南省攸县二中2013届高三第三次月考数学(文)试题(无答案)
- 格式:doc
- 大小:261.00 KB
- 文档页数:9
攸县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设b ,c 表示两条直线,α,β表示两个平面,则下列命题是真命题的是( )A .若b ⊂α,c ∥α,则b ∥cB .若c ∥α,α⊥β,则c ⊥βC .若b ⊂α,b ∥c ,则c ∥αD .若c ∥α,c ⊥β,则α⊥β2. 棱长为2的正方体被一个平面截去一部分后所得的几何体的三视图如图所示,则该几何体的表面积为()A .B .18C .D .3. 已知M 是△ABC 内的一点,且=2,∠BAC=30°,若△MBC ,△MCA 和△MAB 的面积分别为,x ,y ,则+的最小值是( )A .20B .18C .16D .94. 若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是( )A .命题p ∨q 是假命题B .命题p ∧(¬q )是真命题C .命题p ∧q 是真命题D .命题p ∨(¬q )是假命题5. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为()A .B .2C .D .36. 数列1,﹣4,7,﹣10,13,…,的通项公式a n 为( )A .2n ﹣1B .﹣3n+2C .(﹣1)n+1(3n ﹣2)D .(﹣1)n+13n ﹣27. 在抛物线y 2=2px (p >0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .x=1B .x=C .x=﹣1D .x=﹣8. 已知M={(x ,y )|y=2x },N={(x ,y )|y=a},若M ∩N=∅,则实数a 的取值范围为( )A .(﹣∞,1)B .(﹣∞,1]C .(﹣∞,0)D .(﹣∞,0]9. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( )A .若 m ∥α,n ∥α,则 m ∥nB .若α⊥γ,β⊥γ,则 α∥βC .若m ⊥α,n ⊥α,则 m ∥nD .若 m ∥α,m ∥β,则 α∥β10.已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )A .0B .C .D .11.函数f (x )是以2为周期的偶函数,且当x ∈(0,1)时,f (x )=x+1,则函数f (x )在(1,2)上的解析式为()A .f (x )=3﹣xB .f (x )=x ﹣3C .f (x )=1﹣xD .f (x )=x+112.已知集合A={y|y=x 2+2x ﹣3},,则有()A .A ⊆BB .B ⊆AC .A=BD .A ∩B=φ二、填空题13.为了近似估计π的值,用计算机分别产生90个在[﹣1,1]的均匀随机数x 1,x 2,…,x 90和y 1,y 2,…,y 90,在90组数对(x i ,y i )(1≤i ≤90,i ∈N *)中,经统计有25组数对满足,则以此估计的π值为 .14.的展开式中,常数项为___________.(用数字作答)81()x x【命题意图】本题考查用二项式定理求指定项,基础题.15.已知函数f (x )=恰有两个零点,则a 的取值范围是 .16.运行如图所示的程序框图后,输出的结果是 17.设函数f (x )=的最大值为M ,最小值为m ,则M+m= .18.将一张坐标纸折叠一次,使点与点重合,且点与点重合,则的()0,2()4,0()7,3(),m n m n +值是.三、解答题19.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C 的方程和离心率;(Ⅱ) 设动直线与y 轴相交于点,点关于直线的对称点在椭圆上,求的最小值.20.某校在一次趣味运动会的颁奖仪式上,高一、高二、高三各代表队人数分别为120人、120人、n 人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就坐,其中高二代表队有6人.(1)求n 的值;(2)把在前排就坐的高二代表队6人分别记为a ,b ,c ,d ,e ,f ,现随机从中抽取2人上台抽奖.求a 和b 至少有一人上台抽奖的概率.(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x ,y ,并按如图所示的程序框图执行.若电脑显示“中奖”,则该代表中奖;若电脑显示“谢谢”,则不中奖,求该代表中奖的概率.21.已知抛物线C :x 2=2py (p >0),抛物线上一点Q (m ,)到焦点的距离为1.(Ⅰ)求抛物线C 的方程(Ⅱ)设过点M (0,2)的直线l 与抛物线C 交于A ,B 两点,且A 点的横坐标为n (n ∈N *)(ⅰ)记△AOB 的面积为f (n ),求f (n )的表达式(ⅱ)探究是否存在不同的点A ,使对应不同的△AOB 的面积相等?若存在,求点A 点的坐标;若不存在,请说明理由.22.(本小题满分12分)已知等差数列{}满足:(),,该数列的n a n n a a >+1*∈N n 11=a 前三项分别加上1,1,3后成等比数列,且.1log 22-=+n n b a (1)求数列{},{}的通项公式;n a n b (2)求数列{}的前项和.n n b a ⋅n T23.【2017-2018学年度第一学期如皋市高三年级第一次联考】设函数.()1ln 1f x a x x=+-(1)当时,求函数在点处的切线方程;2a =()f x ()()11f ,(2)讨论函数的单调性;()f x (3)当时,求证:对任意,都有.102a <<1+2x ⎛⎫∈∞ ⎪⎝⎭,1e x aa x +⎛⎫+< ⎪⎝⎭24.某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分别直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4]的有8人.( I )求直方图中a 的值及甲班学生每天平均学习时间在区间[10,12]的人数;( II )从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.攸县第二高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】D【解析】解:对于A,设正方体的上底面为α,下底面为β,直线c是平面β内一条直线因为α∥β,c⊂β,可得c∥α,而正方体上底面为α内的任意直线b不一定与直线c平行故b⊂α,c∥α,不能推出b∥c.得A项不正确;对于B,因为α⊥β,设α∩β=b,若直线c∥b,则满足c∥α,α⊥β,但此时直线c⊂β或c∥β,推不出c⊥β,故B项不正确;对于C,当b⊂α,c⊄α且b∥c时,可推出c∥α.但是条件中缺少“c⊄α”这一条,故C项不正确;对于D,因为c∥α,设经过c的平面γ交平面α于b,则有c∥b结合c⊥β得b⊥β,由b⊂α可得α⊥β,故D项是真命题故选:D【点评】本题给出空间位置关系的几个命题,要我们找出其中的真命题,着重考查了线面平行、线面垂直的判定与性质,面面垂直的判定与性质等知识,属于中档题.2.【答案】D【解析】解:由三视图可知正方体边长为2,截去部分为三棱锥,作出几何体的直观图如图所示:故该几何体的表面积为:3×22+3×()+=,故选:D.3.【答案】B【解析】解:由已知得=bccos∠BAC=2⇒bc=4,故S△ABC=x+y+=bcsinA=1⇒x+y=,而+=2(+)×(x+y)=2(5++)≥2(5+2)=18,故选B.【点评】本题主要考查了基本不等式在最值问题中的应用,向量的数量积的运算.要注意灵活利用y=ax+的形式.4.【答案】B【解析】解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,<x无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;故选:B.【点评】考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.5.【答案】B【解析】解:因为AD•(BC•AC•sin60°)≥V D﹣ABC=,BC=1,即AD•≥1,因为2=AD+≥2=2,当且仅当AD==1时,等号成立,这时AC=,AD=1,且AD⊥面ABC,所以CD=2,AB=,得BD=,故最长棱的长为2.故选B.【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.6.【答案】C【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(﹣1)n+1,绝对值为3n﹣2,故通项公式a n=(﹣1)n+1(3n﹣2).故选:C.7.【答案】C【解析】解:由题意可得抛物线y2=2px(p>0)开口向右,焦点坐标(,0),准线方程x=﹣,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4﹣(﹣)=5,解之可得p=2故抛物线的准线方程为x=﹣1.故选:C.【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题.8.【答案】D【解析】解:如图,M={(x,y)|y=2x},N={(x,y)|y=a},若M∩N=∅,则a≤0.