信号转换电路PPT课件
- 格式:ppt
- 大小:1.32 MB
- 文档页数:65
传感检测技术基础信号转换电路信号转换电路模/数转换器A/D转换可分为直接法和间接法。
直接法是把电压直接转换为数字量,如逐次比较型的A/D转换器。
间接法是把电压先转换成某一中间量,再把中间量转换成数字量。
(1)逐次比较型模/数转换器逐次比较型A/D转换就是将输入模拟信号与不同的参考电压做多次比较,使转换所得的数字量在数值上逐次逼近输入模拟量的对应值.模模//数与数数与数//模转换器模转换器逐次比较型A/D转换器简化框图如图10.20所示它由D/A转换、数码设定、电压比较和控制电路组成图10.20逐次比较型A/D转换框图(2)双积分型模/数转换电路双积分型A/D转换电路如图10.21所示,当t=T2时,U0(t)=0,如图(b)所示.图10.21双积分型A/D转换器原理图转换过程分两步,首先接通S1,对输入电压(-Ui)积分,积分电路输出电压为:(10.21)然后在T1时,开关切换到S2位置,对基准参考电压Ur反向积分,积分电路输出电压为:(10.22)当t=T2时,U0(t)=0,如图10.21(b),此时得:(10.23)设时钟脉冲频率为,当t=T1时,则时间T1为:此时开始对标准参考电压Ur反向积分,时间间隔T=T1-T2,计数值为N,则,所以:数/模转换器数/模(D/A)转换器是通过电阻网络,把数字按其数码权值转换成模拟量的输出.D/A转换器有两种类型:权电阻网络和T形电阻网络(1)权电阻数/模转换器图10.22是4位二进制权电阻D/A转换器原理图由上图可得:(10.24)(10.25)在上述电路中,权电阻分别为R、2R、4R、…、。
若数字量多于四位,可通过增加模拟开关和权电阻来增加其位数。
(2)T形电阻数/模转换器T形电阻D/A转换器原理如图10.23所示,该电路电阻形状成T形,故称T形网络.图10.23T型电阻D/A转换器由图10.23可知,根据叠加原理,运算放大器总输入的等效电压是各支路等效电压之和,即:(10.26)若取RF=3R,运算放大器的输入端电流为:(10.27)运算放大器的输出电压V0为:(10.28)电压/频率转换器(1)转换原理V/F转换器原理如图10.24所示电压电压//频率与频率频率与频率//电压转换器电压转换器图10.24V/F转换电路示意图1)当输入电压Ux>Uc时,放大器A输出为“1”状态,此时将单稳触发器置“1”,触发器驱动开关S 接通恒流源,使I0对电容CL充电;2)Uc上升,在Uc=Ux+△U时,电压比较器A输出为“0”状态,单稳触发器置“0”,使开关S断开,I0停止对电容CL充电;3)电容CL通过电阻RL放电,Uc下降。
第八章 波形的发生和信号的转换•8.1 正弦波振荡电路•8.2 电压比较器•8.3 非正弦波发生电路•8.4 信号转换电路•8.5 锁相环及其在信号转换电路的应用返回8.1 正弦波振荡电路(P1)•图8.1.1 带通滤波器变换成正弦波振荡电路•图8.1.2 正弦波振荡电路的方框图•图8.1.3 利用瞬时极性法判断相位条件•图8.1.4 RC串并联选频网络及其在低频段和高频段的等效电路•图8.1.5 RC串并联选频网络的频率特性•图8.1.6 利用RC串并联选频网络构成正弦波振荡电路的方框图•图8.1.7 RC桥式正弦波振荡电路•图8.1.8 利用二极管作为非线性环节•图8.1.9 振荡频率连续可调的RC串并联选频网络•图8.1.10 LC并联网络•图8.1.11 LC并联网络电抗的频率特性•图8.1.12 选频放大电路•图8.1.13 在选频放大电路中引正反馈•图8.1.14 变压器反馈式振荡电路•图8.1.15 变压器反馈式振荡电路的交流通路返回下页8.1 正弦波振荡电路(P2)•图8.1.16 变压器反馈式振荡电路的交流等效电路•图8.1.17 电感反馈式振荡电路•图8.1.18 电感反馈式振荡电路的交流通路•图8.1.19 