圆珠笔、4本日记本需4×3=12元.【详解】解:因为买2支圆珠笔、1本日记本需4元;买1支圆珠笔、2本日记本需5元.所以买3支圆珠笔、3本日记本共需4+5=9元,即买1支圆珠笔1、1本日记本需9÷3=3元,所以买4支圆珠笔、4本日记本需4×3=12元.答:买4支圆珠笔、4本日记本需12元.故答案为12.【点睛】此题可说是一道发散性的题目,既可利用方程组解决问题,也可通过适当的推理来解决问题.14.为了便于游客领略“人从桥上过,如在景中游”的美好意境,某景区拟在如图所示的长方形水池上架设景观桥.若长方形水池的周长为300m,景观桥宽忽略不计,则小桥总长为________m.【答案】150【解析】利用平移的性质直接得出答案即可.【详解】根据题意得出:小桥可以平移到矩形的边上,得出小桥的长等于矩形的长与宽的和,故小桥总长为:300÷2=150(m).故答案为:150.【点睛】本题考查平移,熟练掌握平移的性质是解题关键.15.若a-b=5,ab=14,则(a+b)2的值为_______.【答案】81【解析】直接利用完全平方公式将原式变形进而得出答案.【详解】∵a-b=5,ab=14,∴(a+b)2=a2+2ab+b2= a2-2ab+b2+4ab=(a-b)2+4ab=52+4×14=81,故答案为:81.【点睛】此题主要考查了完全平方公式,正确应用完全平方公式是解题关键.16.如图,在等腰△ABC中,AB的垂直平分线MN交AC于点D,若AB=6,BC=4,则△DBC的周长为_______【答案】1【解析】先根据线段垂直平分线的性质得到AD=BD,即AD+CD=BD+CD=AC,再根据△BCD的周长=BC+BD+CD即可进行解答.【详解】∵MN是线段AB的垂直平分线,∴AD=BD,∴AD+CD=BD+CD=AC,=6∵AB AC∴△BCD的周长=BC+BD+CD=AC+BC=6+4=1.【点睛】本题考查了线段垂直平分线上的点到两端点的距离相等的性质,等腰三角形的性质,熟记性质是解题的关键.17.计算()22x xy x -÷的结果是__________.【答案】2x y -【解析】直接利用多项式除以单项式的法则即可求出结果,在计算的时候注意符合的问题.【详解】利用多项式除以单项式的法则,即原式()22x xy x -÷=22x x xy x ÷-÷=2x y -【点睛】本题考查多项式除以单项式运算,熟练掌握运算法则是解题关键.三、解答题18.解方程:177x x x---=1. 【答案】x =15【解析】试题分析:方程两边同乘(x-7),化为整式方程,解整式方程并检验即可得.试题解析:方程两边同乘(x-7)得:x +1=1x -14,解得x =15,检验:当x=15时,x-7≠0,所以x =15是分式方程的解.19.某学校为了加强训练学生的篮球和足球运球技能,准备购买一批篮球和足球用于训练,已知1个篮球和2个足球共需116元;2个篮球和3个足球共需204元()1求购买1个篮球和1个足球各需多少元?()2若学校准备购进篮球和足球共40个,并且总费用不超过1800元,则篮球最多可购买多少个?【答案】(1)购买一个篮球需60元,购买一个足球需28元;(2)篮球最多可购买21个.【解析】(1)设购买一个篮球x 元,购买一个足球y 元,根据“1个篮球和2个足球共需116元,2个篮球和3个足球共需204元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购买m 个篮球,则购买的足球数为()40m -,根据费用=单价×数量,分别求出篮球和足球的费用,二者相加便是总费用,总费用不超过1800元,列出关于m 的一元一次不等式,解之即可得出结论.【详解】解:()1设购买一个篮球的需x 元,购买一个足球的需 y 元,依题意得211623204x y x y +=⎧+=⎨⎩, 解得{6028x y ==,答:购买一个篮球需60元,购买一个足球需28元; ()2设购买m 个篮球,则足球数为()40m -,依题意得:()6028401800m m +-≤, 解得:1214m ≤,而m 为正整数, 21m =最多,答:篮球最多可购买21个.【点睛】本题考查了二元一次方程组的应用及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,正确列出一元一次不等式.20.如图,MN ,EF 是两面互相平行的镜面,一束光线AB 照射到镜面MN 上,反射光线为BC ,则∠1=∠1. (1)用尺规作图作出镜面BC 经镜面EF 反射后的反射光线CD ;(1)试判断AB 与CD 的位置关系;(3)你是如何思考的?【答案】(1)只要作出∠5=∠6;(1)CD ∥AB ;(3)见解析【解析】分析:(1)掌握尺规作图的基本方法,作入射角等于反射角即∠5=∠6即可;(1)AB 与CD 平行;(3)由平行线的性质和反射的性质可得∠1=∠1=∠3=∠4,利用平角的定义可得∠ABC=∠BCD ,由平行线的判定可得AB 与CD 平行.详解:(1)只要作出的光线BC 经镜面EF 反射后的反射角等于入射角即∠5=∠6即可.(1)CD ∥AB .(3)如图,。
2019-2020年初中数学竞赛试题及答案一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)18 4、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限(A)一、二(B)二、三(C)三、四(D)一、四 5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个 二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
7、已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于___________。
8、已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm 。
9、已知方程()015132832222=+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a =___________。
目录第1届“迎春杯”数学竞赛刊赛试题... .............................................................. . 1 第2届“迎春杯”数学竞赛决赛试题... .............................................................. . 5 第3届“迎春杯”数学竞赛决赛试题... .............................................................. . 8 第4届“迎春杯”数学竞赛决赛试题... ............................................................ .. 10 第5届“迎春杯”数学竞赛决赛试题... ............................................................ .. 11 第6届“迎春杯”数学竞赛决赛试题... ............................................................ .. 13 第7届“迎春杯”数学竞赛决赛试题... ............................................................ .. 16 第8届“迎春杯”数学竞赛决赛试题... ............................................................ .. 18 第9届“迎春杯”数学竞赛决赛试题... ............................................................ .. 20 第10 届“迎春杯”数学竞赛决赛试题... .......................................................... (23)第11 届“迎春杯”数学竞赛初赛试题... ........................................................... (25)第11 届“迎春杯”数学竞赛决赛试题... ........................................................... (27)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (29)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (31)第13 届“迎春杯”数学竞赛初赛试题... .......................................................... (33)第13 届“迎春杯”数学竞赛决赛试题... .......................................................... (35)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (37)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (39)第15 届“迎春杯”数学竞赛初赛试题... .......................................................... (41)第15 届“迎春杯”数学竞赛决赛试题... .......................................................... (43)第16 届“迎春杯”数学科普活动日区县邀请赛试题... .................................. (45)第17 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 47 第18 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 50 第19 届“迎春杯”数学科普活动日计机交流试题... ....................................... . 52 第19 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 54 第20 届“迎春杯”数学科普活动日试题... ....................................................... .. 55 第21 届“迎春杯”数学科普活动日解题能力展示初赛试题... ...................... (57)第21 届“迎春杯”数学解题能力展示读者评选活动复试计算机交流试题... (58)第22 届“迎春杯”数学解题能力展示读者评选活动中年级初试试题... ..... .. 60 第22 届“迎春杯”数学解题能力展示读者评选活动中年级复试试题... ..... .. 62 第22 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 64第22 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 66第23 届“迎春杯”数学解题能力展示评选活动中年级初试试题... .............. . 69第23 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 71第23 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 73第23 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 75第24 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 77第24 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 79第24 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 81第24 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 83第24 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 85第24 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 88第25 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 90第25 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 92第25 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 94第25 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 96第25 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 98第25 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 100 第26 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 102 第26 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 104 第26 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 106 第26 届“迎春杯”数学解题能力展示评选活动五年级初试试题... ........... .. 108 第26 届“迎春杯”数学解题能力展示评选活动六年级初试试题... ........... .. 