∴实数a的取值范围为(﹣∞,0].故选:D.【点评】本题考查交集及其运算,考查了数形结合的解题思想方法,是基础题.9.【答案】C【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;对于D,若m∥α,m∥β,则α与β可能相交;故D错误;故选C.【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.10.【答案】D【解析】解:抛物线y2=4x的焦点(1,0),直线y=ax+1经过抛物线y2=4x的焦点,可得0=a+1,解得a=﹣1,直线的斜率为﹣1,该直线的倾斜角为:.故选:D.【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.11.【答案】A【解析】解:∵x∈(0,1)时,f(x)=x+1,f(x)是以2为周期的偶函数,∴x∈(1,2),(x﹣2)∈(﹣1,0),f(x)=f(x﹣2)=f(2﹣x)=2﹣x+1=3﹣x,故选A.12.【答案】B【解析】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴y≥﹣4.则A={y|y≥﹣4}.∵x >0,∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y ≥2},∴B ⊆A .故选:B .【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项. 二、填空题13.【答案】 .【解析】设A (1,1),B (﹣1,﹣1),则直线AB 过原点,且阴影面积等于直线AB 与圆弧所围成的弓形面积S 1,由图知,,又,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题. 14.【答案】70【解析】的展开式通项为,所以当时,常数项为81()x x -8821881()(1)r rr r r r r T C x C x x--+=-=-4r =.448(1)70C -=15.【答案】 (﹣3,0) .【解析】解:由题意,a ≥0时,x <0,y=2x 3﹣ax 2﹣1,y ′=6x 2﹣2ax >0恒成立,f (x )在(0,+∞)上至多一个零点;x ≥0,函数y=|x ﹣3|+a 无零点,∴a ≥0,不符合题意;﹣3<a <0时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点,函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上无零点,符合题意;a=﹣3时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点,函数y=2x 3﹣ax 2﹣1在(﹣∞,0)上有零点﹣1,不符合题意;a <﹣3时,函数y=|x ﹣3|+a 在[0,+∞)上有两个零点,函数y=2x3﹣ax2﹣1在(﹣∞,0)上有两个零点,不符合题意;综上所述,a的取值范围是(﹣3,0).故答案为(﹣3,0).16.【答案】 0 【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=sin+sin+…+sin的值,由于sin周期为8,所以S=sin+sin+…+sin=0.故答案为:0.【点评】本题主要考查了程序框图和算法,考查了正弦函数的周期性和特殊角的三角函数值的应用,属于基本知识的考查.17.【答案】 2 .【解析】解:函数可化为f(x)==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数f(x)=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.18.【答案】34 5【解析】考点:点关于直线对称;直线的点斜式方程.三、解答题19.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)因为椭圆C:,所以,,故,解得,所以椭圆的方程为.因为,所以离心率.(Ⅱ)由题意,直线的斜率存在,设点,则线段的中点的坐标为,且直线的斜率,由点关于直线的对称点为,得直线,故直线的斜率为,且过点,所以直线的方程为:,令,得,则,由,得,化简,得.所以.当且仅当,即时等号成立.所以的最小值为.20.【答案】【解析】解:(1)由题意可得,∴n=160;(2)高二代表队6人,从中抽取2人上台抽奖的基本事件有(a,b),(a,c),(a,d),(a,e),(a ,f),(b,c),(b,d),(b,e),(b.f),(c,d),(c,e),(c,f),(d,e),(d,f),(e,f)共15种,其中a和b至少有一人上台抽奖的基本事件有9种,∴a和b至少有一人上台抽奖的概率为=;(3)由已知0≤x≤1,0≤y≤1,点(x,y)在如图所示的正方形OABC内,由条件得到的区域为图中的阴影部分由2x﹣y﹣1=0,令y=0可得x=,令y=1可得x=1∴在x,y∈[0,1]时满足2x﹣y﹣1≤0的区域的面积为=∴该代表中奖的概率为=.21.【答案】【解析】解:(Ⅰ)依题意得|QF|=y Q+=+=1,解得p=1,∴抛物线C的方程为x2=2y;(Ⅱ)(ⅰ)∵直线l与抛物线C交于A、B两点,∴直线l的斜率存在,设A(x1,y1),B(x2,y2),直线l的方程为:y=kx+2,联立方程组,化简得:x2﹣2kx﹣4=0,此时△=(﹣2k)2﹣4×1×(﹣4)=4(k2+4)>0,由韦达定理,得:x1+x2=2k,x1x2=﹣4,∴S△AOB=|OM|•|x1﹣x2|=×2==2(*)又∵A 点横坐标为n ,∴点A 坐标为A (n ,),又直线过点M (0,2),故k==﹣,将上式代入(*)式,可得:f (n )=2=2=2=n+(n ∈N *);(ⅱ)结论:当A 点坐标为(1,)或(4,8)时,对应不同的△AOB 的面积相等.理由如下:设存在不同的点A m (m ,),A n (n ,)(m ≠n ,m 、n ∈N *),使对应不同的△AOB 的面积相等,则f (m )=f (n ),即m+=n+,化简得:m ﹣n=﹣=,又∵m ≠n ,即m ﹣n ≠0,∴1=,即mn=4,解得m=1,n=4或m=4,n=1,此时A 点坐标为(1,),(4,8).【点评】本题考查抛物线的定义及其标准方程、直线与抛物线的位置关系、函数的性质等基础知识,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程的思想、数形结合思想、化归与转化思想,注意解题方法的积累,属于中档题. 22.【答案】(1),;(2).12-=n a n nn b 21=n n n T 2323+-=【解析】试题分析:(Ⅰ1)设为等差数列的公差,且,利用数列的前三项分别加上后成等比数列,d {}n a 0>d 3,1,1求出,然后求解;(2)写出利用错位相减法求和即可.d n b nn n T 212...232321321-++++=试题解析:解:(1)设为等差数列的公差,,d {}n a 0>d 由,,,分别加上后成等比数列,]11=a d a +=12d a 213+=3,1,1所以,)24(2)2(2d d +=+ 0>d ∴2=d ∴122)1(1-=⨯-+=n n a n 又 ∴,即 (6分)1log 22--=n n b a n b n -=2log nn b 21=考点:数列的求和.23.【答案】(1);(2)见解析;(3)见解析.10x y --=【解析】试题分析:(1)当时,求出导数易得,即,利用点斜式可得其切线方程;(2)2a =()'11f =1k =求得可得,分为和两种情形判断其单调性;(3)当时,根据(2)可()21'ax f x x -=0a ≤0a >102a <<得函数在上单调递减,故,即,化简可得所证结论.()f x ()12,()11a f f x ⎛⎫+< ⎪⎝⎭ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭试题解析:(1)当时,2a =,,,,所以函数在点()12ln 1f x x x =+-()112ln1101f =+-=()221'f x x x =-()221'1111f =-=()f x 处的切线方程为,即.()10,()011y x -=⨯-10x y --=(2),定义域为,.()1ln 1f x a x x =+-()0+∞,()2211'a ax f x x x x-=-=①当时,,故函数在上单调递减;0a ≤()'0f x <()f x ()0+∞,②当时,令,得0a >()'0f x =1x a=x10a ⎛⎫ ⎪⎝⎭,1a1a ⎛⎫+∞ ⎪⎝⎭,()'f x -+()f x ↘极小值↗综上所述,当时,在上单调递减;当时,函数在上单调递减,在0a ≤()f x ()0+∞,0a >()f x 10a ⎛⎫ ⎪⎝⎭,上单调递增.1a ⎛⎫+∞ ⎪⎝⎭,(3)当时,由(2)可知,函数在上单调递减,显然,,故,102a <<()f x 10a ⎛⎫ ⎪⎝⎭,12a >()1120a ⎛⎫⊆ ⎪⎝⎭,,所以函数在上单调递减,对任意,都有,所以.所以()f x ()12,1+2x ⎛⎫∈∞ ⎪⎝⎭,01a x <<112a x <+<,即,所以,即,所以()11a f f x ⎛⎫+< ⎪⎝⎭1ln 1101a a a x x ⎛⎫++-< ⎪⎝⎭+ln 1a a a x x a ⎛⎫+< ⎪+⎝⎭1ln 1a x x a ⎛⎫+< ⎪+⎝⎭,即,所以.()ln 11a x a x ⎛⎫++< ⎪⎝⎭ln 11x aa x +⎛⎫+< ⎪⎝⎭1e x aa x +⎛⎫+< ⎪⎝⎭24.【答案】【解析】解:(1)由直方图知,(0.150+0.125+0.100+0.0875+a )×2=1,解得a=0.0375,因为甲班学习时间在区间[2,4]的有8人,所以甲班的学生人数为.所以甲、乙两班人数均为40人,所以甲班学习时间在区间[10,12]的人数为40×0.0375×2=3(人).(2)乙班学习时间在区间[10,12]的人数为40×0.05×2=4(人).由(1)知甲班学习时间在区间[10,12]的人数为3人.在两班中学习时间大于10小时的同学共7人,ξ的所有可能取值为0,1,2,3.,,,.所以随机变量ξ的分布列为:ξ0 1 2 3P.。