电感反馈式振荡电路的交流等效电路•图8.1.20 电容反馈式振荡电路•图8.1.21 频率可调的选频网络•图8.1.22 电容反馈式振荡电路的改进•图8.1.23 采用共基放大电路的电容反馈式振荡电路•图8.1.24 例8.1.2 电路图•图8.1.25 例8.1.3 电路图•图8.1.26 例8.1.25 所示电路的改正电路•图8.1.27 石英晶体谐振器的结构示意图及符号•图8.1.28 石英晶体的等效电路及其频率特性•图8.1.29 并联型石英晶体振荡电路返回•图8.1.30 串联型石英晶体振荡电路图8.1.1 带通滤波器变换成正弦波振荡电路返回图8.1.2 正弦波振荡电路的方框图返回图8.1.3 利用瞬时极性法判断相位条件返回图8.1.4 RC串并联选频网络及其在低频段和高频段的等效电路返回图8.1.5 RC串并联选频网络的频率特性返回图8.1.6 利用RC串并联选频网络构成正弦波振荡电路的方框图返回图8.1.7 RC桥式正弦波振荡电路返回图8.1.8 利用二极管作为非线性环节返回图8.1.9 振荡频率连续可调的RC串并联选频网络返回图8.1.10 LC并联网络返回图8.1.11 LC并联网络电抗的频率特性返回图8.1.12 选频放大电路返回图8.1.13 在选频放大电路中引正反馈返回图8.1.14 变压器反馈式振荡电路返回图8.1.15 变压器反馈式振荡电路的交流通路返回图8.1.16 变压器反馈式振荡电路的交流等效电路返回图8.1.17 电感反馈式振荡电路返回图8.1.18 电感反馈式振荡电路的交流通路返回图8.1.19 电感反馈式振荡电路的交流等效电路返回图8.1.20 电容反馈式振荡电路返回图8.1.21 频率可调的选频网络返回图8.1.22 电容反馈式振荡电路的改进返回图8.1.23 采用共基放大电路的电容反馈式振荡电路返回图8.1.24 例8.1.2 电路图返回图8.1.25 例8.1.3 电路图返回图8.1.26 例8.1.25 所示电路的改正电路返回图8.1.27 石英晶体谐振器的结构示意图及符号返回图8.1.28 石英晶体的等效电路及其频率特性返回图8.1.29 并联型石英晶体振荡电路返回图8.1.30 串联型石英晶体振荡电路返回8.2 电压比较器•图8.2.1 集成运放工作在非线性区的电路特点及其电压传输特性•图8.2.2 电压比较器电压传输特性举例•图8.2.3 过零比较器及其电压传输特性•图8.2.4 电压比较器输入级的保护电路•图8.2.5 电压比较器的输出限幅电路•图8.2.6 将稳压管接在反馈电路中•图8.2.7 一般单限比较器及其电压传输特性•图8.2.8 例8.2.1 波形图•图8.2.9 滞回比较器及其电压传输特性•图8.2.10 加了参考电压的滞回比较器•图8.2.11 例8.2.2 波形图•图8.2.12 例8.2.3 图•图8.2.13 双限比较器及其电压传输特性•图8.2.14 AD790及其基本接法•图8.2.15 LM119管脚图•图8.2.16 由LM119构成的双限比较器及其电压传输特性返回图8.2.1 集成运放工作在非线性区的电路特点及其电压传输特性返回图8.2.2 电压比较器电压传输特性举例返回图8.2.3 过零比较器及其电压传输特性返回图8.2.4 电压比较器输入级的保护电路返回图8.2.5 电压比较器的输出限幅电路返回图8.2.6 将稳压管接在反馈电路中返回图8.2.7 一般单限比较器及其电压传输特性返回图8.2.8 例8.2.1 波形图返回图8.2.9 滞回比较器及其电压传输特性返回图8.2.10 加了参考电压的滞回比较器返回图8.2.11 例8.2.2 波形图返回图8.2.12 例8.2.3 图返回图8.2.13 双限比较器及其电压传输特性返回图8.2.14 AD790及其基本接法返回图8.2.15 LM119管脚图返回图8.2.16 由LM119构成的双限比较器及其电压传输特性返回。