110 第26 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 112 第27 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 114 第27 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 116 第27 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 118第 27届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 122 第 27届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 124 第 28届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 126 第 28届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 128 第 28届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 130 第 28届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 132 第 28届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 134 第 28届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 136 第 29届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 138 第 29届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 140 第 29届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 141 第 29届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 143 第 29届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 144 第 29届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 145第 1 届“迎春杯”数学竞赛刊赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列运算中正确的是()A.x+x=2x2B.(x4)2= x8C.x1.x2=x6D.(-2x) 2=-4x2【答案】B【解析】直接利用合并同类项法则以及幂的乘方运算法则和同底数幂的除法运算法则计算得出答案.【详解】A. x+x=2x,故此选项错误;B. (x4)2= x8,正确;C.x1.x2=x5,故此选项错误;D.(-2x) 2=4x2,故此选项错误;故选:B.【点睛】本题主要考查同底数幂的乘法、幂的乘方和积的乘方,熟悉掌握是关键.2.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°【答案】C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.3.如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC≌△DEF的是A.AB=DE B.∠B=∠E C.EF=BC D.EF//BC【答案】C【解析】试题分析:本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.解:∵AB∥DE,AC∥DF,∴∠A=∠D,AB=DE,则△ABC和△DEF中,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,∴△ABC≌△DEF,故D选项错误;故选C.考点:全等三角形的判定.4.若m>n,则下列各式中一定成立的是()A.m-2>n-2 B.m-5<n-5 C.-2m>-2n D.4m<4n【答案】A【解析】根据不等式的基本性质逐一判断即可得.【详解】解:∵m>n,∴m-2>n-2,m-5>n-5,-2m<-2n,4m>4n,故选:A.【点睛】本题考查了不等式的性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.5.平面直角坐标系中,到x轴距离为2,y轴距离为2的点有()个.A.1 B.2 C.3 D.4【答案】D【解析】根据平面直角坐标系内点得特点,即可完成解答.【详解】解:平面直角坐标系中,到x轴距离为2,y轴距离为2的点,在每个象限都有一个,分别是(2,2)(-2,2)(-2,-2)(2,-2);因此答案为D.【点睛】本题考查点到坐标轴距离的定义,即:点到x轴的距离为纵坐标的绝对值;点到y轴的距离为横坐标的绝对值;6.我们定义a bad bcc d⎛⎫=+⎪⎝⎭,例如2325342245⎛⎫=⨯+⨯=⎪⎝⎭,若x满足42223x⎛⎫-≤<⎪⎝⎭,则整数x的值有()A.0个B.1个C.2个D.3个【答案】B【解析】首先根据定义把式子化成一般的不等式组,然后解不等式组求得解集,然后确定解集中的正整数即可.【详解】解:根据题意得:-2≤4x+6<2.解得:-2<x≤-2.则x的整数值是-2,共2个.故选B.【点睛】本题考查了一元一次不等式组的整数解,正确理解定义,转化成一般的不等式组是关键.7.若a>b,则下列结论错误的是()A.a﹣3>b﹣3 B.3﹣a>3﹣b C.a+3>b+3 D.﹣3a<﹣3b【答案】B【解析】根据不等式的性质判断即可.【详解】解:A、∵a>b,∴a﹣3>b﹣3,故本选项不合题意;B、∵a>b,3﹣a<3﹣b,故本选项符合题意;C、∵a>b,∴a+3>b+3,故本选项不合题意;D、∵a>b,∴﹣3a<﹣3b,故本选项不合题意.故选:B.【点睛】本题考查了对不等式性质的应用,注意:不等式的性质有①不等式的两边都加上或减去同一个数或整式,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变.8.如图,在锐角中,是边上的高. ,且.连接,交的延长线于点,连接.下列结论:①;②;③;④.其中一定正确的个数是()A.个B.个C.个D.个【答案】A【解析】首先根据题意,可得出∠FAE+∠BAD=90°,∠GAE+∠CAD=90°,进而得出∠FAE+∠BAD+∠GAE+∠CAD=180°,可判定①结论正确;由∠BAF+∠BAC=∠CAG+∠BAC,,得出∠FAC=∠BAG,,判定△FAC≌△BAG,判定②结论正确;由∠EAF+∠BAD=90°,∠BAD+∠ABC=90°,得出∠EAF=∠ABC,可判定④结论正确;由∠AFC=∠ABG,∠AFC+∠FHA=90°,对顶角相等,得出∠ABG+∠BHC=90°,即可判定③结论正确;故正确的结论有4个. 【详解】解:∵是边上的高. ,∴∠FAE+∠BAD=90°,∠GAE+∠CAD=90°∴∠FAE+∠BAD+∠GAE+∠CAD=180°∴,①结论正确;∵∴∠BAF+∠BAC=∠CAG+∠BAC∴∠FAC=∠BAG又∵∴△FAC≌△BAG(SAS)∴BG=CF,②结论正确;∵∠EAF+∠BAD=90°,∠BAD+∠ABC=90°∴∠EAF=∠ABC,④结论正确;令CF 和AB 、BG 分别交于点H 、I ∵△FAC ≌△BAG ∴∠AFC=∠ABG又∵∠AFC+∠FHA=90°,∠FHA=∠BHC (对顶角相等) ∴∠ABG+∠BHC=90°,即∠BIF=90°,即,③结论正确;正确的个数有4个. 故选:A.【点睛】此题主要考查三角形全等的判定及其性质的应用,熟练掌握,即可解题.9.著名电影《刘三姐》中,秀才们和刘三姐对歌的场面十分精彩.罗秀才唱到:“三百条狗交给你,一少三多四下分,不要双数要单数,看你怎样分得均?”刘三姐示意舟妹来答,舟妹唱道:“九十九条打猎去,九十九条看羊来,九十九条守门口,剩下三条财主请来当奴才.”其中“一少”表示所分配的一部分少量的狗,“三多”表示所分配的三部分相等数量的狗多,若用数学方法解决罗秀才提出的问题,设“一少”的狗有x 条,“三多”的狗有y 条,x y 、为奇数,则解此问题所列式正确的是 A .()33000300x y x y +=<<< B .()33001100x y x y +=<<< C .3300{3x y x y+==D .()33000100x y x y +=<<<【答案】D【解析】根据一少三多四下分,不要双数要单数,列出不等式组解答即可. 【详解】解:设“一少”的狗有x 条,“三多”的狗有y 条,可得:33000100x y x y x y +⎧⎪⎨⎪⎩=<<<、为奇数, 故选:D . 【点睛】此题考查二元一次方程的应用,关键是根据一少三多四下分,不要双数要单数列出不等式组. 10.如图,已知AB ∥CD ,AE 平分∠CAB ,∠C=110°,则∠EAB 为( )A.30°B.35°C.40°D.45°【答案】B【解析】由AB∥CD,根据两直线平行,同旁内角互补,即可求得∠CAB的度数,又由AE平分∠CAB,即可求得答案.【详解】∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=110°,∴∠CAB=70°,∵AE平分∠CAB,∴∠EAB=12∠CAB=35°.故选D.【点睛】考查了平行线的性质与角平分线的定义.此题比较简单,注意掌握两直线平行,同旁内角互补定理的应用.二、填空题题11.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为1,即PS+SQ=1或PT+TQ=1.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B (1,﹣3),C(﹣1,﹣1),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M 的坐标为_____.【答案】(1,﹣2).【解析】若设M(x,y),则由题目中对“实际距离”的定义可得方程组:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,则M(1,-2).故答案为(1,-2).12.已知12xy=⎧⎨=⎩是方程ax-y=3的解,则a的值为________.【答案】1.【解析】将12xy=⎧⎨=⎩代入方程,得a-2=3解得a=1,故答案为1.13.实数81的平方根是_________.【答案】±9【解析】因为(±9)2=81,则81的平方根是±9.故答案为±9.点睛:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根.14.已知方程组2311329x yx y+=⎧⎨+=⎩,则x+y=______.【答案】4【解析】分析:根据方程组中两个方程的特点,把两个方程相加可得5x+5y=20,由此即可得到x+y=4. 详解:在方程组()() 2311?1 329?2x yx y⎧+=⎪⎨+=⎪⎩中,由(1)+(2)可得:5x+5y=20,∴x+y=4.故答案为:4.点睛:“观察方程组中两个未知数系数的特征,发现把两个方程相加可得新方程:5x+5y=20”是解答本题的关键.15.若m ,n 为实数,且|m+3|+3n -=0,则(m n)2018的值为_____. 【答案】1【解析】直接利用算术平方根以及绝对值的性质得出m ,n 的值,进而得出答案. 【详解】解:∵|m+3|+3n -=0, ∴m+3=0,n ﹣3=0, ∴m =﹣3,n =3, ∴(m n)2018=1. 故答案为1. 【点睛】此题主要考查了算术平方根以及绝对值的性质,正确得出m ,n 的值是解题关键. 16.若2m a =,3n a =,则m n a +=____. 【答案】6 【解析】∵m n m n a a a +⋅=,2m a =,3n a =,∴m n a +=2×3=6. 故填6.17.如图,五边形ABCDE 中,BCD ∠、EDC ∠的外角分别是FCD ∠、GDC ∠,CP 、DP 分别平分FCD ∠和GDC ∠且相交于点P ,若140A ∠=︒,120B ∠=︒,90E ∠=︒,则P ∠=__________︒.【答案】1【解析】根据多边形的内角和定理:()2180-︒n ,可得出∠BCD 、∠EDC 的和,从而得出相邻两外角和,然后根据角平分线及三角形内角和定理即可得出答案.【详解】解:多边形的内角和定理可得五边形ABCDE 的内角和为:()52180-︒=540°, ∴∠BCD+∠EDC=540°-140°-120°-90°=190°, ∴∠FCD+∠GDC=360°-190°=170°又∵CP 和DP 分别是∠BCD 、∠EDC 的外角平分线, ∴()170851122PCD PDC FCD GDC ∠+∠=∠+∠=⨯︒=︒,根据三角形内角和定理可得:∠CPD=180°-85°=1°.故答案为:1.【点睛】本题主要考查了多边形内角和定理、角平分线的性质、三角形内角和定理,熟悉相关性质是解题的关键.三、解答题18.因式分解(1)4a1-15b1(1)-3x3y1+6x1y3-3xy4(3)3x(a-b)-6y(b-a)(4)(x1+4)1-16x1.【答案】(1)(1a+5b)(1a-5b);(1)-3xy1(x-y)1;(3)3(a-b)(x+1y);(4)(x+1)1(x-1)1.【解析】(1)原式利用平方差公式分解即可;(1)原式提取公因式,再利用完全平方公式分解即可;(3)原式变形后,提取公因式即可得到结果;(4)原式利用平方差公式,以及完全平方公式分解即可.【详解】解:(1)原式=(1a+5b)(1a-5b);(1)原式=-3xy1(x1-1xy+y1)=-3xy1(x-y)1;(3)原式=3x(a-b)+6y(a-b)=3(a-b)(x+1y);(4)原式=(x1+4x+4)(x1-4x+4)=(x+1)1(x-1)1.考点:提公因式法与公式法的综合运用.19.某地某月1~20日中午12时的气温(单位: ℃)如下:2231251518232120271720121821211620242619(1)将下列频数分布表补充完整:气温分组划记频数≤< 3x1217≤<1722xx≤<2227≤< 2x2732(2)补全频数分布直方图;【答案】 (1)详见解析;(2)详见解析【解析】(1)根据数据采用划记法记录即可得;(2)由(1)所得表格补全图形即可;【详解】解:(1)补充表格如下:(2)补全频数分布直方图如下:【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.