某某省株洲市攸县二中2013届高三数学上学期期中考试试题文湘教版一、选择题(本大题共9个小题,每个小题5分,共45分)1.(5分)已知集合A={y|y=x+1,x∈[0,4]},B={x|﹣1<x<3},则A∩B=()A.ΦB.{x|﹣1<x<3} C.{x|0≤x<3} D.{x|1≤x<3}考点:交集及其运算.专题:计算题.分析:求出集合A中函数的值域,确定出A,找出A与B的公共部分,即可求出两集合的交集.解答:解:由集合A中的函数y=x+1,x∈[0,4],得到y∈[1,5],∴A={y|1≤y≤5},又B={x|﹣1<x<3},则A∩B={x|1≤x<3}.故选D点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)计算的值()A.2i B.﹣2i C.2D.﹣2考点:复数代数形式的乘除运算.专题:计算题.分析:利用复数代数形式的乘除运算将z=的分母实数化即可求得答案.解答:解:∵(1+i)4=[(1+i)2]2=(2i)2,∴z===﹣2i.故选B.点评:本题考查复数代数形式的乘除运算,将其分母实数化是关键,考查转化与运算能力,属于基础题.3.(5分)设,,,则a、b、c的大小关系为()A.a<b<c B.c<b<a C.b<a<c D.a<c<b 对数值大小的比较;不等关系与不等式.考点:计算题.专题:利用对数的运算性质确定a的X围,求出c的值,即可判断a、b、c的大小.分析:解解:因为∈(0,1);答:==2>1.所以c>b>a.故选A.本题考查对数与指数的大小比较,指数与对数的运算性质的应用,考查计算能力.点评:4.(5分)(2012•某某)设x∈R,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.10考平面向量数量积的坐标表示、模、夹角.点:专计算题.题:分通过向量的垂直,求出向量,推出,然后求出模.析:解解:因为x∈R,向量=(x,1),=(1,﹣2),且⊥,答:所以x﹣2=0,所以=(2,1),所以=(3,﹣1),所以|+|=,故选B.点本题考查向量的基本运算,模的求法,考查计算能力.评:5.(5分)已知函数y=f(x)的图象如图所示,则函数y=f(|x|)的图象为()A.B.C.D.考点:函数的图象与图象变化.专题:作图题.分析:根据函数图象的对称变换,可以将函数y=f(x)的图象在y轴右侧的部分保持不变,并将其关于y轴对称,即可得到函数y=f(|x|)的图象.解答:解:函数y=f(|x|)=,是偶函数,因此将函数y=f(x)的图象在y轴右侧的部分保持不变,利用函数y=f(|x|)是偶函数,其图象关于y轴对称,即可得到函数y=f(|x|)的图象故选B.点评:本题考查函数图象的对称变换,其本质是去绝对值符号,属基础题.6.(5分)“非空集合M不是P的子集”的充要条件是()A.∀x∈M,x∉P B.∀x∈P,x∈MC.∃x1∈M,x1∈P又∃x2∈M,x2∉P D.∃x0∈M,x0∉P考点:必要条件、充分条件与充要条件的判断;子集与真子集.分析:由子集的定义,若集合M中的元素,都是集合P中的元素,则集合M为集合P的子集.若非空集合M不是P的子集则说明,在集合M中存在元素不属于P,即∃x0∈M,x0∉P,解答:解:∵M⊆P⇔∀x∈M,x∈P即集合M中的元素,都是集合P中的元素若非空集合M不是P的子集则说明在集合M中存在元素不属于P即∃x0∈M,x0∉P,故选D点评:集合的关系有两种,存在包含关系和不存在包含关系:存在包含关系指A集合中的元素都是B集合的元素,如果同时B集合的元素也是A集合的元素,则A=B;不存在包含关系是指,A中有至少一个元素不是B的元素,且B中有至少一个元素不是A的元素.7.(5分)线段绕坐标原点旋转一周,该线段所扫过区域的面积为()A.4πB.3πC.D.考点:旋转体(圆柱、圆锥、圆台);棱柱、棱锥、棱台的体积.专题:计算题.分析:根据线段绕的方程,我们可求出求出线段上到原点最远和最近的距离,进而分析出线段绕坐标原点旋转一周后扫过区域为一个外半径为2,内半径为1的圆环.解答:解:线段的点当x=0时,到原点最远的距离为2,当x=时,到原点最近的距离为1,故线段绕坐标原点旋转一周后扫过区域为一个外半径为2,内半径为1的圆环故S=π(22﹣12)=3π故选B点评:本题考查的知识点是圆环的面积,线段的几何特征,其中分析出线段绕坐标原点旋转一周后扫过区域为一个外半径为2,内半径为1的圆环,是解答本题的关键.8.(5分)(2009•某某模拟)已知函数f(x)是以2为周期的偶函数,且当x∈(0,1)时,f(x)=2x﹣1,则f(log210)的值()A.B.C.D.考点:对数的运算性质;偶函数;函数的周期性.专题:计算题.分析:先判断log210的X围,利用函数的周期为2转化到区间(﹣1,0)内,再根据偶函数的定义和对数的运算性质求出f(log210)的值.解答:解:∵3<log210<4,∴﹣1<﹣4+log210<0,∵函数f(x)是以2为周期的偶函数,∴f(log210)=f(﹣4+log210)=f(4﹣log210),∵当x∈(0,1)时,f(x)=2x﹣1,∴f(4﹣log210)=16×﹣1=,即f(log210)=.故选A.点评:本题考查了函数奇偶性和周期性的应用,根据周期性把自变量的X围转化到与题意有关的区间上,再由奇偶性联系f(x)=f(﹣x),利用对数的运算性质求出函数值.9.(5分)已知f(x)为定义在非零实数集上的可导函数,且f(x)>xf′(x)在定义域上恒成立,则()A.2012•f(2013)<2013•f(2012)B.2012•f(2013)=2013•f(2012)C.2012•f(2013)>2013•f(2012)D.2012•f(2013)与2013•f(2012)大小不确定考点:导数的运算;利用导数研究函数的单调性.专题:导数的综合应用.分析:令辅助函数F(x)=,求其导函数,据导函数的符号与函数单调性的关系判断出F(x)的单调性,利用单调性判断出F(2012)与F(2013)的关系,利用不等式的性质得到结论.解答:解:令F(x)=,则,∵f(x)>xf′(x),∴F′(x)<0,∴F(x)=为定义域上的减函数,∵2012<2013,∴,∴2012•f(2013)<2013•f(2012).故选A.点评:本题考查了导数的运算,考查了利用导数研究函数单调性,函数的导函数符号确定函数的单调性:当导函数大于0时,函数单调递增;导函数小于0时,函数单调递减.此题为中档题.二、填空题(本大题共6个小题.每个小题5分,共30分)10.(5分)已知幂函数f(x)=x a的图象过点,则f(x)在(0,+∞)单调递增.考点:幂函数的单调性、奇偶性及其应用.专题:函数的性质及应用.分析:根据已知幂函数f(x)=x a的图象过点求出函数的解析式,进而根据幂函数的单调性,得到答案.解答:解:∵幂函数f(x)=x a的图象过点,∴a=解得a=∵a>0∴f(x)在(0,+∞)单调递增故答案为:增点评:本题考查的知识点是幂函数的单调性,其中根据已知求出函数的解析式,是解答的关键.11.(5分)函数f(x)=x3在x=0处的切线方程为y=0 .考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:先对函数f(x)=x3求导,再求出f′(0)即为切线的斜率,切点易求,再利用点斜式即可求出.解答:解:当x=0时,f(0)=0,∴切点为(0,0).∵f′(x)=3x2,∴f′(0)=0,即为切线的斜率.∴切线的方程为y=0.故答案为y=0.点评:理解导数的几何意义是解题的关键.12.(5分)已知tanα、tanβ是方程的两根,且α、β,则tan(α+β)=.考点:两角和与差的正切函数.专题:计算题;三角函数的求值.分析:利用韦达定理可得tanα+tanβ与tanα•tanβ的值,利用两角和的正切即可求得tan(α+β).解答:解:∵tanα、tanβ是方程x2+3x+4=0的两根,∴tanα+tanβ=﹣3,tanα•tanβ=4,∵α,β∈(﹣,),∴﹣π<α+β<π,∴tan(α+β)===.故答案为:.点评:本题考查两角和与差的正切函数,考查韦达定理的应用,属于中档题.13.(5分)在△ABC中,,,,则b=.ab.考点:解三角形.专题:计算题.分析:要求出b,先由sin2C+cos2C=1求出sinC,再利用三角形面积公式求解即可.解答:解:在△ABC中,sinC>0,∴sinC==,∵,∴.故答案为:2.点评:本题考查了三角形的面积公式和同角三角函数之间的关系sin2C+cos2C=1,比较简单.14.