AD DA转换电路解析
- 格式:ppt
- 大小:1.09 MB
- 文档页数:41
AD 、DA 数字电路分析(完整电子教案)10.1 DA 转换器由于数字电子技术的迅速发展,尤其是计算机在控制、检测以及许多其他领域中的广泛应用,用数字电路处理模拟信号的情况非常普遍。
这就需要将模拟量转换为数字量,这种转换称为模数转换,用AD 表示(Analog to Digital );而将数字信号变换为模拟信号叫做数模转换,用DA 表示(Digital to Analog )。
带有模数和数模转换电路的测控系统大致可用图10.2所示的框图表示。
传感器放大器功率放大器执行部件A/D 转换器D/A 转换器数 字电 路图10.2 一般测控系统框图图中模拟信号由传感器转换为电信号,经放大送入AD 转换器转换为数字量,由数字电路进行处理,再由DA 转换器还原为模拟量,去驱动执行部件。
图中将模拟量转换为数字量的装置称为AD 转换器,简写为ADC (Analog to Digital Converter );把实现数模转换的电路称为DA 转换器,简写为DAC (Digital to Analog Converter )。
为了保证数据处理结果的准确性,AD 转换器和DA 转换器必须有足够的转换精度。
同时,为了适应快速过程的控制和检测的需要,AD 转换器和DA 转换器还必须有足够快的转换速度。
因此,转换精度和转换速度乃是衡量AD 转换器和DA 转换器性能优劣的主要标志。
【项目任务】测试电路如下所示,调试电路,分析该电路功能。
U11VDAC8D 0D 1D 2D 3D 4D 5D 6D 7OutputVref+Vref-VCC 5VVCC5VVCC 5V U174LS161D QA 14QB 13QC 12QD 11RCO15A 3B 4C 5D 6ENP 7ENT 10~LOAD 9~CLR 1CLK2U274LS161DQA 14QB 13QC 12QD 11RCO15A 3B 4C 5D 6ENP 7ENT 10~LOAD 9~CLR 1CLK2模拟输出波形U O图10.3数模转换电路(multisim)【信息单】DA 转换器是利用电阻网络和模拟开关,将多位二进制数D 转换为与之成比例的模拟量的一种转换电路,因此,输入应是一个n 位的二进制数,它可以按二进制数转换为十进制数的通式展开为:00112n 2n 1n 1n n 2222⨯+⨯++⨯+⨯=----d d d d D而输出应当是与输入的数字量成比例的模拟量AA =KD n =K (00112n 2n 1n 1n 2222⨯+⨯++⨯+⨯----d d d d )式中的K 为转换系数。
电路中的AD转换与DA转换在当今信息时代,电子设备已经渗透到我们生活的方方面面。
而这些电子设备的运作离不开AD转换(模数转换)和DA转换(数模转换)这两个关键环节。
本文将介绍AD转换和DA转换的原理、应用以及相关技术发展。
一、AD转换AD转换是模拟信号转换为数字信号的过程。
在电子设备中,传感器等设备输出的信号多为模拟信号,需要通过AD转换将其转换成数字信号,才能由电子器件进行处理和存储。
AD转换器通常由采样器、量化器和编码器组成。
采样器的作用是将模拟信号在一定的时间间隔内取样,量化器将取样的模拟信号分成有限个离散值进行量化,编码器将量化后的离散值转换成二进制数字信号。
通过这一过程,AD转换器能够将连续变化的模拟信号转换为离散的数字信号。
AD转换器广泛应用于各个领域,如音频、视频、电力系统等。
在音频领域,AD转换器用于将声音等模拟信号转换为数字信号,实现录音、播放等功能。
在电力系统中,AD转换器用于电能计量、监测等方面。
二、DA转换DA转换是数字信号转换为模拟信号的过程。
数字信号由计算机或其他数字系统处理和存储,而大部分外围设备如音箱、显示器等则需要模拟信号进行驱动。
DA转换器通常由数字信号输入端和模拟输出端组成。
数字信号输入端接收来自计算机或其他数字系统的数字信号,将数字信号按照一定的波形进行放大、滤波等处理后,经过模拟输出端输出为模拟信号。
这样,数字系统生成的数字信号便可以控制外围设备的模拟输出。
DA转换器广泛应用于音频设备、显示设备等领域。
在音频设备中,DA转换器用于将计算机中存储的音频文件转换为模拟信号,通过音箱输出高质量的音乐。
在显示设备中,DA转换器则将计算机生成的数字图像信号转换为模拟信号,驱动显示器显示各种图像。
三、技术发展随着科技的不断进步,AD转换与DA转换技术也得到了快速的发展与创新。
目前,高速、高精度、低功耗、小型化是AD转换与DA转换技术的发展方向。
在AD转换技术方面,新型的Delta-Sigma调制技术、超大规模集成电路技术等被广泛应用,提高了AD转换器的精度和信噪比。
射频信号的AD/DA电路设计一、概述射频(Radio Frequency,RF)技术在现代通信、雷达、无线电等领域中起着关键作用。
在RF系统中,模数转换(Analog-to-Digital,AD)和数模转换(Digital-to-Analog,DA)电路扮演着重要的角色,它们负责将模拟射频信号转换为数字信号或将数字信号转换为模拟射频信号。
由于射频信号的特殊性,AD/DA电路的设计面临着诸多挑战,本文将对此进行深入探讨。
二、射频信号的特点1. 高频率:射频信号通常工作在MHz至GHz的频率范围,远高于一般的信号频率。
2. 高频宽:射频信号的频率带宽通常较大,需要AD/DA电路能够满足宽频带的转换需求。
3. 高动态范围:射频信号的动态范围较大,通常要求AD/DA电路具有较高的分辨率和动态范围。
三、AD/DA电路设计的关键问题1. 信噪比(Signal to Noise Ratio,SNR):射频信号的弱信号部分很容易受到噪声的影响,AD/DA电路需要具有较高的信噪比,以保证信号的准确性和可靠性。
2. 高速采样:由于射频信号的高频率特性,AD/DA电路需要具有较高的采样速度,以保证对信号的准确采样和重建。
3. 宽频带设计:AD/DA电路需要能够支持射频信号的宽频带特性,包括高频率下的线性度和带宽。
4. 功耗和集成度:射频系统通常对功耗和集成度有较高的要求,AD/DA电路需要在保证性能的同时尽可能降低功耗和提高集成度。
四、AD电路设计1. 高速ADC芯片选择:针对射频信号的高频率和高速采样要求,需要选择合适的高速ADC芯片,比如ADI的AD6676、ADI的AD9201等。
2. 时钟管理:射频信号的高频率要求AD电路具有较高的时钟稳定性和抖动抑制能力,需要对时钟进行精密设计和管理。
3. 输入阻抗匹配:射频信号的输入阻抗通常较低,需要进行良好的输入阻抗匹配,以保证信号的准确采样。
4. 前端放大器设计:针对射频信号的弱信号特性,通常需要在AD电路前端设计放大器进行前置放大。