4章 老化与防护2-热氧老化与防护
- 格式:ppt
- 大小:500.00 KB
- 文档页数:36
2024年电气安全防护用品使用与保养1、本品在1000V以上使用时,仅作为辅助安全用具。
2、为了保证安全起见,使用单位对此产品至少六个月进行监督性的电压检查,复试时在6000伏电压试验泄漏电流不超过7毫安,试验后必须擦干净。
3、本品应保持清洁,使用后应擦上滑石粉。
4、本品宜放在黑暗密闭橱柜或箱子内,切忌放在土地上,手套上不得堆压其它物品,室温应在10?C~20?C之间,相对湿度50%~70%,应防止与油脂、汽油或碱类物质的接触,距离高温设备一到二公尺以外,贮运时上面必须遮盖严密,避免日光照射。
5、使用时,如有污染,随时擦净,以免腐蚀胶质,并撒上滑石粉,使用后随时擦拭干净。
二、电工绝缘鞋适用于电工、电子操作工、电缆安装工、变电安装工等。
注意事项:适合工频电压1KV以下的作业环境,工作环境应能保持鞋面干燥。
避免接触锐器、高温和腐蚀性物质,帮底不能有腐蚀破。
要达到各自防护性能的技术指标,如脚趾不被砸伤,脚底不被刺伤,绝缘导电等要求。
三、高压验电器1、投入使用的高压验电器必须是经电气试验合格的验电器,高压验电器必须定期试验,确保其性能良好。
2、使用高压验电器必须穿戴高压绝缘手套、绝缘鞋,并有专人监护。
3、在使用验电器之前,应首先检验验电器是否良好,还应在电压等级相适应的带电设备上检验报警正确,方能到需要接地的设备上验电,禁止使用电压等级不对应的验电器进行验电,以免现场测验时得出错误的判断。
4、验电时必须精神集中,不能做与验电无关的事,以免错验或漏验。
5、对线路的验电应逐相进行,对联络用的断路器或隔离开关或其他检修设备验电时,应在其进出线两侧各相分别验电。
6、对同杆塔架设的多层电力线路进行验电时,先验低压、后验高压、先验下层、后验上层。
7、在电容器组上验电,应待其放电完毕后再进行。
8、验电时让验电器顶端的金属工作触头逐渐靠近带电部分,至氖泡发光或发也音响报警信号为止,不可直接接触电气设备的带电部分。
验电器不应受邻近带电体的影响,以至发出错误的信号。
橡胶复习题答案分析解析橡胶⼯艺学复习题⼀、填空10分注:红字为答题部分。
1.碳链橡胶中,饱和橡胶有⼄丙橡胶、丁基橡胶、氟橡胶、丙烯酸酯橡胶,不饱和橡胶有天然橡胶、异戊橡胶、丁苯橡胶、聚丁⼆烯橡胶、丁腈橡胶。
3、促进剂按结构可分为噻×类、秋兰姆类、次磺酰胺类、胍类、⼆硫代氨基甲酸盐、硫脲类、醛胺类、黄原酸盐类⼋类;按PH值可分为酸性、碱性和中性三类;按硫化速度可分为超超速级、超速级、准速级、中速级和慢速级五类。
5、适合⾼温快速硫化的橡胶结构为低双链含量的橡胶,可采⽤的硫化体系有EV 和SemiEV两种。
7、在-C-S-C-、-C-S2-C-、-C-SX-C-三种交联键中,-C-S-C-热稳定性好,-C-S x-C-耐动态疲劳性好,-C-S x-C-强度⾼。
9、、NR热氧⽼化后表观表现为变软发粘,BR热氧⽼化后表现为变硬变脆。
11、当防⽼剂并⽤时,可产⽣对抗效应、加和效应和协同效应,根据产⽣协同效应的机理不同,⼜可分为杂协同效应和均协同效应两类。
12、13、炭⿊的结构度越⾼,形成的包容橡胶越多,胶料的粘度越⾼,混炼的吃粉速度慢,在胶料中的分散性越⾼。
14、15、炭⿊的粒径越⼩,混炼的吃粉速度越快,在胶料中的分散性越好;炭⿊的粒径越⼩,对橡胶的补强性越⾼。
17、当橡胶的门尼粘度为60时可不⽤塑炼。
19、⽣胶的塑炼⽅法有物理增塑法、化学增塑法和机械增塑法;机械增塑法依据设备类型不同⼜可分为三种开炼机塑练法、密炼机塑练法和螺杆式塑炼机塑练法,依据塑炼⼯艺条件不同,⼜可分为低温机械塑练法和⾼温机械塑练法。