某幼儿园计划购进一批甲、乙两种玩具,已知一件甲种玩具的价格与一件乙种玩具的价格的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的价格分别是多少元?(2)该幼儿园计划用3500元购买甲、乙两种玩具,由于采购人员把甲、乙两种玩具的件数互换了,结果需4500元,求该幼儿园原计划购进甲、乙两种玩具各多少件?【答案】(1)甲,乙两种玩具分别是15元/件,1元/件;(2)原计划购进甲、乙两种玩具各150件,50件.【解析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(40-x )元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具a 件,则购进乙种玩具b 件,根据把甲、乙两种玩具的件数互换了,结果需4500元,可列出方程组求解.【详解】设甲种玩具进价x 元/件,则乙种玩具进价为(40﹣x )元/件, 9015040x x=-, 解得:x =15,经检验x =15是原方程的解.∴40﹣x =1.甲,乙两种玩具分别是15元/件,1元/件;(2)设购进甲种玩具a 件,则购进乙种玩具b 件,1525350015254500a b b a +=⎧⎨+=⎩, 解得:15050a b =⎧⎨=⎩, 答:原计划购进甲、乙两种玩具各150件,50件.【点睛】本题考查分式方程的应用,二元一次方程组的应用,第一问以件数做为等量关系列方程求解,不要忘记检验;第2问以玩具件数和钱数做为等量关系列方程组求解.21.如图,A 、B 两点同时从原点O 出发,点A 以每秒x 个单位长度沿x 轴的负方向运动,点B 以每秒y 个单位长度沿y 轴的正方向运动.(1)若∣x +2y -5∣+∣2x -y ∣=0,试分别求出1秒钟后,A 、B 两点的坐标.(2)设∠BAO 的邻补角和∠ABO 的邻补角的平分线相交于点P ,问:点A 、B 在运动的过程中,∠P 的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由.(3)如图,延长BA至E,在∠ABO的内部作射线BF交x轴于点C,若∠EAC、∠FCA、∠ABC的平分线相交于点G,过点G作BE的垂线,垂足为H,试问∠AGH和∠BGC的大小关系如何?请写出你的结论并说明理由.【答案】(1)A(-1,0),B(0,2)(2)不发生变化,理由见解析(3)∠AGH=∠BGC, 理由见解析【解析】(1)|x+2y-5|+|2x-y|=0,非负数的性质得,x+2y-5≥0,2x-y≥0;由此解不等式即可求得,A、B两点同时从原点O出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动,∴A(-1,0),B(0,2);(2)不发生变化.要求∠P的度数,只要求出∠PAB+∠PBA的度数.利用三角形内角和定理得,∠P=180°-∠PAB-∠PBA;角平分线性质得,∠PAB=∠EAB,∠PBA=∠FBA,外角性质得,∠EAB=∠ABO+90°,∠FBA=∠BAO+90°,则可求∠P的度数;(3)试求∠AGH和∠BGC的大小关系,找到与它们有关的角.如∠BAC,作GM⊥BF于点M,由已知有可得∠AGH与∠BGC的关系.【详解】解:(1)解方程组:得:∴A(-1,0),B(0,2)(2)∠P的大小不发生变化.∠P=180°-∠PAB-∠PBA=180°-(∠EAB+∠FBA)=180°-(∠ABO+90°+∠BAO+90°)=180°-(180°+180°-90°)=180°-135°=45°(3)∠AGH =∠BGC ,理由如下:作GM ⊥BF 于点M由已知有:∠AGH =90°-∠EAC=90°-(180°-∠BAC ) =∠BAC∠BGC =∠BGM -∠CGM=90°-∠ABC -(90°-∠ACF ) =(∠ACF -∠ABC ) =∠BAC∴∠AGH =∠BGC22.在直角坐标平面内,已知点(1,3),(3,1)A B ---,将点B 向右平移5个单位得到点C(1)描出点,,A B C 的位置,并求ABC ∆的面积.(2)若在x 轴下方有一点D ,使5BCD S ∆=,写出一个满足条件的点D 的坐标.并指出满足条件的点D 有什么特征.【答案】(1)10;(2)(0,3)D -,这些点在x 轴下方,与x 轴平行且与x 轴距离为3的一条直线上【解析】(1)根据已知点的坐标得出A ,B 的位置,再利用点B 向右平移5个单位得到点C ,即可得出C 点坐标;再根据B 、C 两点的坐标得出BC 的长,从而求出ABC ∆的面积(2)根据5BCD S ∆=和BC 的长得出高的长,从而求出D 点坐标,再根据同底等高的三角形的面积相等得出点D 的特征【详解】解:(1)∵点(3,1)B --向右平移5个单位得到点C ,∴点C 的坐标为()2,1-,,,A B C 的位置如图所示∵(3,1)B --,C ()2,1-,∴|32|5BC =--=,∵(1,3)A -, ∴154102ABC S ∆=⨯⨯= (2)设三角形BCD 的高为h ,∵5BC =,5BCD S ∆= ∴1552ABC S h ∆=⨯= ∴h=2∵点D 在x 轴下方,∴(0,3)D -;∵同底等高的三角形的面积相等;∴这些点D在x轴下方,与x轴平行且与x轴距离为3的一条直线上【点睛】此题主要考查了坐标与图形变化-平移,关于x轴对称的点的坐标,平面直角坐标系,以及三角形的面积,关键是掌握点的坐标的变化规律.23.如图,已知A、E、F、C在一条直线上,BE∥DF,BE=DF,AF=CE.(1)图中有几对全等三角形?(2)判断AD与BC的位置关系,请说明理由.【答案】(1)图中3对全等三角形;(2)结论:AD∥BC,理由见解析.【解析】(1)根据全等三角形的判定方法即可得出;(2)证明△ABE≌△CDF,得出四边形ABCD是平行四边形,即可得出平行关系.【详解】(1)图中全等三角形有△ABE≌△CDF,△BAC≌△DCA,△BCE≌△ADF.(2)结论:AD∥BC.理由:∵BE∥DF,∴∠BEC=∠AFD,∴∠AEB=∠DFC,∵AF=CE,∴AE=CF,∵BE=DF,∴△ABE≌△CDF,∴AB=CD,∠BAE=∠DCF,∴AB∥CD,∴四边形ABCD是平行四边形,∴AD∥BC.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定方法.24.如图,长方形AOCB的顶点A(m,n)和C(p,q)在坐标轴上,已知x my n=⎧⎨=⎩和x py q=⎧⎨=⎩都是方程x+2y=4的整数解,点B在第一象限内.(1)求点B的坐标;(2)若点P从点A出发沿y轴负半轴方向以1个单位每秒的速度运动,同时点Q从点C出发,沿x轴负半轴方向以2个单位每秒的速度运动,问运动到多少秒时,四边形BPOQ面积为长方形ABCO面积的一半;(3)如图2,将线段AC沿x轴正方向平移得到线段BD,点E(a,b)为线段BD上任意一点,试问a+2b 的值是否变化?若变化,求其范围;若不变化,求其值.(直接写出结论)【答案】(1)点B的坐标为(4,2);(2)运动到1秒时,四边形BPOQ面积为长方形ABCO面积的一半;(3)a+2b的值不变化,值为1.【解析】(1)根据坐标轴的性质把A,C代入方程x+2y=4,得到非负整数解,再根据矩形的性质即可解答. (2)设AP=t,CQ=2t,再根据四边形BPOQ的面积=矩形AOCB的面积﹣△ABP的面积﹣△BCQ的面积求出t即可解答.(3)作EF⊥CD于F,由平移的性证明四边形ABDC是平行四边形,再根据平行四边形的性质得出CD=AB =4,OD=OC+CD=1,再根据点E的坐标为(a,b),得出OF=a,EF=b,DF=1﹣a,最后利用相似三角形的判定与性质,即可解答.【详解】(1)∵A(m,n),C(p,q),∴m=0,n>0,p>0,q=0,∵方程x+2y=4的非负整数解为024,,210 x x xy y y===⎧⎧⎧⎨⎨⎨===⎩⎩⎩或或,∴A(0,2),C(4,0),∵四边形AOCB是矩形,∴BC=OA=2,AB=OC=4,∴点B的坐标为(4,2);(2)如图1所示:由题意得:AP=t,CQ=2t,∴四边形BPOQ的面积=矩形AOCB的面积﹣△ABP的面积﹣△BCQ的面积=4×2﹣12×4×t﹣12×2t×2=12×4×2,解得:t=1,即运动到1秒时,四边形BPOQ面积为长方形ABCO面积的一半;(3)a+2b的值不变化,值为1,理由如下:作EF⊥CD于F,如图2所示:则EF∥OA∥BC,由平移的性质得:AC∥BD,AC=BD,∴四边形ABDC是平行四边形,∴CD=AB=4,∴OD=OC+CD=1,∵点E的坐标为(a,b),∴OF=a,EF=b,∴DF=1﹣a,∵EF∥BC,∴△DEF∽△DBC,∴8,24EF DF b a BC CD-==即,整理得:a+2b=1.【点睛】此题考查坐标与图形,相似三角形的判定与性质,平行四边形的判定与性质,解题关键在于利用待定系数法求解.25.分解因式:(1)4a3﹣a;(1)9+6(a+b)+(a+b)1;(3)﹣8ax1+16axy﹣8ay1.【答案】(1)a(1a+1)(1a﹣1);(1)(a+b+3)1;(3)﹣8a(x﹣y)1.【解析】(1)直接提取公因式a,再利用平方差公式分解因式得出答案;(1)直接利用完全平方公式分解因式得出答案;(3)直接提取公因式-8a,再利用完全平方公式分解因式得出答案.【详解】解:(1)4a3﹣a=a(4a1﹣1)=a(1a+1)(1a﹣1);(1)9+6(a+b)+(a+b)1=(a+b+3)1;(3)﹣8ax1+16axy﹣8ay1=﹣8a(x1﹣1xy+y1)=﹣8a(x﹣y)1.【点睛】本题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.在平面直角坐标系中,点()P2,3--所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【解析】根据点在各象限的坐标特点即可解答.【详解】解:()2,3P --,点的横坐标-2<0,纵坐标-3<0,∴这个点在第三象限.故选C .【点睛】解决本题的关键是记住平面直角坐标系中各个象限内点的坐标的符号:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.下列各选项中,是一元一次方程的是( )A .5(13)8+-=-B .28x -C .248x x +=D .0x = 【答案】D【解析】根据一元一次方程的定义即可求出答案.【详解】解:A.没有未知数,故该选项错误;B.不是等式,故该选项错误;C.不是整式,故该选项错误;D.是一元一次方程,故该选项正确.故选D.【点睛】本题考查了一元一次方程的定义. 解题的关键是掌握一元一次方程的定义. 一元一次方程是指只含有一个未知数,未知数的最高次数为1且两边都是整式的等式.3.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃ 【答案】B【解析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.4.下列四组值中,是二元一次方程21x y -=的解的是( )A .{01x y ==B .{11x y ==-C .{11x y ==D .{10x y == 【答案】D【解析】二元一次方程的解一般有无数个,把下列各数代入方程检验即可.【详解】把A. {01x y == 代入21x y -= ,左边≠右边,不是方程的解; 把 B. {11x y ==-代入21x y -= ,左边≠右边,不是方程的解; 把C. {11x y ==代入21x y -= ,左边≠右边,不是方程的解; 把D. {10x y ==代入21x y -= ,左边=右边,是方程的解.故选:D【点睛】本题考核知识点:二元一次方程的解.解题关键点:把数值代入方程检验.5.9的平方根是( )A .3B .﹣3C .±3D .81 【答案】C【解析】如果一个数的平方等于,a 则这个数是a 的平方根或二次方根,根据平方根的定义回答即可.【详解】()239,±=9∴的平方根是 3.±故选:C.【点睛】根据平方根的定义回答即可.一个正数有2个平方根,它们互为相反数.6.一个容量为80的样本,其最大值是133,最小值是51.若确定组距为10,则可以分成A .10组B .9组C .8组D .7组 【答案】B【解析】根据组数=(最大值-最小值)÷组距,用进一法取整即可解答.【详解】∵1335110-=8.2, ∴分成9组较为恰当.故选B.【点睛】本题主要考查频率分布表的相关知识,熟练掌握频率分布表的表示方法以及组数,组距等参数的确定方法是解题的关键. 7.不等式的解集在数轴上表示正确的是( )A .B .C .D .【答案】D 【解析】求出不等式的解集,再根据“大于向右,小于向左,不包括端点用空心,包括端点用实心”的原则将解集在数轴上表示出来.【详解】解:解不等式,得:x ≥2,表示在数轴上如图:故选:D .【点睛】本题主要考查解不等式得基本能力及在数轴上表示不等式的解集,不等式的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.肥皂泡的厚度为0.0000007m ,这个数用科学计数法表示为( )A .70.710m -⨯B .80.710m -⨯C .7710m -⨯D .8710m -⨯ 【答案】C【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000007=7×10−7.故选:C.【点睛】本题考查科学记数法—表示较小的数,解题的关键是掌握科学记数法—表示较小的数.9.若a>b,则下列结论错误的是()A.a﹣3>b﹣3 B.3﹣a>3﹣b C.a+3>b+3 D.﹣3a<﹣3b【答案】B【解析】根据不等式的性质判断即可.【详解】解:A、∵a>b,∴a﹣3>b﹣3,故本选项不合题意;B、∵a>b,3﹣a<3﹣b,故本选项符合题意;C、∵a>b,∴a+3>b+3,故本选项不合题意;D、∵a>b,∴﹣3a<﹣3b,故本选项不合题意.故选:B.【点睛】本题考查了对不等式性质的应用,注意:不等式的性质有①不等式的两边都加上或减去同一个数或整式,不等号的方向不变,②不等式的两边都乘以或除以同一个正数,不等号的方向不变,③不等式的两边都乘以或除以同一个负数,不等号的方向改变.10.如果两条平行线与第三条直线相交,那么一组同旁内角的平分线互相()A.重合B.平行C.垂直D.相交但不垂直【答案】C【解析】分析:根据两条直线平行,则同旁内角互补和角平分线的定义进行分析.详解:如图所示,∵AB∥CD,∴∠BGH+∠DHG=180°.又MG、MH分别平分∠BGH和∠DHG,∴∠1=12∠BGH,∠2=12∠DHG,∴∠1+∠2=90°.