(5分)若函数f(x)=x2﹣lnx+1在其定义域内的一个子区间[t﹣2,t+1]内不是单调函数,则实数t的取值X围.考点:函数单调性的性质.专题:计算题.分析:函数f(x)的定义域为(0,+∞),f′(x)=2x﹣,根据题意可得到,0<t﹣2<<t+1从而可得答案.解答:解:∵f(x)的定义域为(0,+∞),f′(x)=2x﹣,f′(x)>0得,x>,f′(x)<0得,0<x<∵函数f(x)定义域内的一个子区间[t﹣2,t+1]内不是单调函数,∴0<t﹣2<<t+1,∴2<t<.故答案为:(2,)点评:点评:本题考查利用导数研究函数的单调性,依题意得到0<t﹣2<是关键,也是难点所在,属于中档题.15.(5分)下列命题中,真命题是②③.①若f′(x0)=0,则函数f(x)在x=x0处取极值.②函数f(x)=lnx+x﹣2在区间(1,e)上存在零点.③“a=1”是函数在定义域上是奇函数的充分不必要条件.④将函数y=2cos2x﹣1的图象向右平移个单位可得到y=sin2x的图象.⑤点是函数图象的一个对称中心.考点:命题的真假判断与应用.专题:函数的性质及应用.分析:令f(x)=x3,可判断①错误;根据函数零点存在定理,可判断②错误;根据奇函数的定义求出a值,利用充要条件的定义,可判断③的真假,根据函数图象平移变换法则,求出平移后函数的解析式,对照后可判断④的真假,根据正弦型函数的对称性,将点的横坐标代入可判断⑤的真假.解答:解:令f(x)=x3,则f′(x0)=3x2,当x=0时,f′(x)=0,此时函数f(x)不是极值,故①错误;函数f(x)=lnx+x﹣2在区间(1,e)上是连续的,且f(1)=﹣1<0,f(e)=e﹣1>0,根据函数零点存在定理,可得函数在区间(1,e)上存在零点,故②正确;函数在定义域上是奇函数,则==,即解得a=±1,故③“a=1”是函数在定义域上是奇函数的充分不必要条件正确;将函数y=2cos2x﹣1=cos2x的图象向右平移个单位可得到y=cos[2(x﹣)]=cos(2x﹣)=﹣sin2x的图象,故④错误.当x=时,函数==,此时函数取最大值,故⑤错误故答案为②③点评:本题是命题的真假判断为载体考查了函数取极值的条件,函数的零点,奇函数的定义,函数图象的平移,函数的对称性,是函数与逻辑的综合应用.三、解答题(共6小题,共75分,解答题应写出必要的文字说明、证明过程或演算步骤)16.(12分)(2012•某某一模)已知函数f(x)=.(Ⅰ)求函数f(x)的最小正周期和值域;(Ⅱ)若a为第二象限角,且,求的值.考点:三角函数的恒等变换及化简求值;三角函数的周期性及其求法;复合三角函数的单调性.专题:计算题;压轴题.分析:(Ⅰ)利用三角函数间的关系将f(x)化为f(x)=1+2cos(x+),即可求函数f (x)的最小正周期和值域;(Ⅱ)依题意可求得cosα=﹣,sinα=,可化简为,从而可求得其值.解答:解:(Ⅰ)因为 f(x)=1+cosx﹣sinx …(1分)=1+2cos(x+),…(2分)所以函数f(x)的周期为2π,值域为[﹣1,3].…(4分)(Ⅱ)因为 f(a﹣)=,所以1+2cosα=,即cosα=﹣.…(5分)因为=…(8分)==,…(10分)又因为α为第二象限角,所以 sinα=.…(11分)所以原式===.…(13分)点评:本题考查三角函数的恒等变换及化简求值,考查三角函数的周期性及其求法,考查倍角公式,掌握三角函数间的关系是化简求值的关键,属于中档题.17.(12分)已知函数y=f(x)是定义在R上的偶函数,当x≥0时,f(x)=x3+1;(1)求y=f(x)的解析式;(2)求F(x)=f(x)(x∈[t,t+1])的最小值g(t).考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:(1)根据偶函数的定义,可得f(x)=f(﹣x),结合x≥0时的函数解析式,可求出x<0时,函数的解析式,进而可得y=f(x)的解析式;(2)根据(1)中函数的解析式,结合幂函数的单调性,分别讨论t+1≤0,即t≤﹣1时;t<0<t+1,即﹣1<t<0时和t≥0时函数的F(x)的最小值,最后综合讨论结果可得答案.解答:解:(1)∵f(x)是偶函数,∴f(x)=f(﹣x)x≥0时,f(x)=x3+1∴x<0时,f(x)=f(﹣x)=(﹣x)3+1=﹣x3+1故f(x)=…(5分)(2)由(1)中函数f(x)的解析式楞各当t+1≤0,即t≤﹣1时f(x)=﹣x3+1在区间[t,t+1]上为减函数∴F(x)min=f(t+1)=﹣(t+1)3+1…(7分)当t<0<t+1,即﹣1<t<0时f(x)=﹣x3+1在区间[t,0]上为减函数,区间[0,t+1]上为减函数F(x)min=f(0)=1…(9分)当t≥0时,f(t)=t3+1在区间[t,t+1]上为增函数F(x)min=f(t)=t3+1 …(11分)故:F(x)min=g(t)=…(12分)点评:本题考查的知识点是函数的奇偶性和函数的单调性,其中根据函数的奇偶性,求出函数的解析式是解答的关键.18.(12分)已知向量m=(,)与向量n=(,)共线,其中A、B、C是△ABC的内角.(1)求角B的大小;(2)求2sin2A+cos(C﹣A)的取值X围.考点:三角函数中的恒等变换应用;平面向量的综合题;解三角形.专题:计算题.分析:(1)先根据向量的共线可得到,进而可得到,再由B是△ABC 的内角确定B的X围从而可确定的X围得到cos的值,最后得到B的值.(2)由(1)知从而可得到,然后代入到2sin2A+cos(C﹣A)中运用两角和与差的公式进行化简得到2sin2A+cos(C﹣A)=,再结合A的X围可得到2sin2A+cos(C﹣A)的取值X围.解答:解:(1)∵=(,)与=(,)共线,∴.∴.又0<B<π,∴0<<,.∴,即.(2)由(1)知,∴.∴2sin2A+cos(C﹣A)===.∵0<A <,∴<<.∴∈(,1).∴∈(,2),即2sin2A+cos(C﹣A)的取值X围是(,2).点评:本题主要考查二倍角公式和向量的共线问题.考查基础知识的综合运用.19.(13分)某玩具厂生产一种儿童智力玩具,每个玩具的材料成本为20元,加工费为t 元(t为常数,且2≤t≤5),出厂价为x元(25≤x≤40).根据市场调查知,日销售量q(单位:个)与e x成反比,且当每个玩具的出厂价为30元时,日销售量为100个.(1)求该玩具厂的日利润y元与每个玩具的出厂价x元之间的函数关系式;(2)若t=5,则每个玩具的出厂价x为多少元时,该工厂的日利润y最大?并求最大值.考点:导数在最大值、最小值问题中的应用.专题:应用题;导数的综合应用.分析:(1)由条件“日销售量与e x(e为自然对数的底数)成反比例”可设日销量函数解析式,根据日利润y=每件的利润×件数,即可建立函数关系式;(2)先对函数进行求导,求出极值点,利用单调性求出函数的最值.解答:解:(1)设日销售量,则,∴k=100e30(2分)∴日销售量,∴(6分)(2)当t=5时,∴,(9分)由y'>0,得25≤x<26,由y'<0,得26<x≤40,∴函数在[25,26)上单调递增,在(26,40]上单调递减,当x=26时,函数取得最大值,最大值为.(12分)点评:本题考查数学模型和目标函数的建立,解题的关键是把“问题情境”译为数学语言,找出问题的主要关系,并把问题的主要关系抽象成数学问题,在数学领域寻找适当的方法解决,再返回到实际问题中加以说明.20.(13分)已知数列﹛a n﹜满足:.(Ⅰ)求数列﹛a n﹜的通项公式;( II)设,求.考点:数列的求和;等比数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)当n=1时,代入已知可求a1=,当n≥2时由n的任意性可得,与已知中的式子相减可求通项;( II)由(Ⅰ)可得b n=1﹣2n,代入可得,下由裂项相消法可解.解答:解:(Ⅰ)当n=1时,可得,故a1=当n≥2时,由①可得②①﹣②得,所以,经验证n=1时也符合,所以数列﹛a n﹜的通项公式为:( II),所以b n+1=﹣1﹣2n,所以,因此=点评:本题考查数列的通项公式的求解和裂项相消法求和,构造式子相减求出数列的通项公式是解决问题的关键,属中档题.21.(13分)已知①若方程e2f(x)=g(x)在区间上有解,求a的取值X围;②若函数,讨论函数h(x)的单调性.考点:利用导数求闭区间上函数的最值.专题:综合题;导数的综合应用.分析:①由条件分离参数,可转化为在上有解,利用导数法求出函数的值域,即可得到结论;②求导函数,比较根的大小,即可分类讨论,得到函数的单调性.解答:解:①由由已知,在上有解,在上有解∴在上有解,令,则,∴函数p(x)在(,)上单调递增,在(,1)上单调递减∴∵,∴∴…(6分)②,x∈(0,+∞)(1)a=1时,递减区间(0,1),递增区间(1,+∞);(2)1<a<2时,递增区间(0,a﹣1),(1,+∞),递减区间(a﹣1,1);(3)a=2时,递增区间(0,+∞);(4)a>2时,递增区间,递减区间(1,a﹣1)…(13分)点评:本题考查导数知识的运用,考查函数的单调性与最值,考查分类讨论的数学思想,考查学生分析转化问题的能力,属于中档题.。