21、氧在橡胶的机械塑炼过程中起着⼤分⼦⾃由基活性终⽌剂和⼤分⼦氧化裂解反应引发剂的双重作⽤,其中在低温下,氧和橡胶分⼦的化学活泼性均较低,氧主要起⼤分⼦⾃由基活性终⽌剂作⽤,⽽在⾼温下氧起⼤分⼦氧化裂解反应引发剂作⽤。
23、混炼胶快检的项⽬有可塑度测定、相对密度测定和硬度测定。
25、在混炼准备⼯艺中,要求称量配合操作必须做到精密、准确、不漏、不错。
绪论橡胶配合加工内容●主要内容:原料及配合;加工工艺过程;性能测试。
●配合系统:生胶,硫化体系,补强填充体系,防老体系,增塑及操作体系,特种配合体系。
●加工过程:炼胶,压延,挤出,成型,硫化。
●塑炼:定义为降低分子量,增加塑性,改善加工性能,制成可塑性符合要求的塑料胶。
●混炼:定义为经过配合,将橡胶与配合剂均匀地混合和分散,制成混炼胶。
●门尼粘度:用门尼粘度计测量的是橡胶的本体黏度,原理是将胶料填充在粘度计的模腔和转子之间,合模,在一定温度下〔一般为100℃〕预热〔一般1min〕,令转子转动一定时间〔一般4min〕时测得的转矩值〔N·m〕。
该值越大,说明胶料的黏度越大,常用ML〔1+4〕100℃表示。
●门尼焦烧:这是个说明胶料焦烧时间的指标,通常是在120℃下测定〔加有硫化体系配合剂〕从最低点起,上升5个门尼值的时间。
这个时间越大说明胶料越不容易发生焦烧,加工越安全。
第一章生胶❖分类〔按来源〕:天然橡胶〔NR〕和合成橡胶。
合成橡胶又分为通用橡胶和特种橡胶。
❖通用橡胶:丁苯橡胶〔SBR〕、顺丁橡胶〔BR〕、异戊橡胶〔IR〕、丁腈橡胶〔NBR〕、氯丁橡胶〔CR〕、丁基橡胶〔IIR〕、乙丙橡胶〔EPM,EPDM〕.❖不饱和非极性橡胶:NR、SBR、BR、IR;不饱和极性橡胶:NBR、CR;饱和非极性橡胶:EPM、EPDM、IIR;❖天然橡胶〔NR〕主要由顺—1,4—聚异戊二烯构成,其综合性能好。
❖丁苯橡胶(SBR)是丁二烯和苯乙烯的共聚物,是产量最大的通用橡胶,70%用于轮胎业,根据聚合方法分为乳聚丁苯和溶聚丁苯。
❖苯乙烯含量对丁苯橡胶性能的影响:随着苯乙烯含量的增加,其SBR的性能向聚苯乙烯趋近。
表现为Tg、模量、硬度上升,耐热老化性变好,挤出收缩率变小,挤出物外表光滑,而耐磨性下降,弹性减小。
❖顺丁橡胶(BR)也称聚丁二烯橡胶,弹性最好的通用橡胶,滞后损失小,生热少。
❖乙丙橡胶(EPM,EPDM)属于碳链饱和非极性橡胶,耐臭氧老化性和耐热老化性是通用橡胶中最好的,被誉为不龟裂的橡胶。
热氧老化标准
热氧老化标准是指在一定温度下,样品暴露在氧气环境中的一种
老化实验方法。
这种实验方法可以模拟出材料在长时间使用过程中所
经历的环境条件,通过多次重复实验来评定材料的性能变化。
热氧老
化标准已经成为了工程材料开发、性能评定的标准方法之一,特别是
在汽车、航空、化工等领域使用很广泛。
热氧老化标准的主要优点在于它可以模拟出材料在高温和高压的
复杂环境中所产生的各种物理、化学和机械性能变化。
这种实验方法
还可以反映出材料在不同温度和氧气浓度下的性能变化,从而为材料
设计和工程规划提供有效的参考指标。
热氧老化标准的实验条件包括温度、气压和氧气浓度。
通常情况下,实验条件会根据材料的用途和所在环境的特点来进行调整。
例如,汽车零部件的热氧老化实验温度通常在120℃左右,而航空发动机材料的实验温度则可以达到几百度以上。
为了保证实验结果的准确性和可重复性,热氧老化标准还需要制
定相应的试验程序和数据分析方法。
这些程序和方法通常由国际标准
和行业标准来规定,包括各种实验设备的使用和操作要求、样品制备
和处理要求、实验过程的控制和监测要求等。
总的来说,热氧老化标准是一种重要的工程材料性能评定方法,
它可以给材料研发、设计和工程应用提供可靠的标准参考。
通过不断
完善和发展这种标准,可以更好地保障材料性能的稳定性和持久性,
为工业生产和人类社会的可持续发展做出贡献。
橡胶工艺学复习题一、填空10分注:红字为答题部分。