故选:C.点睛:此题综合运用了平行线的性质和角平分线定义.注意:同旁内角的角平分线互相垂直;内错角的角平分线互相平行;同位角的角平分线互相平行.二、填空题题11.将一长方形纸片如图所示的方式折叠后,再展开,若150∠=,则2∠=______ .【答案】65°【解析】分析:先根据平行线的性质,得出∠1+∠2+∠3=180°,再根据∠1=50°得出∠2+∠3=130°,最后根据折叠的性质,得出∠2的度数.详解:由矩形的对边平行,可得∠1+∠2+∠3=180°,由∠1=50°可得:∠2+∠3=180°﹣50°=130°,由折叠可得:∠2=∠3,∴∠2=12×130°=65°.故答案为:65°.点睛:本题主要考查了平行线的性质以及折叠的性质,解题时注意:两条平行线被第三条直线所截,同旁内角互补.即两直线平行,同旁内角互补.12.若一个多边形的内角和为900,则其对角线的总条数为__________条【答案】14【解析】先求出多边形的边数,再根据对角线的条数公式进行求解.【详解】设多边形的边数为x则(x-2)×180°=900°,解得x=7∴对角线的总条数为1742⨯⨯=14条,故填:14. 【点睛】此题主要考查多边形的对角线,解题的关键是熟知n边形对角线的条数为1(3) 2n n⨯⨯-.13.计算:(﹣0.125)2017×82018=_____.【答案】-1【解析】解:原式=(﹣0.125)2017×12017×1=(﹣0.125×1)2017×1=﹣1×1=﹣1.故答案为﹣1.14.下列4个命题中:①过直线外一点有且只有一条直线与这条直线平行;②平行于同一条直线的两条直线平行;③两条直线被第三条直线所截,同旁内角互补;④对顶角相等.其中真命题有_____个.【答案】1.【解析】直接利用平行线的性质分别判断得出答案.【详解】①过直线外一点有且只有一条直线与这条直线平行,是真命题;②平行于同一条直线的两条直线平行,是真命题;③两条直线被第三条直线所截,同旁内角互补,只有平行线具备此性质,故此选项错误;④对顶角相等,是真命题.故答案为:1.【点睛】此题考查命题与定理,正确正确平行线的性质是解题关键.15.我县抽考年级有1万多名学生参加考试,为了了解这些学生的抽考学科成绩,便于质量分析,从中抽取了600名考生的抽考学科成绩进行统计分析.这个问题中,下列说法:①这l万多名学生的抽考成绩的全体是总体;②每个学生是个体;③600名考生是总体的一个样本;④样本容量是600.你认为说法正确的有_____个.【答案】2【解析】根据总体、个体、样本、样本容量的概念进行解答即可.【详解】解:这1万多名学生的抽考成绩的全体是总体,①正确;每个学生的抽考成绩是个体,②错误;600名考生的抽考成绩是总体的一个样本,③错误;样本容量是600,④正确;故答案为2.【点睛】本题考查的是抽样,熟练掌握字体,个体,样本,容量的定义是解题的关键.16.如图,直线a//b,将一直角三角形的直角顶点置于直线b上,若∠1=28°,则∠2的度数是_______________________________【答案】118°【解析】如图,依据AB∥CD,即可得出∠2=∠ABC=∠1+∠CBE,然后可得出结果.【详解】解:如图,∵AB∥CD,∴∠2=∠ABC=∠1+∠CBE=28°+90°=118°,故答案为:118°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.17.如图,在.△ABC中,各边的长度如图所示,∠C=90°,AD平分∠CAB交BC于点D,则点D到AB的距离是__.【答案】1【解析】解:过点D作DE⊥AB于E,∵∠C=90°,AD平分∠CAB交BC于点D,∴DC=DE=1,即点D到AB的距离是1.故答案为1三、解答题18.厦门市某中学在“六一儿童节”期间举办了七年级学生“数学应用能力比赛”. 为表彩在本次活动中表现优秀的学生,老师决定到某文具店购买笔袋或笔记本作为奖品. 已知1个笔袋和2本笔记本原价共需74元;2个笔袋和3本笔记本原价共需123元.(1)问每个笔袋、每本笔记本原价各多少元?(2)时逢“儿童节”,该文具店举行“优惠促销活动,具体办法如下:笔袋“九折”优惠;笔记本不超过10本不优惠,超出10本的部分“八折“优惠. 若老师购买60个奖品(其中笔袋不少于20个)共需y元,设笔袋为x 个,请用含有x 的代数式表示y .【答案】(1)每个笔袋24元,每本笔记本25元;(2)当2050x ≤<时, 1.61250y x =+,当5060x ≤≤60时,1500 3.4y x =-【解析】(1)设每个笔袋的原价是x 元,每本笔记本的原价为y 元,根据“1个笔袋和2本笔记本原价共需74元;2个笔袋和3本笔记本原价共需123元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)利用总价=单价×数量可求出购买笔袋所需总价,分20≤x <50及50≤x≤60两种情况求出购买笔记本所需总价,再将购买笔袋的总价和购买笔记本的总价相加即可得出结论.【详解】解:(1)设每个笔袋x 元,每本笔记本y 元,依题意,得27423123x y x y +=⎧⎨+=⎩解得,2425x y =⎧⎨=⎩答:每个笔袋24元,每本笔记本25元.(2)买x 个笔袋的钱为0.92421.6x x ⨯⨯=.①当2050x ≤<时,106040x <-≤买笔记本的钱为:2510250.8(6010)x ⨯+⨯⨯--25020(50)x =+-125020x =-∴21.6125020y x x =+-1.61250x =+②当5060x ≤≤时,06010x ≤-≤买笔记本的钱为:()2560x -∴()21.62560y x x =+-1500 3.4x =-因此,当2050x ≤<时, 1.61250y x =+,当5060x ≤≤时,1500 3.4y x =-.【点睛】本题考查了二元一次方程组的应用以及列代数式,解题的关键是:找准等量关系,正确列出二元一次方程组;(2)分20≤x <50及50≤x≤60两种情况,用含有x 的代数式表示出y .。
2019年全国初中数学联合竞赛试题及详解第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( B )A .1.B .2.C .3.D .4.解: 由已知可推得011a b b c a c -=⎧⇒-=±⎨-=±⎩ 或 110a b b c a c -=±⎧⇒-=±⎨-=⎩,分别代入即得。
2.若实数,,a b c 满足等式23||6a b =,9||6a b c =,则c 可能取的最大值为 ( C )A .0.B .1.C .2.D .3.解:由已知,6492(23)15121512c a b a b b b ==-=-≤,∴2c ≤.3.若b a ,是两个正数,且,0111=+-+-ab b a 则 ( C ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 解:当a b =时,可计算得23a b ==,从而43a b +=。
观察4个选项,只能选C. 4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( A )A .-13.B .-9.C .6.D . 0.解:由已知:42x ax bx c +++一定能被231x x --整除。
∵4222(31)(310)[(333)(10)]x ax bx c x x x x a a b x a c +++=--+++++++++∴(333)(10)0a b x a c +++++=,故3330213100a b a b c a c ++=⎧⇒+-=-⎨++=⎩5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( B )A .15°.B .20°.C .25°.D .30°.解:如图,由已知,ADE 是正三角形。
2018-2019学年七年级学科竞赛数学试题(含答案)一.选择题(共6小题)1.某块手表每小时比准确时间慢3分钟,若在清晨4点30分与准确时间对准,则当天上午该手表指示时间为10点50分时,准确时间应该是()A.11点10分B.11点9分C.11点8分D.11点7分2.某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a=()A.30 B.40 C.45 D.503.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()A.2个 B.3个 C.4个 D.5个4.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是()A.15号B.16号C.17号D.18号5.若k为整数,则使得方程(k﹣1999)x=2001﹣2000x的解也是整数的k的值有()A.4个 B.8个 C.12个D.16个6.四点钟后,从时针到分针第二次成90°角,共经过()分钟(答案四舍五入到整数).A.30 B.33 C.38 D.40二.填空题(共5小题)7.关于x的方程:≠0,则x=.8.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元,则该学生第二次购书实际付款元.9.一轮船从甲地到乙地顺流匀速行驶需4小时,从乙地到甲地逆流匀速行驶需6小时,有一木筏由甲地漂流至乙地,需小时.10.如图是在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成,设中间最小的一个正方形的边长为1,则正方形A的面积是.11.已知不论x取何数值,分式的值都为同一个定值,那么的值为.三.解答题(共5小题)12.附加题:某城镇沿环形路有五所小学,依次为一小、二小、三小、四小、五小,它们分别有电脑15,7,11,3,14台,现在为使各校电脑台数相等,各调几台给邻校:一小给二小,二小给三小,三小给四小,四小给五小,五小给一小.若甲小给乙小﹣3台,则乙小给甲小3台,要使电脑移动的总台数最小,应做怎样安排?13.梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.14.一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离.15.小明解方程+1=时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a的值,并正确求出方程的解.2018年08月19日136****0321的初中数学组卷参考答案与试题解析一.选择题(共6小题)1.某块手表每小时比准确时间慢3分钟,若在清晨4点30分与准确时间对准,则当天上午该手表指示时间为10点50分时,准确时间应该是()A.11点10分B.11点9分C.11点8分D.11点7分【分析】根据题意假设该手表从4时30分走到10时50分所用的实际时间为x 小时,该手表的速度为57分/小时,再进行计算.【解答】解:慢表走:57分钟,则正常表走:60分钟,即如果慢表走:6小时20分(即380分),求正常表走了x分钟,则57:60=380:x,解得x=400,400分钟=6小时40分,所以准时时间为11时10分.故选:A.【点评】本题要注意手表的实际时间和准确时间的关系,然后找出其中关联的等量关系,得出方程求解.2.某地居民生活用电基本价格为0.50元/度.规定每月基本用电量为a度,超过部分电量的毎度电价比基本用电量的毎度电价增加20%收费,某用户在5月份用电100度,共交电费56元,则a=()A.30 B.40 C.45 D.50【分析】根据题中所给的关系,找到等量关系,由于共交电费56元,可列出方程求出a.【解答】解:∵0.50×100=50<56,∴100>a,由题意,得0.5a+(100﹣a)×0.5×120%=56,解得a=40.故选:B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.此题的关键是要知道每月用电量超过a度时,电费的计算方法为0.5×(1+20%).3.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()A.2个 B.3个 C.4个 D.5个【分析】根据最后输出的结果,可计算出它前面的那个数,依此类推,可将符合题意的那个最小的正数求出.【解答】解:∵最后输出的数为656,∴5x+1=656,得:x=131>0,∴5x+1=131,得:x=26>0,∴5x+1=26,得:x=5>0,∴5x+1=5,得:x=0.8>0;∴5x+1=0.8,得:x=﹣0.04<0,不符合题意,故x的值可取131,26,5,0.8共4个.故选:C.【点评】本题立意新颖,借助新运算,实际考查一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.4.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是()A.15号B.16号C.17号D.18号【分析】因为12月份有31天,故他们最多相差28天.又小明和小莉的出生日期都是星期五,故他们的出生日期相差7的整数倍.故他们的出生日期可能相差7、14、21、28天.【解答】解:设小明的出生日期为x号.(1)若他们相差7天,则小莉的出生日期为x+7,应有x+7+x=22,解得x=7.5,不符合题意,舍去.(2)若他们相差14天,则小莉的出生日期为x+14,应有x+14+x=22,解得x=4,符合题意;所以小莉的出生日期是14+4=18号;(3)若相差21天、28天显然不合题意.故选:D.【点评】本题用到的知识点为:都在周五出生,他们的出生日期可能相差7、14、21、28.应分情况讨论.5.若k为整数,则使得方程(k﹣1999)x=2001﹣2000x的解也是整数的k的值有()A.4个 B.8个 C.12个D.16个【分析】先把原方程变形为(k﹣1999)x+2000x=2001,得出x=,然后求出2001的因数有16个.【解答】解:原方程变形得:(k﹣1999)x+2000x=2001,∴x=,∵k为整数,∴2001的因数有:1,3,23,29,69,87,667,2001,﹣1,﹣3,﹣23,﹣29,﹣69,﹣87,﹣667,﹣2001.∴共有16个.故选:D.【点评】本题主要考查了二元一次方程的解的定义,要会用代入法判断二元一次方程的解.该题主要用的是排除法.6.四点钟后,从时针到分针第二次成90°角,共经过()分钟(答案四舍五入到整数).A.30 B.33 C.38 D.40【分析】此题可以用淘汰的方法,把度数设为未知数X,从4点到五点这段时间时针走的为30×(),分针走的为360×().