1 2013届高三第二次月考文科数学试题1.已知集合M ={x|x <3},N ={x|log2x >1},则M ∩N =( )A. ∅B.{x|2<x <3}C.{x|1<x <3}D. {x|0<x <3}2.命题“存在x0∈R,02x ≤0”的否定是( )A .不存在x0∈R, 02x >0B .存在x0∈R, 02x≥0 C .对任意的x ∈R,2x >0 D .对任意的x ∈R,2x≤03.下列函数中,既是奇函数又是增函数的为( )A. 1y x =+B. 2y x =-C. 1y x =D. 3x y =4.已知2.12=a ,2.0)21(-=b ,c=4log 5,则a ,b ,c 的大小关系为( )A. c<b<aB.c<a<bC.b<a<cD.b<c<a5.函数xx x f )21()(21-=的零点个数为( ) A.0 B.1 C.2 D.36.有下列四个命题:①“若xy =1,则x ,y 互为倒数”的逆命题.②“面积相等的三角形全等”的否命题;③“若m≤1,则x2-2x +m =0有实数解”的逆否命题;④“若A∩B =B ,则B A ⊆”的逆否命题.其中真命题为( )A .①②B .②③C .④D .①②③7.函数32()32f x x x =-+在区间[1,1]-上的最大值是( ) A .-2 B .0 C .2 D .48.设直线x t =与函数2(),()ln f x x g x x ==的图像分别交于点,M N ,则当||MN 达到最小时t 的值为( )A .1B .12 C .2 D.2二、填空题(本大题共7小题,每小题5分,共35分.)2 9.25sin6π=__________________10设,01)(,010,00,1)(⎩⎨⎧=⎪⎩⎪⎨⎧<-=>=为无理数,为有理数,x x x g x x x x f 则))((πg f _______________11.设f(x)为定义在R 上的奇函数.当x≥0时,f(x)=2x +2x +b(b 为常数),则f(-1)=_________________.12. 函数)34(log 15.0-=x y 的定义域为_________________.13曲线C :()ln (0)f x x x x =>在x =1处的切线方程为________________________.14. 已知定义域为R 的函数()y f x =满足()(2)13f x f x •+=,若(1)2,f =则(99)f =____________________15.下列命题中:①集合A={2|3100x x x --≤),B={|121x a x a +≤≤-},若B ⊆A ,则-3≤a ≤3② 函数()y f x =与直线x=l 的交点个数为0或l ③ 函数y=f (2-x )与函数y=f (x-2)的图象关于直线x=2对称④ a 41(∈,+∞)时,函数)lg(2a x x y ++=的值域为R⑤ 与函数2)(-=x f y 关于点(1,-1)对称的函数为f y -=(2 -x )上述说法正确的题号为________________________.三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.)16.(本小题12分)已知命题p:方程 2x +mx+1=0 有两个不等的负根;命题q: 方42x +4(m-2)x+1=0无实根。
12013届高三第三次月考文科数学试题满分:150分 时量:120分钟 一、 选择题(本大题共9个小题,每个小题 5 分,共 45分)1、已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则A B =I ( )A }{3,5 B }{3,6 C }{3,7 D }{3,92、设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M ∩N ≠∅,则k 的取值范围是( )A .]2,(-∞B .),1[+∞-C .),1(+∞-D .[-1,2]3、下列各式错误..的是 ( ) A. 0.80.733> B.0..50..5log 0.4log 0.6> C. 0.10.10.750.75-< D.lg1.6lg1.4>4、已知两个单位向量12,e e u r u u r的夹角为θ,则下列结论不正确...的是 ( )A .12e e u r u u r在方向上的投影为cos θ B .2212e e =u r u u rC .1212()()e e e e +⊥-u r u u r u r u u rD .121e e ⋅=u r u u r5、函数2230()2ln 0x x x f x xx ⎧+-≤=⎨-+>⎩的零点个数为 ( )A 、3B 、2C 、1D 、06、已知函数m x x x f +-=3)(3在区间]0,3[-上的最大值与最小值的和为14-,则实数m 的值为 ( ) A .1 B .2 C .9- D .8- 7、sin(2)3y x π=+的图像经过怎样的平移后得到cos 2y x =的图像 ( )A .向左平移12π个单位 B .向左平移6π个单位 C .向右平移12π个单位 D .向右平移6π个单位8、已知函数y =f (x )是偶函数,且y =f (x -2)在[0,2]上是单调递减函数,则( )A. f(-1)<f(2)<f(0)B. f(-1)<f(0)<f(2)C. f(0)<f(-1)<f(2)D. f(2)<f(-1)<f(0) 9、函数11()(sin cos )sin cos 22f x x x x x =+--,则()f x 的值域是 ( )2 A .[]1,1-B. ⎡⎤⎢⎥⎣⎦C.⎡-⎢⎣⎦D. 1,⎡-⎢⎣⎦二、填空题(本大题共6个小题.每个小题5分,共30分)10、若函数[]2(2)3,,y x a x x a b =+++∈的图象关于直线x =1对称,则b =___ ;11、已知向量a (2,1),(1,),(1,2).b m c =-=-=-r r r 若()//a b c +r r r ,则m = ;12、已知||||2a b ==r r ,(2)()2a b a b +-=-r r r r,则a r 与b r 的夹角为 ; . 13、已知1sin cos 2αα=+,且(0,)2πα∈,则cos 2sin()4απα-的值为 ; .14、已知函数()11sin 24f x x x x =-的图象在点()()00,A x f x 处的切线斜率为12,则)4tan(0π+x 的值为 ;15、2()lg(1)(),f x x ax a a R =+--∈已知函数给出下列命题:①1()--+;a f x =∞⋃∞时,的定义域为(,2)(1,) ②()f x 有最小值;③当0();a f x R =时,的值域为④若()f x a ∞在区间[2,+)上是增函数,则实数的取值范围是∞[-4,+). 其中正确结论的序号是 .(填上所有正确命题的序号)三、解答题(共6小题,共75分,解答题应写出必要的文字说明、证明过程或演算步骤)16、(本小题12分)已知向量(3,1),(1,)AB AC a ==-u u u r u u u r,a R ∈3(1)若D 为BC 中点,(,2)AD m =u u u r,求,a m 的值(2)若ABC ∆是以角B 为直角的三角形,求a 的值17、(本小题12分)在三角形ABC 中,已知2AB AC AB AC •=•u u u r u u u r u u u r u u u r,设CAB α∠=.(Ⅰ)求角α的值; (Ⅱ)若cos(-βα其中5(,)36βππ∈,求cos β的值18、(本小题12分)已知函数()sin cos ,f x x x =+/()f x 是()f x 的导函数。
湖南2025届高三月考试卷(三)数学(答案在最后)时量:120分钟满分:150分得分:________________一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}0,1,2,3的真子集个数是()A.7B.8C.15D.162.“11x -<”是“240x x -<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知角α的终边上有一点P 的坐标是()3,4a a ,其中0a ≠,则sin2α=()A.43B.725C.2425D.2425-4.设向量a ,b 满足a b += a b -=a b ⋅ 等于()A. B.2C.5D.85.若无论θ为何值,直线sin cos 10y x θθ⋅+⋅+=与双曲线2215x y m -=总有公共点,则m 的取值范围是()A.1m ≥ B.01m <≤C.05m <<,且1m ≠ D.1m ≥,且5m ≠6.已知函数()2f x 的图象关于原点对称,且满足()()130f x f x ++-=,且当()2,4x ∈时,()()12log 2f x x m =--+,若()()2025112f f -=-,则m 等于()A.13B.23C.23- D.13-7.已知正三棱台111ABC A B C -所有顶点均在半径为5的半球球面上,且AB =,11A B =棱台的高为()A.1B.4C.7D.1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有ab 个,下底有cd 个,共n 层的堆积物(如图所示),可以用公式()()()2266n nS b d a b d c c a ⎡⎤=++++-⎣⎦求出物体的总数,这就是所谓的“隙积术”,相当于求数列ab ,()()()()()()11,22,,11a b a b a n b n cd +++⋅++-+-= 的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A.2B.6C.12D.20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若2024220240122024(12)x a a x a x a x +=++++ ,则下列正确的是()A.02024a = B.20240120243a a a +++= C.012320241a a a a a -+-++= D.12320242320242024a a a a -+--=- 10.