1.碳链橡胶中,饱和橡胶有乙丙橡胶、丁基橡胶、氟橡胶、丙烯酸酯橡胶,不饱和橡胶有天然橡胶、异戊橡胶、丁苯橡胶、聚丁二烯橡胶、丁腈橡胶。
3、促进剂按结构可分为噻×类、秋兰姆类、次磺酰胺类、胍类、二硫代氨基甲酸盐、硫脲类、醛胺类、黄原酸盐类八类;按PH值可分为酸性、碱性和中性三类;按硫化速度可分为超超速级、超速级、准速级、中速级和慢速级五类。
5、适合高温快速硫化的橡胶结构为低双链含量的橡胶,可采用的硫化体系有EV 和SemiEV两种。
7、在-C-S-C-、-C-S2-C-、-C-SX-C-三种交联键中,-C-S-C-热稳定性好,-C-S x-C-耐动态疲劳性好,-C-S x-C-强度高。
9、、NR热氧老化后表观表现为变软发粘,BR热氧老化后表现为变硬变脆。
11、当防老剂并用时,可产生对抗效应、加和效应和协同效应,根据产生协同效应的机理不同,又可分为杂协同效应和均协同效应两类。
12、13、炭黑的结构度越高,形成的包容橡胶越多,胶料的粘度越高,混炼的吃粉速度慢,在胶料中的分散性越高。
14、15、炭黑的粒径越小,混炼的吃粉速度越快,在胶料中的分散性越好;炭黑的粒径越小,对橡胶的补强性越高。
17、当橡胶的门尼粘度为60时可不用塑炼。
19、生胶的塑炼方法有物理增塑法、化学增塑法和机械增塑法;机械增塑法依据设备类型不同又可分为三种开炼机塑练法、密炼机塑练法和螺杆式塑炼机塑练法,依据塑炼工艺条件不同,又可分为低温机械塑练法和高温机械塑练法。
21、氧在橡胶的机械塑炼过程中起着大分子自由基活性终止剂和大分子氧化裂解反应引发剂的双重作用,其中在低温下,氧和橡胶分子的化学活泼性均较低,氧主要起大分子自由基活性终止剂作用,而在高温下氧起大分子氧化裂解反应引发剂作用。
23、混炼胶快检的项目有可塑度测定、相对密度测定和硬度测定。
25、在混炼准备工艺中,要求称量配合操作必须做到精密、准确、不漏、不错。
聚合物材料的老化机制与防护在我们的日常生活和工业生产中,聚合物材料无处不在,从塑料制品到橡胶制品,从涂料到纤维,它们的应用广泛且不可或缺。
然而,随着时间的推移,这些聚合物材料往往会出现性能下降、外观变差等老化现象,这不仅影响了其使用效果和寿命,还可能带来安全隐患和经济损失。
因此,深入了解聚合物材料的老化机制,并采取有效的防护措施,具有重要的现实意义。
一、聚合物材料老化的表现聚合物材料老化后的表现多种多样,常见的有以下几种:1、外观变化这是最直观的老化现象,如颜色变黄、变暗,表面出现裂纹、粗糙、失去光泽等。
例如,长期暴露在阳光下的塑料椅,会逐渐褪色并变得脆化。
2、物理性能下降材料的强度、硬度、韧性等物理性能会逐渐降低。
比如,橡胶密封圈使用一段时间后会变得松弛,密封效果变差。
3、化学性能改变可能会发生氧化、水解等化学反应,导致材料的化学组成和结构发生变化,从而影响其性能。
例如,某些聚合物在潮湿环境中容易水解,降低其稳定性。
二、聚合物材料老化的机制聚合物材料的老化是一个复杂的过程,通常由多种因素共同作用引起,主要的老化机制包括以下几个方面:1、热老化温度是影响聚合物老化的重要因素之一。
在高温环境下,聚合物分子链的运动加剧,容易导致分子链的断裂和交联,从而改变材料的性能。
此外,高温还会加速氧化、热分解等化学反应的进行。
2、光老化阳光中的紫外线对聚合物材料具有很强的破坏作用。
紫外线能够激发聚合物分子中的化学键,使其发生断裂和降解,导致材料的性能下降。
例如,户外使用的塑料薄膜在长期阳光照射下会变得易碎。
3、氧化老化氧气在聚合物老化过程中起着关键作用。
聚合物与氧气接触时,容易发生氧化反应,形成过氧化物和自由基,进而引发一系列的链式反应,导致材料的老化。
许多聚合物材料在空气中会逐渐氧化变脆。
4、水解老化当聚合物材料处于潮湿环境或与水接触时,可能会发生水解反应。