【解答】解:设走了X分钟则得到方程:360×()﹣120﹣30×()=90解得:X=38答:共经过38分钟.故选:C.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.二.填空题(共5小题)7.关于x的方程:≠0,则x=a+b+c.【分析】观察等式发现x所处的位置相同,因而要将x 从分式中分解出来,并且、、因而将3分解为这三个形式,因而原等式转化为.再提取公因式,化简为.最后判断出x与a、b、c的关系.【解答】解:∵⇒∵是一元一次方程的系数∴必然是∴只能是x=a+b+c故答案为a+b+c【点评】本题考查因式分解的应用、解一元二次方程.本题同学们需注意“1”的妙用,有时为了解题的需要将1写成分式的形式,如本题中的、、.8.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了34元,则该学生第二次购书实际付款204元.【分析】先求出第一次购书时的实际定价,再根据第二次购书节省的钱数列出方程,再求解即可.【解答】解:第一次购书付款72元,享受了九折优惠,实际定价为72÷0.9=80元,省去了8元钱.依题意,第二次节省了26元.设第二次所购书的定价为x元.(x﹣200)×0.8+200×0.9=x﹣26,解得x=230.故第二次购书实际付款为230﹣26=204元.【点评】解答本题需注意第二次所购的书有九折的部分,有八折的部分,需清楚找到这两部分实际出的钱.9.一轮船从甲地到乙地顺流匀速行驶需4小时,从乙地到甲地逆流匀速行驶需6小时,有一木筏由甲地漂流至乙地,需24小时.【分析】根据顺流时:行驶速度+水流速度=总路程÷总时间,逆流时:行驶速度﹣水流速度=总路程÷总时间,可得到两个关于行驶速度和水流速度的方程组,解得水流速度,即可得漂流所需时间.【解答】解:设总路程为1,轮船行驶速度为x,水流速度为y,根据题意得:,解得y=,木阀漂流所需时间=1÷=24(小时).故答案填:24.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解,准确的找到等量关系并用方程组表示出来是解题的关键.10.如图是在电脑屏幕上出现的长方形色块图,由6个颜色不同的正方形组成,设中间最小的一个正方形的边长为1,则正方形A的面积是49.【分析】设右下方两个相等的正方形的边长为x,则根据题意知,正方形A的边长为x+3,此色块图为一个长方形,可根据长=长列方程.【解答】解:设右下方两个相等的正方形的边长为x,则根据题意知,正方形A 的边长为x+3,此色块图为一个长方形,则(x+2)+(x+3)=(x+1)+x+x,2x+5=3x+1,x=4,正方形A的边长为x+3=4+3=7,故正方形A的面积为7×7=49.【点评】本题考查理解题意和识别图形的能力,关键是设出左上角正方形的边长,然后表示出其他正方形的边长,根据正方形的性质,列出方程,最后求出面积.11.已知不论x取何数值,分式的值都为同一个定值,那么的值为.【分析】根据不论x取何数值,分式的值都为同一个定值,即可求得分式的定值,进而把x=1代入求得a,b的关系,从而求解.【解答】解:设=k,则ax+3=k(bx+5),∵x不论取何值该等式都成立,∴a=bk,5k=3,∴=.故答案是:【点评】本题主要考查了分式的求值,根据条件求得a,b之间的关系是解决本题的关键.三.解答题(共5小题)12.附加题:某城镇沿环形路有五所小学,依次为一小、二小、三小、四小、五小,它们分别有电脑15,7,11,3,14台,现在为使各校电脑台数相等,各调几台给邻校:一小给二小,二小给三小,三小给四小,四小给五小,五小给一小.若甲小给乙小﹣3台,则乙小给甲小3台,要使电脑移动的总台数最小,应做怎样安排?【分析】首先用A、B、C、D、E分别表示这五所小学的位置,并设A向B调x1台电脑,B向C调x2台电脑,…,E向A调x5台电脑,进而表示出y=|x1|+|x1﹣3|+|x1﹣2|+|x1﹣9|+|x1﹣5|,利用函数最值求出即可.【解答】解:如图,用A、B、C、D、E分别表示这五所小学的位置,并设A向B 调x1台电脑,B向C调x2台电脑,…,E向A调x5台电脑,依题意有:7+x1﹣x2=11+x2﹣x3=3+x3﹣x4=14+x4﹣x5=15+x5﹣x1=50÷5=10,所以,x2=x1﹣3,x3=x1﹣2,x4=x1﹣9,x5=x1﹣5,设调动的电脑的总台数为y,则y=|x1|+|x1﹣3|+|x1﹣2|+|x1﹣9|+|x1﹣5|,这样,这个实际问题就转化为求y的最小值问题,并由上面所得结论知:当x1==3时,y的最小值为|3|+|3﹣3|+|3﹣2|+|3﹣9|+|3﹣5|=12,即调动的总台数为12.因为x1=3时,x2=0,x3=1,x4=﹣6,x5=﹣2,故一小就向二小调3台电脑,二小不调出,三小向四小调一台电脑,五小向四小调6台电脑,一小向五小调2台电脑.【点评】此题主要考查了函数的最值问题,根据已知得出y=|x1|+|x1﹣3|+|x1﹣2|+|x1﹣9|+|x1﹣5|,进而利用绝对值性质求出是解题关键.13.梅林中学租用两辆小汽车(设速度相同)同时送1名带队老师及7名九年级的学生到县城参加数学竞赛,每辆限坐4人(不包括司机).其中一辆小汽车在距离考场15km的地方出现故障,此时离截止进考场的时刻还有42分钟,这时唯一可利用的交通工具是另一辆小汽车,且这辆车的平均速度是60km/h,人步行的速度是5km/h(上、下车时间忽略不计).(1)若小汽车送4人到达考场,然后再回到出故障处接其他人,请你通过计算说明他们能否在截止进考场的时刻前到达考场;(2)假如你是带队的老师,请你设计一种运送方案,使他们能在截止进考场的时刻前到达考场,并通过计算说明方案的可行性.【分析】(1)从出故障地到把人都送到考场需要时间是×3;(2)汽车送第一批人的同时,第二批人先步行,可节省一些时间.【解答】解:(1)(分钟),∵45>42,∴不能在限定时间内到达考场.(2)方案1:先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.先将4人用车送到考场所需时间为(分钟).0.25小时另外4人步行了1.25km,此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后先步行的4人相遇,5t+60t=13.75,解得.汽车由相遇点再去考场所需时间也是.所以用这一方案送这8人到考场共需.所以这8个人能在截止进考场的时刻前赶到.方案2,8人同时出发,4人步行,先将4人用车送到离出发点xkm的A处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场,由A处步行前考场需,汽车从出发点到A处需先步行的4人走了,设汽车返回t(h)后与先步行的4人相遇,则有,解得,所以相遇点与考场的距离为:.由相遇点坐车到考场需:.所以先步行的4人到考场的总时间为:,先坐车的4人到考场的总时间为:,他们同时到达则有:,解得x=13.将x=13代入上式,可得他们赶到考场所需时间为:(分钟).∵37<42,∴他们能在截止进考场的时刻前到达考场.【点评】此题在设计方案的基础上,这样设计方案会更节省时间,汽车送第一批人的同时,第二批人先以5千米/时速度步行,汽车把第一批人送到距考场S千米的A处后,回来接第二批人.同时,第一批人也以5千米/时的速度继续赶往考场,使两批人同时到达考场,在汽车来回接人的过程中,多了第一批人在步行,显然所用时间比设计方案少,故此方案这8人都能赶到考场,且最省时间.14.一辆汽车以每小时60千米的速度由甲地驶往乙地,车行驶了4小时30分钟后,遇雨路滑,平均行驶速度每小时减少20千米,结果比预计时间晚45分钟到达乙地,求甲、乙两地的距离.【分析】设甲、乙两地的距离为x,汽车以每小时60千米的速度行驶了4小时30分钟,共行驶了60×4.5=270千米;车行驶了4小时30分钟后速度变为每小时40千米,则实际行驶的时间=(x﹣270)÷40+4.5小时;若按每小时60千米的速度由甲地驶往乙地需要的时间=甲、乙两地的距离÷60;由题意得:实际行驶的时间﹣按每小时60千米的速度由甲地驶往乙地需要的时间=小时.【解答】解:设甲、乙两地的距离为x千米,4小时30分钟=小时,45分钟=小时,依题可列方程:,解得:x=360.答:甲、乙两地的距离为360千米.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.15.小明解方程+1=时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x=4,试求a的值,并正确求出方程的解.【分析】把x=4代入小明粗心得出的方程,求出a的值,代入方程求出解即可.【解答】解:由题意可知:(在去分母时,方程左边的1没有乘10,由此求得的解为x=4),2(2x﹣1)+1=5(x+a),把x=4代入得:a=﹣1,将a=﹣1代入原方程得:+1=,去分母得:4x﹣2+10=5x﹣5,移项合并得:﹣x=﹣13,解得:x=13.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.。
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.随着电影《流浪地球》的热映,其同名科幻小说的销量也急剧上升.某书店分别用400元和600元两次购进该小说,第二次数量比第一次多5套,且两次进价相同.若设该书店第一次购进x套,根据题意,列方程正确的是()A.4006005x x=-B.4006005x x=-C.4006005x x=+D.4006005x x=+【答案】C【解析】该书店第一次购进x套,则第二次购进(x+5)套,根据“两次进价相同”列出方程即可.【详解】该书店第一次购进x套,则第二次购进(x+5)套,依题意得:4006005x x=+.故选C.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.2.用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.仓库里现有2018张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则n的值可能是()A.4036 B.4038 C.4040 D.4042【答案】D【解析】设可做成x个竖式无盖纸盒,y个横式无盖纸盒,列出方程组,结合x,y,n是正整数求解即可. 【详解】设可做成x个竖式无盖纸盒,y个横式无盖纸盒,依题意,得:2201843x yx y n+=⎧⎨+=⎩①②,4×①﹣②,得:5y=8012﹣n.∵y为正整数,∴n的个位数字为2或1.故选:D.【点睛】本题考查了二元一次方程组的应用,仔细审题,找出题目的已知量和未知量,设两个未知数,并找出两个能代表题目数量关系的等量关系,然后列出方程组求解即可.3.人体中红细胞的直径约为0.000007m ,将0.000007m 用科学记数法表示数的结果是( ) A .50.710m -⨯B .60.710m -⨯C .5710m -⨯D .6710m -⨯ 【答案】D【解析】根据科学记数法的定义进行分析解答即可.【详解】60.000007710m m -=⨯.故选D.【点睛】在把一个绝对值小于1的数用科学记数法表示为10n a ⨯的形式时,我们要注意两点:①a 必须满足:110a ≤<;②n 等于原来的数中从左至右第1个非0数字前面0的个数(包括小数点前面的0)的相反数.4.如图,天平平衡,则和一个球体重量相等的圆柱体的个数是( )A .6个B .5个C .4个D .3个【答案】D 【解析】根据题意可知天平两端正好平衡说明左盘里物质的质量等于右盘里物质的质量,利用“天平左盘里物质的质量等于右盘里物质的质量”作为相等关系:2个球=6个圆柱体,再根据已知和等式的基本性质即可求解.【详解】解:记球的质量为x 、圆柱体的质量为y ,由天平知2x=6y ,则x=3y ,即和一个球体质量相等的圆柱体个数是3,故选D .【点睛】本题通过天平考查了等式的性质.从天平左右两边平衡引出等量关系:天平左盘里物质的质量等于右盘里物质的质量.同时也体现出了等式的基本性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.5.已知a >b ,下列不等式变形不正确的是( )A .a+2>b+2B .a ﹣2>b ﹣2C .2a >2bD .2﹣a >2﹣b【答案】D【解析】根据不等式的3个基本性质:1.两边都加上或减去同一个数或同一个试子,不等式的方向不变; 2.两边都乘以或除以同一个正数,不等号的方向不变;3.两边都乘以或除以同一个负数,不等号的方向改变.结合选项,即可得出答案.【详解】A 、由a >b 知a+2>b+2,此选项变形正确;B 、由a >b 知a ﹣2>b ﹣2,此选项变形正确;C 、由a >b 知2a >2b ,此选项变形正确;D 、由a >b 知﹣a <﹣b ,则2﹣a <2﹣b ,此选项变形错误;故选:D .【点睛】本题考查不等式的基本性质,根据不等式的3个基本性质进行判断即可.6.下列命题中,属于真命题的是 ( )A .两个锐角的和是锐角B .在同一平面内,如果a⊥b,b⊥c,则a⊥cC .同位角相等D .在同一平面内,如果a//b ,b//c ,则a//c 【答案】D【解析】试题解析:A. 两个锐角的和是锐角,错误;B. 在同一平面内,如果a ⊥b ,b ⊥c ,则a ∥c ,错误;C. 同位角相等,错误;D. 在同一平面内,如果a//b ,b//c ,则a//c ,正确.故选D.7.下面的多项式中,能因式分解的是( )A .2m n +B .221m m -+C .2m n -D .21m m -+ 【答案】B【解析】完全平方公式的考察,()2222a b a ab b -=-+【详解】A 、C 、D 都无法进行因式分解B 中,()2222212111m m m m m -+=-⋅⋅+=-,可进行因式分解故选:B【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:()()22a b a b a b -=+- 完全平方公式:()2222a b a ab b ±=±+8.一边长为a 的正方形,其面积等于s ,下列关于s 与a 之间的关系,理解正确的是()A .a s =B .2=s aC .a 是s 的算术平方根D .s 是a 的平方根 【答案】C【解析】根据算术平方根,即可解答.【详解】解:根据题意得:S=a 2(a >0) ∴a s =∴a 是S 的算术平方根,故选:C .【点睛】本题考查了算术平方根,解决本题的关键是熟记算术平方根.9.某住宅小区六月份1日至5日母天用水量变化情况如图4所示.