对于函数()sin cos f x x x =+和()sin cos 22g x x x ππ⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭,下列说法中正确的有()A.()f x 与()g x 有相同的零点B.()f x 与()g x 有相同的最大值点C.()f x 与()g x 有相同的最小正周期D.()f x 与()g x 的图象有相同的对称轴11.过点()0,2P 的直线与抛物线2:4C x y =交于()11,A x y ,()22,B x y 两点,抛物线C 在点A 处的切线与直线2y =-交于点N ,作NM AP ⊥交AB 于点M ,则()A.5OA OB ⋅=-B.直线MN 恒过定点C.点M 的轨迹方程是()22(1)10y x y -+=≠D.AB MN选择题答题卡题号1234567891011得分答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数1z ,2z 的模长为1,且21111z z +=,则12z z +=________.13.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c 已知5a =,4b =,()31cos 32A B -=,则sin B =________.14.若正实数1x 是函数()2e e xf x x x =--的一个零点,2x 是函数()()()3e ln 1e g x x x =---的一个大于e的零点,则()122e ex x -的值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加25%的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按10%的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A 、B 两方案的优劣.(结果精确到万元,参考数据:101.12.594≈,101.259.313≈)16.(本小题满分15分)如图,四棱锥P ABCD -中,底面ABCD 为等腰梯形,222AD AB BC ===.点P 在底面的射影点Q 在线段AC 上.(1)在图中过A 作平面PCD 的垂线段,H 为垂足,并给出严谨的作图过程;(2)若2PA PD ==.求平面PAB 与平面PCD 所成锐二面角的余弦值.17.(本小题满分15分)已知函数()e sin cos x f x x x =+-,()f x '为()f x 的导数.(1)证明:当0x ≥时,()2f x '≥;(2)设()()21g x f x x =--,证明:()g x 有且仅有2个零点.18.(本小题满分17分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点为1F 、2F ,P 为椭圆C 上一动点,设12F PF θ∠=,当23πθ=时,12F PF ∆.(1)求椭圆C 的标准方程.(2)过点()0,2B 的直线l 与椭圆交于不同的两点M 、N (M 在B ,N 之间),若Q 为椭圆C 上一点,且OQ OM ON =+ ,①求OBMOBNS S 的取值范围;②求四边形OMQN 的面积.19.(本小题满分17分)飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投郑出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投郑次数X 的均值11()()lim ()n n k k E X kP k kP k ∞→∞==⎛⎫== ⎪⎝⎭∑∑)(2)对于两个离散型随机变量ξ,η,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记()()()11,m i i ijj p x p x p x y ξ====∑,()()()21,njjiji p y p y p x y η====∑)ξη1x 2x ⋯nx 1y ()11,p x y ()21,p x y ⋯()1,n p x y ()21p y 2y ()12,p x y ()22,p x y()2,n p x y ()22p y⋯⋯⋯⋯⋯⋯my ()1,m p x y ()2,m p x y ⋯(),n m p x y ()2m p y ()11p x ()12p x()1n p x 1若已知i x ξ=,则事件{}j y η=的条件概率为{}{}{}()()1,,j i i j j i i i P y x p x y P y x P x p x ηξηξξ=======∣.可以发现i x ηξ=∣依然是一个随机变量,可以对其求期望{}{}1mi j j i j E x y P y x ηξηξ===⋅==∑∣∣()()111,mj i j i i y p x y p x ==⋅∑.(ⅰ)上述期望依旧是一个随机变量(ξ取值不同时,期望也不同),不妨记为{}E ηξ∣,求{}E E ηξ⎡⎤⎣⎦∣;(ⅱ)若修改游戏规则,需连续掷出两次6点飞机才能起飞,记0ξ=表示“甲第一次未能掷出6点”1ξ=表示“甲第一次掷出6点且第二次未能掷出6点”,2ξ=表示“甲第一次第二次均掷出6点”,η为甲首次使得飞机起飞时抛掷骰子的次数,求E η.湖南2025届高三月考试卷(三)数学参考答案题号1234567891011答案CACBBDABBCACDBC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合{}0,1,2,3共有42115-=(个)真子集.故选C.2.A 【解析】解不等式240x x -<,得04x <<,解不等式11x -<,得02x <<,所以“11x -<”是“240x x -<”的充分不必要条件.3.C 【解析】根据三角函数的概念,44tan 33y a x a α===,22sin cos 2tan 24sin211tan 25ααααα===+,故选C.4.B 【解析】()2211()()1911244a b a b a b ⎡⎤⋅=+--=⨯-=⎣⎦ .5.B 【解析】易得原点到直线的距离1d ==,故直线为单位圆的切线,由于直线与双曲线2215x y m -=总有公共点,所以点()1,0±必在双曲线内或双曲线上,则01m <≤.6.D 【解析】依题意函数()f x 的图象关于原点对称,所以()f x 为奇函数,因为()()()133f x f x f x +=--=-,故函数()f x 的周期为4,则()()20251f f =,而()()11f f -=-,所以由()()2025112f f -=-可得()113f =,而()()13f f =-,所以()121log 323m --=,解得13m =-.7.A 【解析】上下底面所在外接圆的半径分别为13r =,24r =,过点A ,1A ,1O ,2O 的截面如图:24OO ==,13OO ==,211h OO OO ∴=-=,故选A.8.B 【解析】由题意,得6c a =+,6d b =+,则由()()()772223866b d a b d c c a ⎡⎤++++-=⎣⎦得()()()()77262126623866b b a b b a a a ⎡⎤++++++++-=⎣⎦,整理得()321ab a b ++=,所以773aba b +=-<.因为a ,b 为正整数,所以3ab =或6.因此有6,3a b ab +=⎧⎨=⎩或5,6.a b ab +=⎧⎨=⎩而63a b ab +=⎧⎨=⎩无整数解,因此6ab =.故选B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令0x =,则01a =,故A 错误;对于B :令1x =,则20240120243a a a +++= ,故B 正确;对于C :令1x =-,则012320241a a a a a -+-++= ,故C 正确;对于D ,由2024220240122024(12)x a a x a x a x +=++++ ,两边同时求导得202322023123202420242(12)232024x a a x a x a x ⨯⨯+=++++ ,令1x =-,则12320242320244048a a a a -++-=- ,故D 错误.故选BC.10.ACD 【解析】()4f x x π⎛⎫=+ ⎪⎝⎭,()3244g x x x πππ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭.令()0f x =,则4x k ππ=-+,k ∈Z ;令()0g x =,则34x k ππ=+,k ∈Z ,两个函数的零点是相同的,故选项A 正确.()f x 的最大值点是24k ππ+,k ∈Z ,()g x 的最大值点是324k ππ-+,k ∈Z ,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为2πω可知()f x 与()g x 有相同的最小正周期2π,故选项C 正确.