高一数学逻辑联结词2
- 格式:pdf
- 大小:1.43 MB
- 文档页数:18
简单的逻辑联结词知识集结知识元逻辑联结词或、且、非知识讲解1.逻辑联结词“或”、“且”、“非”【或】一般地,用连接词“或”把命题和命题连接起来,就得到一个新命题,记作pⅤq,读作“p 或q”.规定:当p,q两个命题中有一个命题是真命题时,pⅤq是真命题;当p,q两个命题都是假命题时,pⅤq是假命题.例如:“2≤2”、“27是7或9的倍数”等命题都是pⅤq的命题.解题方法点拨:三个逻辑连接词“或”、“且”、“非”中,对于“或”的理解是难点.p或q表示两个简单命题至少有一个成立,它包括①p真q假②q真p假③p真q真,这一点可以结合两个集合的并集来理解.类似地,p或q或r表示三个简单命题至少有一个成立,同样我们可以结合三个集合的并集来理解.“正难则反”的转化思想在解题中的效果往往好于直接解答,有时起到比繁就简的作用.正确理解“或”,特别是与日常生活中的“或”的区别.命题方向:一般与集合、函数的定义域、函数的单调性联合命题,小题为主.【且】一般地,用连接词“且”把命题p和命题q连接起来,就得到一个新命题,记作p∧q读作“p且q”.规定:当p,q都是真命题时,p∧q是真命题;当p,q两个命题中有一个命题是假命题时,p∧q是假命题.“且”作为逻辑连接词,与生活用语中“既…”相同,表示两者都要满足的意思,在日常生活中经常用“和”,“与”代替.例1:将下列命题用“且”连接成新命题,并判断它们的真假:(1)p:正方形的四条边相等,q:正方形的四个角相等;(2)p:35是15的倍数,q:35是7的倍数;(3)p:三角形两条边的和大于第三边,q:三角形两条边的差小于第三边.解题方法点拨::逻辑连接词“且”,p且q表示两个简单命题两个都成立,就是p真并且q 真.一般解题中,注意两个命题必须去交集,不可以偏概全解答.命题方向:一般与集合、函数的定义域、函数的单调性联合命题,充要条件相结合,小题为主.【非】一般地,对一个命题p全盘否定,就得到一个新命题,记作¬p,读作“非p”或“p的否定.规定:若p是真命题,则¬p必是假命题;若p是假命题,则¬p必是真命题.“非p”形式复合命题的真假与p的真假相反;“非p”形式复合命题的真假可以用下表表示:p¬p真假假真解题方法点拨:注意逻辑连接词的理解及“¬p“新命题的正确表述和应用,“非”是否定的意思,必须是只否定结论.“p或q”、“p且q”的否定分别是“非p且非q”和“非p或非q”,“都”的否定是“不都”而不是“都不”.另外还有“等于”的否定是“不等于”,“大(小)于”的否定是“不大(小)于”,“所有”的否定是“某些”,“任意”的否定是“某个”,“至多有一个”的否定是“至少有两个”等等.必须注意与否命题的区别.命题方向:理解逻辑连接词“或”“且”“非”的含义,平时学习中,同学往往把非p与否命题混为一谈,因此,高考或会考中,常常出现,但是多以小题的形式.例题精讲逻辑联结词或、且、非例1.已知p:x∈{x|-4<x-a<4},q:x∈{x|(x-2)(3-x)>0},若¬p是¬q的充分条件,则实数a的取值范围为_________。
高一数学教案逻辑联结词(2)教材:逻辑联结词(2)目的:通过实例,要求学生明口得逻辑联结词,”或"”且" ''非"的含义,并能利用真值表,判定含有复合命题的真假。
过程:一、复习: ''命题" ''复合命题"的概念本堂课研究的咨询题是:概括简单命题的真假,讨论含有 ''或 ''且" ''非"的复合命题的真假。
二、先介绍 ''真值":命题分 ''真" ''假"两种判定结论。
也可用1表示 ''真";0表示 ''假"。
那个地点1与0表示真值,因此真值只能是1或0。
生活中常有 ''中间情形"从而产生了 ''模糊逻辑"。
三、真值表:1.非P形式:例:命题P: 5是10的约数(真)命题P: 5是8的约数(假)那么命题非p: 5不是10的约数(假)非p: 5不是8的约数(真)结论:为真非为假、为假非为真经历: ''真假相反"2.p且q形式例:命题p: 5是10的约数(真)q: 5是15的约数(真)s: 5是12的约数(假)r: 5是8的约数(假)那么命题p且q: 5是10的约数且是15的约数(真)p且q: 5是10的约数且是8的约数(假)经历:堆同真为真〃(其余为假).'同假为假〃(其余为真) 3. p 或q 形式 仍看上例那么命题p 或q : 5是10的约数或5是15的约数(真)p 或r : 5是10的约数或5是8的约数(真) s 或r : 5是12的约数或5是8的约数(假)四、儿个注意咨询题:1. 逻辑中的 ''或"与日常生活中的 ''或"是有区不的例: ''苹果是长在树上或长在地里"生活中这句话不妥,但在逻辑中却 是真命题。