那么这5天平均母天的用水量是( )A .30吨B .31吨C .32吨D .33吨【答案】C 【解析】从图中得到6天用水量的6个数据,然后根据平均数的概念计算这6个数据的平均数就可得到平均用水量.解:这6天的平均用水量:30343237286++++=32吨,故选C . 要熟悉统计图,读懂统计图,熟练掌握平均数的计算方法.10.事件:“在只装有2个红球和8个黑球的袋子里,摸出一个白球”是( )A .可能事件B .不可能事件C .随机事件D .必然事件【答案】B【解析】分析:不可能事件是指不可能发生的事情,必然事件是指肯定会发生的事情,可能事件和随机事件是指有可能发生的事情.本题根据定义即可得出答案.详解:∵口袋里面没有白球, ∴摸出白球是不可能事件, 故选B .点睛:本题主要考试的是“不可能事件”、“随机事件”和“必然事件”的定义,属于基础题型.理解定义是解决这个问题的关键.二、填空题题11.如图,已知,,AB CD EF 相交于O 点,135∠=,235∠=,则3∠的度数是__________.【答案】110【解析】依据AB、CD、EF相交于O点,∠1=35°,∠2=35°,即可得到∠BOC=180°-∠1-∠2=110°,再根据对顶角相等,即可得出∠3=∠BOC=110°.【详解】∵AB、CD、EF相交于O点,∠1=35°,∠2=35°,∴∠BOC=180°−∠1 −∠2 =110°,又∵∠3与∠BOC是对顶角,∴∠3=∠BOC=110°,故答案为:110°.【点睛】此题考查对顶角,解题关键在于掌握对顶角相等即可解答.12.如图,把一张宽度相等的纸条按图上所示的方式折叠,则∠1的度数等于___________°.【答案】65°【解析】利用翻折不变性,平行线的性质,三角形的内角和定理即可解决问题.【详解】由翻折不变性可知:∠2=∠3,∵∠1=∠3,∴∠1=∠2,∵∠4=180°−130°=50°,∴∠1=∠2=12(180°−50°)=65°,故答案为65°.【点睛】本题考查翻折、平行线的性质和三角形的内角和定理,解题的关键是熟练掌握翻折、平行线的性质和三角形的内角和定理.13.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折;③一次性购书超过200元,一律按原价打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_________.【答案】248元或296元【解析】设小丽第一次购书的原价为x 元,则第二次购书的原价为3x 元,分x ≤1003、1003<x ≤2003、2003<x ≤100及x >100四种情况,找出关于x 的一元一次方程,解之即可得出结论. 【详解】设小丽第一次购书的原价为x 元,则第二次购书的原价为3x 元,根据题意得:当3x ≤100,即x ≤1003时,x +3x =229.4, 解得:x =57.35(舍去);当100<3x ≤200,即1003<x ≤2003时,x +0.9×3x =229.4, 解得:x =62,∴x +3x =248;当3x >200且x ≤100,即2003<x ≤100时,x +0.7×3x =229.4, 解得:x =74,∴x +3x =296;当x >100时,0.9x +0.7×3x =229.4,解得:x ≈76.47(舍去).答:小丽这两次购书原价的总和是248元或296元.故填:248元或296元.【点睛】本题考查了一元一次方程的应用,分x ≤1003、1003<x ≤2003、2003<x ≤100及x >100四种情况,列出关于x 的一元一次方程是解题的关键.14.如图,在ABC ∆中,40ACB ∠=︒,60BAC ∠=︒,D 为ABC ∆外一点,DA 平分BAC ∠,且50CBD ∠=︒,则DCB ∠的度数为______________【答案】70°【解析】如图,延长AB 到P ,延长AC 到Q ,作DH ⊥AP 于H ,DE ⊥AQ 于E ,DF ⊥BC 于F .想办法证明DE =DF ,推出DC 平分∠QCB 即可解决问题.【详解】如图,延长AB 到P ,延长AC 到Q ,作DH ⊥AP 于H ,DE ⊥AQ 于E ,DF ⊥BC 于F .∵∠PBC =∠BAC +∠ACB =40°+60°=100°,∠CBD =50°,∴∠DBC =∠DBH ,∵DF ⊥BC ,DH ⊥BP ,∴DF=DH,又∵DA平分∠PAQ,DH⊥PA,DE⊥AQ,∴DE=DH,∴DE=DF,∴CD平分∠QCB,∵∠QCB=180°−40°=140°,∴∠DCB=70°,故答案为70°.【点睛】本题考查三角形的外角的性质,角平分线的性质定理和判定定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.15.已知25xy=⎧⎨=-⎩是方程3mx﹣y=﹣1的解,则m=_____.【答案】﹣1【解析】根据方程的解来求解参数,代入计算即可.【详解】解:因为25xy=⎧⎨=-⎩是方程3mx﹣y=﹣1的解所以3251m⨯+=-,即m=-1故答案为-1.【点睛】本题主要考查方程的解满足方程来求解参数,其实就是代入,解一元一次方程. 16.如图,在平面直角坐标系中,有若千个整数点,其顺序按图中“→”方向排列,如()()()1, 0, 2, 0, 2, 1,….根据这个规律探索可得,第100个点的坐标为__________.【答案】()142,【解析】从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,⋯依此类推横坐标为n 的有n 个点.题目要求写出第100个点的坐标,我们可以通过加法计算算出第100个点位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.【详解】解:在横坐标上,第一列有一个点,第二列有2个点.…第n 个有n 个点,并且奇数列点数对称而偶数列点数y 轴上方比下方多一个, 所以奇数列的坐标为111,,1,222n n n n n n ---⎛⎫⎛⎫⎛⎫-⋯ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ; 偶数列的坐标为,,1,1222n n n n n n ⎛⎫⎛⎫⎛⎫-⋯- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭, 由加法推算可得到第100个点位于第14列自上而下第六行.14代入上式得(14,1452-)即(14,2), 故答案为(14,2).【点睛】本题的考查了对平面直角坐标系的熟练运用能力,用“从特殊到一般”的方法入手寻找规律是解答本题的关键.17.已知数据有100个,最大值为132,最小值为50,取组距为10,则可分成_____组.【答案】1【解析】已知这组数据的最大值为132,最小值为50,则它们的差是82,再由组距为10,即可求得组数.【详解】最大值为132,最小值为50,它们的差是132﹣50=82,已知组距为10,那么由于8210≈1; 则可分成1组.故答案为:1.【点睛】本题考查的是组数的计算,熟知组数=(最大值-最小值)÷组距是解决问题的关键.三、解答题18.计算: ()1220111()(1)7()23---+-⨯-; ()22234(3)(2)a b ab ab ⋅-+-. 【答案】 (1)2;(2) 3320a b -【解析】根据实数运算及整式混合运算计算即可.【详解】解:()1原式413=+-2=()2解:原式3333128a b a b=--3320a b=-【点睛】此题主要考查幂的运算和整式的混合运算,熟练掌握法则,即可解题.19.列方程解应用题:涡阳到大连两站相距1200千米,货车与客车同时从涡阳站出发开往大连站,已知客车的速度是货车速度的2.5倍,结果客车比货车早6小时到达乙站,求客车与货车的速度分别是多少?【答案】货车速度为120千米/小时,客车速度为300千米/小时.【解析】首先设货车速度为x千米/小时,则客车速度为2.5x千米/小时,根据时间可得等量关系:客车行驶1200千米的时间=货车行驶1200千米的时间+6小时,根据等量关系列出方程即可.【详解】解:设货车速度为x千米/小时,则客车速度为2.5x千米/小时,根据题意得:1200120062.5x x=+,解得120x=,经检验:120x=是原方程的解且符合实际.2.5120300⨯=(千米/小时),答:货车速度为120千米/小时,客车速度为300千米/小时.【点睛】本题考查了分式方程的应用,关键是正确理解题意,根据时间找出等量关系,再列出方程.注意解方程后不要忘记检验.20.夏季来临,某饮品店老板大白计划下个月(2018年8月)每天制作新鲜水果冰淇淋800份销售。
七年一级数学参考答案第1页共2页2019年初中七年一期期末检测试卷数学参考答案一、选择题:(每小题3分,共36分)题号123456789101112答案DBBABCDACCAC二、填空题:(每小题3分,共18分)13. 3.15;14.8.77;15.2;16.144°37′;17.90090%4010%x x ⨯--=;答案或为90090%40110%x ⨯-=+()18.(1064)3-+⨯,10463-+⨯,46310+÷⨯,6(104)3+-⨯.(说明:第18题如有其它正确答案请酌情计分,对1个计2分,对2个计3分)三、解答题:(共66分)19.(本题满分6分,每小题3分)解:(1)原式=6-0.2-2+1.4=5.2………………3分(2)原式=9=⨯⨯(-3)3-81……………………………………6分20.(本题满分6分,每小题3分)解:(1)原式=9===2⨯-⨯-8(-4)4-36-(-16)-36+16-20………………………3分(2)原式=1655216-⨯+⨯(21616)520051000=-⨯=⨯=…………………………6分21.(本题满分8分,每小题4分)解:(1)x-2(3x-6)=7x-6x+12=7………………………2分-5x=-5x=1…………………………4分(2)2(1-2x)-(3x+1)=6………………5分2-4x-3x-1=6-7x=5x=57-…………………………8分22.(本题满分8分)……如右图所示,每小问计2分,共计8分.23.(本题满分9分)解:(1)∵OM 平分∠AOB,∠AOB=90º.∴∠MOB=45º……………………………2分同理∠NOB=15º………………………………3分∴∠MON=∠MOB+∠NOB=45º+15º=60°.………………4分AO MB N C七年一级数学参考答案第2页共2页(2)∵OM 平分∠AOB.∴∠MOB=12∠AOB.同理∠NOB=12∠BOC.…………………………6分∴∠MON=∠MOB+∠NOB=12∠AOB+12∠BOC =12(∠AOB+∠BOC)=12∠AOC=60°.…………9分24.(本题满分9分)解:(1)22222223(2634)2322322M a b ab ab a b ab aba b ab ab a b ab ab =--++-=-+--=-…………………5分(化简答案正确计2分)(2)由223(2)0a b ++-+=可得3=22a b -=,………………………………7分代入化简代数式即:原式=2232=22=12.2ab --⨯⨯(-)………………………………9分25.(本题满分10分)解:(1)设应该安排x 名工人加工甲种零件,(16-x)名工人加工乙种零件.则这天加工甲种零件有5x 个,乙种零件有4(16-x)个.根据题意,得4×5x=3×4(16-x)……………………………………3分解得x=616-x=10……………………………………5分答:应该安排6名工人加工甲种零件,10名工人加工乙种零件.(2)设这一天有y 名工人加工甲种零件,(16-y)名工人加工乙种零件.根据题意,得15×5y+20×4(16-y)=1240.………………………………8分解得y=8答:这一天有8名工人加工甲种零件.………………………………………10分26.(本题满分10分)解:(1)11;12;1;…………………………………………3分(2)50;126;…………………………………………7分(3)依题意可列式得3221=4046Gx G x +-()-()23221=4046x x +-()-1-[2()-1]…………………………9分解得:x=2020.…………………………………………10分。
文武镇初级中学2018-2019学年七年级数学下学期竞赛卷) C .风筝在空中随风飘动 D .急刹车时,汽车在地面上的滑动 12.一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间 B .3与4之间 C .4与5之间 D .5与6之间 13.已知实数x ,y 满足()0122=++-y x ,则y x -等于( ) A .3 B .-3 C . D .-114.根据以下对话,可以求得嫒嫒所买的笔和笔记本的价格分别是( )C .1.2元/支,2.6元/本D .1.2元/支,3.6元/本三、解答题(共70分)15.(6分)计算:-12+22--38-+816.(6分)解方程组⎩⎨⎧=-=+.1123,12y x y x17.(6分) 解不等式组:()20213 1.x x x ->⎧⎪⎨+-⎪⎩,≥并把解集在数轴上表示出来.F21GEDCBA人电脑体育音乐书画兴趣小组书电脑35%音乐体育图1 图218.(6分)如图所示,直线a、b被c、d所截,且c a⊥,c b⊥,170∠=°,求∠3的大小.19.(8分)育才中学现有学生2 870人,学校为了进一步丰富学生课余生活,拟调整兴趣活动小组,为此进行一次抽样调查.根据采集到的数据绘制的统计图(不完整)如下:请你根据图中提供的信息,完成下列问题:(1)图1中,“电脑”部分所对应的圆心角为度;(2)共抽查了名同学;(3)在图2中,将“体育”部分的图形补充完整;(4)爱好“书画”的人数占被调查人数的百分数是;(5)估计育才中学现有的学生中,有人爱好“书画”.20.(8分)如图,方格中有一条美丽可爱的小金鱼.(1)画出小鱼向左平移3格后的图形(不要求写作图步骤和过程).(2)若方格的边长为1,则小鱼的面积.21.(8分)今年春季我县大旱,导致大量农作物减产,下图是一对农民父子的对话内容,请根据对话内容分别求出该农户今年两块农田的产量分别是多少千克?22.(10分)已知,如图,CD⊥AB,GF⊥AB,∠B=∠ADE,试说明∠1=∠2.23.(12分)某超市销售有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元。
2019数学解题能力展示(迎春杯)高年级组复试题填空题:
①计算:定义一种新运算a☆b 满足:a☆b=b×10+a×2.那么2011☆130=_____________.