曲线()y f x =的对称轴为4x k ππ=+,k ∈Z ,曲线()y g x =的对称轴为54x k ππ=+,k ∈Z ,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.11.BC 【解析】作图如下:设直线AB 的方程为2y tx =+(斜率显然存在),211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,联立22,4,y tx x y =+⎧⎨=⎩消去x 整理可得2480x tx --=,由韦达定理得124x x t +=,128x x =-,A.221212444x x y y =⋅=,1212844OA OB x x y y ⋅=+=-+=- ,故A 错误;B.抛物线C 在点A 处的切线为21124x x x y ⎛⎫=+ ⎪⎝⎭,当2y =-时,11121244282222x x x x x t x x =-=-=+=-,即()2,2N t -,直线MN 的方程为()122y x t t +=--,整理得xy t=-,直线MN 恒过定点()0,0,故B 正确;C.由选项B 可得点M 在以线段OP 为直径的圆上,点O 除外,故点M 的轨迹方程是()22(1)10y x y -+=≠,故C 正确;D.22222222211t t MN t t +---==++,()22222212121411632412AB t x x x x t t t t =++-=++=++则()2222222221122222221t AB t t t MNt t t t +⎫++==+++++,22t m +=,2m ≥12ABm MN m ⎛⎫=- ⎪⎝⎭,设()1f m m m =-,2m ≥()2110f m m=+>',当2m ≥()f m 单调递增,所以min ()22f m f==,故D 错误.故选BC.三、填空题:本题共3小题,每小题5分,共15分.12.1【解析】设()1i ,z a b a b =+∈R ,()2i ,z c d c d =+∈R ,因为21111z z +=,所以1222111z z z z z z +=.因为111z z =,221z z =,所以121z z +=,所以()()i i i 1a b c d a c b d -+-=+-+=,所以1a c +=,0b d +=,所以()()12i 1z z a c b d +=+++=.13.4【解析】在ABC ∆中,因为a b >,所以A B >.又()31cos 32A B -=,可知A B -为锐角且()37sin 32A B -=.由正弦定理,sin 5sin 4A aB b ==,于是()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦.将()cos A B -及()sin A B -的值代入可得3sin B B =,平方得2229sin 7cos 77sin B B B ==-,故sin 4B =.14.e 【解析】依题意得,1211e e 0xx x --=,即1211e e xx x -=,10x >,()()322e ln 1e 0x x ---=,即()()322e ln 1e x x --=,2e x >,()()()131122e e e e ln 1x x x x x ∴-==--,()()()11122e e ln 1e x x x x +∴-=--,()()()21ln 11112e e ln 1e e x x x x -++⎡⎤∴-=--⎣⎦,又2ln 1x > ,2ln 10x ->,∴同构函数:()()1e e ,0x F x x x +=->,则()()312ln 1e F x F x =-=,又()()111e e e e e 1e x x x x F x x x +++=-+'=-+,0x > ,0e e 1x ∴>=,e 10x ∴->,又1e 0x x +>,()0F x ∴'>,()F x 单调递增,12ln 1x x ∴=-,()()()31222222e ln 1e e e e e ex x x x ---∴===.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为()1010110%26⨯+≈(万元).……(3分)(2)A 方案10年共获利:()1091.2511125%(125%)33.31.251-+++++=≈- (万元),……(5分)到期时银行贷款本息为1010(110%)25.9⨯+≈(万元),所以A 方案净收益为:33.325.97-≈(万元),……(7分)B 方案10年共获利:()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= (万元),……(9分)到期时银行贷款本息为()()10109 1.11.11(110%)(110%)110%17.51.11-++++++=≈- (万元),……(11分)所以B 方案净收益为:23.517.56-≈(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接PQ ,有PQ ⊥平面ABCD ,所以PQ CD ⊥.在ACD ∆中,2222cos 54cos AC AD CD AD CD ADC ADC =+-⋅⋅∠=-∠.同理,在ABC ∆中,有222cos AC ABC =-∠.又因为180ABC ADC ∠+∠= ,所以1cos 2ADC ∠=,()0,180ADC ∠∈ ,所以60ADC ∠=,AC =,故222AC CD AD +=,即AC CD ⊥.又因为PQ AC Q = ,PQ ,AC ⊂平面PAC ,所以CD ⊥平面PAC .CD ⊂平面PCD ,所以平面PCD ⊥平面PAC .……(5分)过A 作AH 垂直PC 于点H ,因为平面PCD ⊥平面PAC ,平面PCD 平面PAC PC =,且AH ⊂平面PAC ,有AH ⊥平面PCD .……(7分)(2)依题意,AQ DQ ==.故Q 为AC ,BD 的交点,且2AQ ADCQ BC==.所以233AQ AC ==,3PQ ==.过C 作直线PQ 的平行线l ,则l ,AC ,CD ,两两垂直,以C 为原点建立如图所示空间直角坐标系,则:()1,0,0D ,3260,,33P ⎛⎫⎪ ⎪⎝⎭,()A ,13,,022B ⎛⎫- ⎪ ⎪⎝⎭,所以()1,0,0CD =,0,,33CP ⎛⎫= ⎪ ⎪⎝⎭,0,,33AP ⎛⎫=- ⎪ ⎪⎝⎭,1,,263BP ⎛=- ⎝⎭ .设平面PCD 的法向量为(),,m x y z =,则()0,0,3m CD x m CP y ⎧⋅==⎪⎨⋅=+=⎪⎩取()0,m =- .同理,平面PAB的法向量)1n =-,1cos ,3m n m n m n ⋅==,……(14分)故所求锐二面角余弦值为13.……(15分)17.【解析】(1)由()e cos sin xf x x x =+'+,设()e cos sin xh x x x =++,则()e sin cos xh x x x =+'-,当0x ≥时,设()e 1x p x x =--,()sin q x x x =-,()e 10x p x ='-≥ ,()1cos 0q x x ='-≥,()p x ∴和()q x 在[)0,+∞上单调递增,()()00p x p ∴≥=,()()00q x q ≥=,∴当0x ≥时,e 1x x ≥+,sin x x ≥,则()()()e sin cos 1sin cos sin 1cos 0xh x x x x x x x x x =-+≥+-+=-++≥',∴函数()e cos sin x h x x x =++在[)0,+∞上单调递增,()()02h x h ∴≥=,即当0x ≥时,()2f x '≥.(2)由已知得()e sin cos 21xg x x x x =+---.①当0x ≥时,()()e cos sin 220x g x x x f x =+='+--'≥ ,()g x ∴在[)0,+∞上单调递增,又()010g =-< ,()e 20g πππ=->,∴由零点存在定理可知,()g x 在[)0,+∞上仅有一个零点.……(10分)②当0x <时,设()2sin cos (0)e x x xm x x --=<,则()()2sin 10e xx m x -=≤',()m x ∴在(),0-∞上单调递减,()()01m x m ∴>=,e cos sin 20x x x ∴++-<,()e cos sin 20x g x x x ∴=++-<',()g x ∴在(),0-∞上单调递减,又()010g =-< ,()e 20g πππ--=+>,∴由零点存在定理可知()g x 在(),0-∞上仅有一个零点,综上所述,()g x 有且仅有2个零点.……(15分)18.【解析】(1)设()00,P x y ,c 为椭圆C 的焦半距,12122F PF p S c y ∆=⋅⋅,00y b <≤ ,当0y b =时,12F PF S ∆最大,此时()0,P b 或()0,P b -,不妨设()0,P b ,当23πθ=时,得213OPF OPF π∠=∠=,所以c =,又因为12F PF S bc ∆==,所以1b =,c =.从2a =,∴而椭圆C 的标准方程为2214x y +=.……(3分)(2)由题意,直线l 的斜率显然存在.