水分子会攻击聚合物分子中的某些化学键,使其断裂,从而影响材料的性能。
环氧树脂材料的老化机理与防护方法摘要:环氧树脂是一类具有三维交联网络结构的热固性高分子材料,具有较高比强度和优良的粘结性能等的优点,在众多工业领域中应用极其广泛。
但由于其内部结构多样性,导致在使用过程中,容易发生内外因素对材料老化失效的负面影响。
本文重点综述了环氧树脂因外部环境因素影响产生的三种老化形式:热氧老化、紫外老化和湿热老化。
通过对不同老化失效形式的因素和机理分析,总结了三种防护方法提高环氧树脂耐老化性能,避免材料外观、结构和性能的破坏,延长使用寿命。
关键词:环氧树脂;基体结构;老化失效;改性;光稳定剂一、引言环氧树脂是一类以芳香族、脂肪族或脂环族结构为骨架,分子中含有环氧基、亚甲基、羟基和醚键等化学基团的热固性高分子合成材料。
它已被广泛地应用于多种金属与非金属的粘接、耐腐蚀涂料、电气绝缘材料、玻璃钢/复合材料等的制造,在电子、电气、机械制造、化工防腐、航空航天、船舶运输及其他许多工业领域中起到重要的作用,已成为各工业领域中不可缺少的基础材料[1]。
但是,环氧树脂由于其结构特点和使用环境不同,容易受到多种因素影响,造成了环氧树脂不同原因的老化现象。
二、老化因素与机理引起环氧树脂老化的因素主要分为内在和外在两种因素。
内在因素主要由环氧树脂本身化学键决定,化学键的构成对其性能影响巨大。
环氧树脂分子间的键能十分容易受到外界因素的影响,造成化学键的断裂而形成自由基。
自由基正是自由基反应的起点,也就是环氧树脂老化的开端[2]。
外在因素即环境因素,主要包括紫外线、大气组成(主要是氧和臭氧等)、温度湿度的变化等其他自然因素。
这些因素与环氧树脂发生了化学作用才导致老化[3]。
本文主要介绍三种外在因素引起的各种老化失效现象。
(一)热氧老化热氧老化对材料的影响主要通过高温和氧气作用来实现,在热氧环境下,环氧主链会受到氧气的攻击而断裂,导致分子量降低。
温度越高,树脂越容易被氧化,同时产生活泼的自由基(R·)。
第四章橡胶的老化与防护橡胶及橡胶制品在成型加工、长期贮存和使用过程中,由于受到氧、臭氧、变价金属离子以及其它化学物质的作用,加之受机械应力、光、热、高能辐射等物理因素的影响,会逐渐变软发粘、或变硬发脆、龟裂、物性降低。
这种现象称为老化。
橡胶(包括生胶和硫化胶)老化的原因,其内部因素是橡胶大分子中存在着弱鍵,以至于很容易受到氧的侵袭,从而破坏原橡胶的结构;而外界因素即上述化学、物理因素加速了橡胶的老化作用。
但是,基本的原因则是氧化作用。
由于引起橡胶老化的因素很多,因而有各种各样的老化。
橡胶老化常见类型见表4-1。
一、热氧老化橡胶及其制品在贮存、加工和使用时,都会受到热和氧的作用,故或快或慢都会发生热氧老化。
热氧老化是最普遍、最基本的橡胶老化方式。
尤其是二烯类橡胶,由于它们的大分子中,都含有不饱和双鍵,易与氧进行氧化反应。
其氧化过程具有自动催化性质和游离基连锁反应机理。
氧与橡胶大分子的反应机理可表示如下:链引发: RH(橡胶)+02−→−∆R·+HO2·链传递: R·+O2→ROO·ROO·+RH→ROOH+R·链终止 2RO2·→ROOR+O2R·+R·→R-RROO·+R·→ROOR全部氧化反应过程由两个阶段组成,即第一阶段过氧化物(ROOH)生成的连锁反应和第二阶段不断积累的氢过氧化物分解成新的游离基,导致氧化速度加快。
ROOR→RO·+HO·RO·+RH→ROH+R·H0·+RH→HOH+R·R·+O2→ROO·橡胶氧化的结果,会导致大分子断裂,支化或交联反应,橡胶大分子结构发生改变,导致性能下降。
当然,由于不同品种的橡胶,其化学组成及结构、双鍵含量及其活泼程度各有差异,所以它们的氧化特性不完全一样。
高不饱和度的天然橡胶、异戊橡胶、顺丁橡胶、丁苯橡胶和丁腈橡胶,最易氧化。