②从 1999 年到2010 年的12 年中,物价涨幅为150%(即1999 年用100 元能购买的物品,2010 年要比原来多花150 元才能购买).若某个企业的一线员工这12 年来工资都没变,按购买力计算,相当于工资下降了 %.
③右图中大圆的半径是 20 厘米,7 个小圆的半径都是10 厘米.那么阴影图形的面积是平方厘米(π取3.14).
④某届“数学解题水平展示”读者评选活动初试共有12000 名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的
___________.
⑤右图是一个除法竖式.这个除法竖式的被除数是___________.
⑥算式1!×3-2!×4+3!×5-4!×6++2009!×2011-2010!×2012+2011!的计算结果是___________.
⑦春节临近,从2011 年1 月17 日(星期一)起工厂里的工人陆续回家过年,与家人团聚.若每天离厂的工人人数相同,到1 月31 日,厂里还剩下工人121 名,在这15 天期间,统计工厂工人的工作量是2011 个工作日(一人工作一天为1 个工作日,工人离厂当天及以后不需要统计).其中周六、日休息,且无人缺勤.那么截至到1 月31 日,回家过年的工人共有___________人.
⑧有一个整数,它恰好是它的约数个数的2011 倍.这个整数的最小值是___________.。
2019-2020年七年级下学科能力大赛数学试卷一、选择题(本题共有15小题,每小题3分,共45分)1.若关于x的二元一次方程kx+3y=5有一组解是,则k的值是()A.1 B.﹣1 C.0 D.22.给出下列四个结论:①任意命题均有逆命题;②当逆命题为真命题时,它统称为逆定理;③任何定理均有逆定理;④定理总是正确的,其中正确的是()A.①②B.②③C.③④D.①④3.下列命题中,属于定义的是()A.两点确定一条直线B.两直线平行,内错角相等C.点到直线的距离是该点到这条直线的垂线段的长度D.同角或等角的余角相等4.如果一次函数y=3x+6与y=2x﹣4的图象交点坐标为(a,b),则是方程组()的解.A.B.C.D.5.如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°6.如图,a∥b,∠1=105°,∠2=140°,则∠3的度数是()A.75°B.65°C.55°D.50°7.下列命题中的假命题是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行 D.对顶角相等,两直线平行8.下列事件是随机事件的是()A.购买一张福利彩票中奖B.400人中至少有两人的生日在同一天C.有一名运动员奔跑的速度是30米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球9.均匀的正四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是()A.B.C.D.10.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为()A.10 B.8 C.5 D.2.511.如图,∠A+∠B+∠C+∠D+∠E等于()A.180°B.360°C.540°D.720°12.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>313.如图,在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是()A.B.C.D.14.已知,∠AOB=30°,点M1,M2,M3…在射线OB上,点N1,N2,N3…在射线0A上,△M1N1M2,△M2N2M3,△M3N3M4…均为等边三角形.若OM1=1,则△M9N9M10长为()A.32 B.64 C.128 D.25615.如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F,作CM⊥AD,垂足为M,下列结论不正确的是()A.AD=CE B.MF=CF C.∠BEC=∠CDA D.AM=CM二、填空题(共6小题,每小题3分,共18分)16.一个两位数,个位数字与十位数字的和是9,如果把个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为______.17.已知等腰三角形的一个角是36°,则另两个角分别是______.18.一个不透明的口袋中装有若干个颜色不同其余相同的球,如果口袋中有4个红球且摸到红球的概率是,那么口袋中球总数是______.19.已知是方程组的解,那么一次函数y=x﹣和y=8﹣2x的交点坐标是______.20.一次函数y=﹣x+3与y=﹣3x+12的图象的交点坐标是______.21.如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分.谁先累积到10分,谁就获胜.你认为______获胜的可能性更大.三、解答题(解答应写出文字说明、推理过程或演算步骤,22题每小题12分)22.(1)(2)(3)解不等式组.23.如图,在△ABC中,AB=AC,AD=DC=BC,求∠A的度数.24.如图,直线l1、l2相交于点A,试求出点A的坐标.25.在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,且AD=AB.(1)如图1,DE⊥AB,DF⊥AC,垂足分别为点E,F,求证:AE+AF=AD(2)如图2,如果∠EDF=60°,且∠EDF两边分别交边AB,AC于点E,F,那么线段AE,AF,AD之间有怎样的数量关系?并给出证明.2016年山东省泰安市东平县七年级学科能力大赛数学试卷参考答案与试题解析一、选择题(本题共有15小题,每小题3分,共45分)1.若关于x的二元一次方程kx+3y=5有一组解是,则k的值是()A.1 B.﹣1 C.0 D.2【考点】二元一次方程的解.【分析】根据方程的解的定义,把代入方程kx+3y=5,得到一个含有未知数k的一元一次方程,从而可以求出k的值.【解答】解:把代入方程kx+3y=5,得2k+3=5,∴k=1.故选A.2.给出下列四个结论:①任意命题均有逆命题;②当逆命题为真命题时,它统称为逆定理;③任何定理均有逆定理;④定理总是正确的,其中正确的是()A.①②B.②③C.③④D.①④【考点】命题与定理.【分析】根据命题、逆命题,定理、逆定理之间的关系分别判断即可.【解答】解:①每个命题都有逆命题,正确;②当逆命题为真命题时,它统称为逆定理;错误;③任何定理均有逆定理;错误;④定理总是正确的,正确;综上所述,正确的是①④,故选D.3.下列命题中,属于定义的是()A.两点确定一条直线B.两直线平行,内错角相等C.点到直线的距离是该点到这条直线的垂线段的长度D.同角或等角的余角相等【考点】命题与定理.【分析】根据定义的属性进行判断.【解答】解:A、是直线公理,故错误;B、是平行线的性质,故错误;C、是点到直线的距离的定义,正确;D、是余角的性质,故错误,故选C.4.如果一次函数y=3x+6与y=2x﹣4的图象交点坐标为(a,b),则是方程组()的解.A.B.C.D.【考点】一次函数与二元一次方程(组).【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此是联立两直线函数解析式所组方程组的解.由此可判断出正确的选项.【解答】解:一次函数y=3x+6与y=2x﹣4的图象交点坐标为(a,b),则是方程组,即的解.故选C.5.如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()A.70°B.80°C.90°D.100°【考点】平行线的性质;三角形内角和定理;三角形的外角性质.【分析】此题的解法灵活,可以首先根据平行线的性质求得∠EFB,再根据三角形的外角性质求得∠E;也可以首先根据平行线的性质求得∠CFB,再根据对顶角相等求得∠AFE,最后再根据三角形的内角和定理即可求解.【解答】解:方法1:∵AB∥CD,∠C=115°,∴∠EFB=∠C=115°.又∠EFB=∠A+∠E,∠A=25°,∴∠E=∠EFB﹣∠A=115°﹣25°=90°;方法2:∵AB∥CD,∠C=115°,∴∠CFB=180°﹣115°=65°.∴∠AFE=∠CFB=65°.在△AEF中,∠E=180°﹣∠A﹣∠AEF=180°﹣25°﹣65°=90°.故选C.6.如图,a∥b,∠1=105°,∠2=140°,则∠3的度数是()A.75°B.65°C.55°D.50°【考点】三角形的外角性质;平行线的性质.【分析】如图作出两直线的交点,由a∥b可以推出∠1+∠4=180°,然后可以求出∠4=75°.再根据三角形的外角等于不相邻的两个内角的和可以求出∠3.【解答】解:如图作出两直线的交点,∵a∥b,则∠1+∠4=180°,∴∠4=75°,根据三角形的外角等于不相邻的两个内角的和得到∠2=∠3+∠4,则∠3=65°.故选B.7.下列命题中的假命题是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行 D.对顶角相等,两直线平行【考点】命题与定理.【分析】根据平行线的判定方法对各选项的真假进行判断.【解答】解:A、同位角相等,两直线平行,所以A选项为真命题;B、内错角相等,两直线平行,所以B选项为真命题;C、同旁内角互补角,两直线平行,所以C选项为真命题;D、对顶角相等,不能判断两直线平行,所以D选项为假命题.故选D.8.下列事件是随机事件的是()A.购买一张福利彩票中奖B.400人中至少有两人的生日在同一天C.有一名运动员奔跑的速度是30米/秒D.在一个仅装着白球和黑球的袋中摸球,摸出红球【考点】随机事件.【分析】随机事件就是可能发生也可能不发生的事件,依据定义即可判断.【解答】解:A、购买一张福利彩票中奖是随机事件,故选项正确;B、400人中至少有两人的生日在同一天,是必然事件,选项错误;C、有一名运动员奔跑的速度是30米/秒是不可能事件,选项错误;D、在一个仅装着白球和黑球的袋中摸球,摸出红球是不可能事件,选项错误.故选A.9.均匀的正四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看着地的一面数字之和为5的情况占总情况的多少即可.【解答】解:同时抛掷两个这样的正四面体,有可能的结果16种,数字之和为5的是4种,所以着地的一面数字之和为5的概率是.B10.如图,在△ABC中,∠B=30°,BC的垂直平分线交AB于E,垂足为D.若ED=5,则CE的长为()A.10 B.8 C.5 D.2.5【考点】线段垂直平分线的性质;含30度角的直角三角形.【分析】根据线段垂直平分线性质得出BE=CE,根据含30度角的直角三角形性质求出BE 的长,即可求出CE长.【解答】解:∵DE是线段BC的垂直平分线,∴BE=CE,∠BDE=90°(线段垂直平分线的性质),∵∠B=30°,∴BE=2DE=2×5=10(直角三角形的性质),∴CE=BE=10.故选A.11.如图,∠A+∠B+∠C+∠D+∠E等于()A.180°B.360°C.540°D.720°【考点】三角形的外角性质;三角形内角和定理.【分析】先根据三角形外角的性质得出∠1及∠2的度数,再由三角形内角和定理即可得出结论.【解答】解:∵∠1是△CEF的外角,∴∠1=∠C+∠E;∵∠2是△BDG的外角,∴∠2=∠B+∠D,∵∠A+∠1+∠2=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故选A.12.若关于x的不等式组无解,则a的取值范围是()A.a≤3 B.a≥3 C.a<3 D.a>3【考点】不等式的解集.【分析】原不等式组无解,即组成不等式组的两个不等式的解集没有交集.【解答】解:∵关于x的不等式组无解,∴a≤3.故选:A.13.如图,在下列三角形中,若AB=AC,则不能被一条直线分成两个小等腰三角形的是()A.B.C.D.【考点】等腰三角形的判定与性质.【分析】A、D是黄金三角形,C、过A点作BC的垂线即可;只有B选项不能被一条直线分成两个小等腰三角形.【解答】解:A、中作∠B的角平分线即可;C、过A点作BC的垂线即可;D、中以A为顶点AB为一边在三角形内部作一个72度的角即可;只有B选项不能被一条直线分成两个小等腰三角形.故选B.14.已知,∠AOB=30°,点M1,M2,M3…在射线OB上,点N1,N2,N3…在射线0A上,△M1N1M2,△M2N2M3,△M3N3M4…均为等边三角形.若OM1=1,则△M9N9M10长为()A.32 B.64 C.128 D.256【考点】等边三角形的性质.【分析】根据等腰三角形的性质求出△M1N1M2的边长,根据直角三角形的性质求出△M2N2M3的边长,总结规律得到答案.【解答】解:∵,△M1N1M2是等边三角形,∴∠N1M1M2=60°,∴∠ON1M1=30°,∴N1M1=OM1=1=20,∵∠ON1M1=30°,M1N1M2=60°,∴∠M2N1N2=90°,∠N1N2M2=30°,∴N2M2=2N1M2=2=21,同理M3N3=2N2M3=4=22,以此类推,△M n N n M n+1的边长为:2n﹣1,则△M9N9M10长为28=256故选:D.15.如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F,作CM⊥AD,垂足为M,下列结论不正确的是()A.AD=CE B.MF=CF C.∠BEC=∠CDA D.AM=CM【考点】全等三角形的判定与性质;等边三角形的性质;含30度角的直角三角形.【分析】由等边三角形的性质和已知条件证出△AEC≌△BDA,即可得出A正确;由全等三角形的性质得出∠BAD=∠ACE,求出∠CFM=∠AFE=60°,得出∠FCM=30°,即可得出B正确;由等边三角形的性质和三角形的外角性质得出C正确;D不正确.【解答】解:A正确;理由如下:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC又∵AE=BD在△AEC与△BDA中,,∴△AEC≌△BDA(SAS),∴AD=CE;B正确;理由如下:∵△AEC≌△BDA,∴∠BAD=∠ACE,∴∠AFE=∠ACE+∠CAD=∠BAD+∠CAD=∠BAC=60°,∴∠CFM=∠AFE=60°,∵CM⊥AD,∴在Rt△CFM中,∠FCM=30°,∴MF=CF;C正确;理由如下:∵∠BEC=∠BAD+∠AFE,∠AFE=60°,∴∠BEC=∠BAD+∠AFE=∠BAD+60°,∵∠CDA=∠BAD+∠CBA=∠BAD+60°,∴∠BEC=∠CDA;D不正确;理由如下:要使AM=CM,则必须使∠DAC=45°,由已知条件知∠DAC的度数为大于0°小于60°均可,∴AM=CM不成立;故选:D.二、填空题(共6小题,每小题3分,共18分)16.一个两位数,个位数字与十位数字的和是9,如果把个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为45.【考点】二元一次方程组的应用.【分析】设十位数字为x,个位数字为y,根据“个位数字与十位数字的和是9、新两位数﹣原两位数=9”列方程组求解可得.【解答】解:设十位数字为x,个位数字为y,根据题意,得:,解得:,∴原来的两位数为45,故答案为:45.17.已知等腰三角形的一个角是36°,则另两个角分别是72°,72°或36°,108°.【考点】等腰三角形的性质;三角形内角和定理.【分析】题中没有指明这个角是底角还是顶角,故应该分两种情况进行分析,从而不难求解.【解答】解:当36°角是顶角时,另外两个角分别是72°,72°;当36°角是底角时,另外两个角分别是36°,108°;故答案为72°,72°或36°,108°.18.一个不透明的口袋中装有若干个颜色不同其余相同的球,如果口袋中有4个红球且摸到红球的概率是,那么口袋中球总数是12.【考点】概率公式.【分析】由一个不透明的口袋中装有若干个颜色不同其余相同的球,如果口袋中有4个红球且摸到红球的概率是,直接利用概率公式求解即可求得答案.【解答】解:∵一个不透明的口袋中装有若干个颜色不同其余相同的球,如果口袋中有4个红球且摸到红球的概率是,∴口袋中球总数是:4÷=12.故答案为:12.19.已知是方程组的解,那么一次函数y=x﹣和y=8﹣2x的交点坐标是(2,4).【考点】一次函数与二元一次方程(组).【分析】由题意可知:两个一次函数的解析式正好是方程组的两个方程.因此方程组的解即为两个一次函数的交点坐标.【解答】解:已知是方程组的解;即点(2,4)同时满足一次函数y=x﹣和y=8﹣2x的解析式;∴一次函数y=x﹣和y=8﹣2x的交点坐标是(2,4).20.一次函数y=﹣x+3与y=﹣3x+12的图象的交点坐标是(4.5,1.5).【考点】两条直线相交或平行问题.【分析】联立两个一次函数的解析式,所得方程组的解,即为两个函数图象的交点坐标.【解答】解:联立两个一次函数的解析式有:,解得:;所以两个函数图象的交点坐标是(4.5,1.5);故答案为:(4.5,1.5).21.如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分.谁先累积到10分,谁就获胜.你认为甲获胜的可能性更大.【考点】可能性的大小.【分析】事件的可能性主要看事件的类型,事件的类型决定了可能性及可能性的大小.【解答】解:同时抛掷两枚硬币有以下情况:(1)同时抛出两个正面;(2)一正一反;(3)一反一正;(4)同时掷出两个反面;乙得1分的可能性为;甲得1分的可能性为.故甲获胜的可能性更大.三、解答题(解答应写出文字说明、推理过程或演算步骤,22题每小题12分)22.(1)(2)(3)解不等式组.【考点】解一元一次不等式组;解二元一次方程组.【分析】(1)利用代入消元法求解即可;(2)将x+y=8代入5x﹣2(x+y)=﹣1,消去y,得到关于x的一元一次方程,求出x的值,再求出y的值即可;(3)首先解出不等式组每一个不等式的解集,然后找出它们的公共部分,该公共部分就是不等式组的解集.【解答】解:(1),由①得y=3x﹣5③,把③代入②,得5x+3(3x﹣5)﹣13=0,解得x=2,把x=2代入③,得y=1.故原方程组的解为;(2),把①代入②,得5x﹣16=﹣1,解得x=3,把x=3代入①,得y=5.故原方程组的解为;(3),由不等式①得,x≤3,由不等式②得,x>﹣2,∴不等式组的解集为﹣2<x≤3.23.如图,在△ABC中,AB=AC,AD=DC=BC,求∠A的度数.【考点】等腰三角形的性质.【分析】由AB=AC,AD=DC=BC,根据等角对等边的知识,可得∠A=∠ACD,∠B=∠ACB=∠CDB,设∠A=x°,根据等腰三角形的性质得出∠ACD=x°,∠B=∠ACB=∠CDB=2x°,然后根据三角形的内角和定理得出关于x的方程,解方程即可求得答案.【解答】解:∵AB=AC,AD=DC=BC,∴A=∠ACD,∠B=∠ACB=∠CDB,设∠A=x°,则∠ACD=x°,∴∠B=∠ACB=∠CDB=2x°,∵∠A+∠B+∠ACB=180°,∴x+2x+2x=180,解得x=36.故等腰三角形ABC的顶角∠A度数为36°.24.如图,直线l1、l2相交于点A,试求出点A的坐标.【考点】两条直线相交或平行问题.【分析】根据待定系数法解出两个直线的解析式后列出方程解答即可.【解答】解:设直线l1的解析式为y=ax+b,把(1,0)(0,2)代入可得:,解得:,解析式为:y=﹣2x+2;设直线l2的解析式为y=kx+c,把(﹣3,﹣2)(﹣2,0)代入可得:,解得:,解析式为:y=2x+4,因为两直线相交可得:2x+4=﹣2x+2,解得:x=﹣0.5,把x=﹣0.5代入y=﹣2x+2=3,所以点A的坐标为(﹣0.5,3).25.在△ABC中,AB=AC,∠BAC=120°,AD⊥BC,且AD=AB.(1)如图1,DE⊥AB,DF⊥AC,垂足分别为点E,F,求证:AE+AF=AD(2)如图2,如果∠EDF=60°,且∠EDF两边分别交边AB,AC于点E,F,那么线段AE,AF,AD之间有怎样的数量关系?并给出证明.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)由等腰三角形的性质和已知条件得出∠BAD=∠DAC=×120°=60°,再证出∠ADE=∠ADF=90°﹣60°=30°,由含30角的直角三角形的性质得出AE=AD,AF=AD,即可得出结论;(2)连接BD,证明△ABD是等边三角形,得出BD=AD,∠ABD=∠ADB=60°,证出∠ABD=∠DAC,得出∠EDB=∠ADF,由ASA证明△BDE≌△ADF,得出BE=AF,即可得出结论.【解答】(1)证明:∵AB=AC,AD⊥BC,∴∠BAD=∠DAC=∠BAC,∵∠BAC=120°,∴∠BAD=∠DAC=×120°=60°,∵DE⊥AB,DF⊥AC,∴∠ADE=∠ADF=90°﹣60°=30°,∴AE=AD,AF=AD,∴AE+AF=AD+AD=AD;(2)解:线段AE,AF,AD之间的数量关系为:AE+AF=AD,理由如下:连接BD,如图所示:∵∠BAD=60°,AB=AD,∴△ABD是等边三角形,∴BD=AD,∠ABD=∠ADB=60°,∵∠DAC=60°,∴∠ABD=∠DAC,∵∠EDB+∠EDA=∠EDA+∠ADF=60°,∴∠EDB=∠ADF,在△BDE与△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF,∵AE+BE=AD,∴AE+AF=AD.2016年9月25日。
2019初中奥数迎春杯能力展示试题填空题:①计算:定义一种新运算a☆b 满足:a☆b=b×10+a×2.那么2011☆130=_____________.②从 1999 年到2010 年的12 年中,物价涨幅为150%(即1999 年用100 元能购买的物品,2010 年要比原来多花150 元才能购买).若某个企业的一线员工这12 年来工资都没变,按购买力计算,相当于工资下降了 %.③右图中大圆的半径是 20 厘米,7 个小圆的半径都是10 厘米.那么阴影图形的面积是平方厘米(π取3.14).④某届“数学解题水平展示”读者评选活动初试共有12000 名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的___________.⑤右图是一个除法竖式.这个除法竖式的被除数是___________.⑥算式1!×3-2!×4+3!×5-4!×6++2009!×2011-2010!×2012+2011!的计算结果是___________.⑦春节临近,从2011 年1 月17 日(星期一)起工厂里的工人陆续回家过年,与家人团聚.若每天离厂的工人人数相同,到1 月31 日,厂里还剩下工人121 名,在这15 天期间,统计工厂工人的工作量是2011 个工作日(一人工作一天为1 个工作日,工人离厂当天及以后不需要统计).其中周六、日休息,且无人缺勤.那么截至到1 月31 日,回家过年的工人共有___________人.⑧有一个整数,它恰好是它的约数个数的2011 倍.这个整数的最小值是___________.⑨一个新建 5 层楼房的一个单元每层有东西2 套房;各层房号如右图所示,现已有赵、钱、孙、李、周五家入住.一天他们5 人在花园中聊天:赵说:“我家是第3 个入住的,第1 个入住的就住我对门.”钱说:“只有我一家住在层.”孙说:“我家入住时,我家的同侧的上一层和下一层都已有人入住了.” 李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.”周说:“我家住在106 号,104 号空着,108 号也空着.”他们说的话全是真话.设第1、2、3、4、5 家入住的房号的个位数依次为A、B、C、D、E,那么五位数ABCDE =___________.⑩6 支足球队,每两队间至多比赛一场.如果每队恰好比赛了2 场,那么符合条件的比赛安排共有___________ 种.0~9 能够组成两个五位数A 和B,如果A+B 的和是一个末五位数字相同的六位数,那么A×B 的不同取值共有___________ 个.甲、乙两人分别从A、B 两地同时出发,在AB 间往返行走;甲出发的同时,丙也从A 出发去B.当甲、乙两人第一次迎面相遇在C 地时,丙还有100 米才到C;当丙走到C 时,甲又往前走了108 米;当丙到B 时,甲、乙正好第二次迎面相遇.那么A、B 两地间的路程是___________米.如右图,大正方形被分成了面积相等的五块.若AB 长为3.6厘米,则大正方形的面积为___________平方厘米.用 36 个3×2×1 的实心小长方体拼成一个6×6×6 的大正方体.在各种拼法中,从大正方体外的某一点看过去最多能看到___________个小长方体.。