设()11: 2.,l y kx M x y =+,()22,N x y .……(4分)1112OBM S OB x x ∆∴=⋅=,同理,2OBN S x ∆=.12OBM OBN S xS x ∆∆∴=.……(6分)联立()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,……(8分)()()222Δ(16)4121416430k k k ∴=-⨯⨯+=->,234k ∴>.……(9分)又1221614k x x k -+=+ ,12212014x x k =>+,1x ∴,2x 同号.()()2222122121212216641421231414k x x x x k k x x x x kk-⎛⎫⎪++⎝⎭∴===++++.234k > ,()2226464164,1331434k k k ⎛⎫∴=∈ ⎪⎛⎫+⎝⎭+ ⎪⎝⎭,211216423x x x x ∴<++<.令()120x x λλ=≠,则116423λλ<++<,解得()1,11,33λ⎛⎫∈ ⎪⎝⎭,()1,11,33OBM OBN S S ∆∆⎛⎫∴∈ ⎪⎝⎭ .……(12分)(3)OQ OM ON =+,()1212,Q x x y y ∴++.且四边形OMQN 为平行四边形.由(2)知1221614k x x k -+=+,()121224414y y k x x k∴+=++=+,22164,1414k Q k k -⎛⎫∴ ⎪++⎝⎭.而Q 在椭圆C 上,2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭.化简得2154k =.……(14分)∴线段161219357115224MN ==⋅+,……(15分)O到直线MN的距离d ==……(16分)574OMQN S MN d ∴=⋅=四边形.……(17分)19.【解析】(1)()11566k P X k -⎛⎫==⨯ ⎪⎝⎭,1k =,2,3,…,所以()56k k k P X k ⋅==,1k =,2,3,…,()21111512666nn k kP k n =⎛⎫=⨯+⨯++⨯ ⎪⎝⎭∑ 记211112666n n S n =⨯+⨯++⨯ ,则2311111126666n n S n +=⨯+⨯++⨯ .作差得:1211111511111111661666666556616n n n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- ,所以611155566n n n S ⎡⎤⎛⎫⎛⎫=⋅-+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦,()16615556n nn k kP k S n =⎛⎫⎛⎫==-+ ⎪⎪⎝⎭⎝⎭∑.故116616()()lim ()lim 5565nn n n k k E X kP k kP k n ∞→∞→∞==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑.……(6分)(2)(ⅰ){}E ηξ∣所有可能的取值为:{}i E x ηξ=∣,1,2,,i n = .且对应的概率{}{}()()()1ii i p E E x p x p x ηξηξξ=====∣∣,1,2,,i n = .所以{}()()()()()111111111[{}],,nnmn m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫==⋅=⋅= ⎪ ⎪⎝⎭∑∑∑∑∑∣∣,又()()()()21111111,,,nmmnmn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑,所以{}E E E ηξη⎡⎤=⎣⎦∣.……(12分)(ⅱ){}01E E ηξη==+∣,156p =;{}12E E ηξη==+∣,2536p =;{}22E η==,3136p =,{}()()5513542122636363636E E E E E E ηηηηηξ⎡⎤==++++⨯=+⎣⎦∣,故42E η=.……(17分)。
2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}{}1,2,3,4,5,1,2,U U A A ===集合则ð ( )A.{}1,2B.{}3,4,5C.{}1,2,3,4,5D.∅ 【测量目标】集合的补集.【考查方式】直接给出集合,用列举法求集合补集. 【参考答案】B【试题解析】依据补集的定义计算. {}1,2,3,4,5U =,{}1,2A =,∴ U A =ð{3,4,5}. 2.已知α是第二象限角,5sin ,cos 13αα==则 ( ) A.1213- B.513- C.513 D.1213【测量目标】同角三角函数基本关系.【考查方式】直接给出角的象限和正弦值,求余弦值. 【参考答案】A【试题解析】利用同角三角函数基本关系式中的平方关系计算.因为α为第二象限角,所以12cos .13α==-3.已知向量()()()()1,1,2,2,,=λλλ=+=++⊥-若则m n m n m n ( )A.-4B.-3C.-2D.1- 【测量目标】平面向量的坐标运算与两向量垂直的坐标公式等.【考查方式】给出两向量的坐标表示,两向量坐标运算的垂直关系,求未知数.λ 【参考答案】B【试题解析】利用坐标运算得出+-与m n m n 的坐标,再由两向量垂直的坐标公式求λ, 因为()()23,3,1,1,λ+=+-=--m n m n 由()(),+⊥-m n m n 可得()()()()23,31,1260,λλ+-=+--=--= m n m n (步骤1)解得 3.λ=- (步骤2)4.不等式222x -<的解集是 ( )A.()1,1-B.()2,2-C.()()1,00,1-D.()()2,00,2- 【测量目标】含绝对值的一元二次不等式的解.【考查方式】给出绝对值不等式,求出满足不等式的解集. 【参考答案】D【试题解析】将绝对值不等式转化为一元二次不等式求解.由222,x -<得2222,x -<-<即204,x <<(步骤1)所以20x -<<或02,x <<故解集为()()2,00,2.- (步骤2)5.()862x x +的展开式中的系数是 ( )A.28B.56C.112D.224 【测量目标】二项式定理.【考查方式】由二项式展开式,求满足条件的项的系数. 【参考答案】C【试题解析】写出二项展开式的通项,从而确定6x 的系数.该二项展开式的通项为88188C 22C ,r r r r r r r T x x --+==(步骤1)令2,r =得2266382C 112,T x x ==所以6x 的系数是112. (步骤2)6.函数()()21log 10f x x x ⎛⎫=+> ⎪⎝⎭的反函数1()f x -= ( ) A.()1021x x >- B.()1021xx ≠- C.()21x x -∈R D.()210x x -> 【测量目标】反函数的求解方法,函数的值域求法. 【考查方式】给出函数的解析式,求它的反函数.. 【参考答案】A【试题解析】由已知函数解出,x 并由x 的范围确定原函数的值域,按照习惯把,x y 互换,得出反函数. 由21log 1y x ⎛⎫=+⎪⎝⎭得112,yx ⎛⎫+= ⎪⎝⎭故1.21yx =-(步骤1)把x 和y 互换,即得()11.21x f x -=-(步骤2) 由0,x >得111,x+>可得0.y > 故所求反函数为()11(0).21xf x x -=>-(步骤3) 7.已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 ( )A.()10613---B.()101139-- C.()10313-- D.()1031+3-【测量目标】等比数列的定义及等比数列前n 项和.【考查方式】给出一个数列{n a }、它的前后项的关系,判断是否为特殊数列,从而求出它的前n 项和. 【参考答案】C【试题解析】先根据等比数列的定义判断数列{}n a 是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算. 由130,n n a a ++=得11,3n n a a +=-故数列{}n a 是公比13q =-的等比数列. (步骤1)又24,3a =-可得1 4.a =(步骤2)所以()1010101413313.113S -⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦==-⎛⎫-- ⎪⎝⎭(步骤3)8.()()1221,0,1,0,F F C F x -已知是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为 ( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 【测量目标】椭圆的标准方程及简单几何性质.【考查方式】给出椭圆焦点,由椭圆与直线的位置关系,利用待定系数法求椭圆的标准方程. 【参考答案】C【试题解析】设出椭圆的方程,依据题目条件用待定系数法求参数.由题意知椭圆焦点在x 轴上,且1,c =可设C 的方程为()22221,1x y a a a +>-(步骤1)由过2F 且垂直于x 轴的直线被C 截得的弦长3,AB =知点21,3⎛⎫ ⎪⎝⎭必在椭圆上,(步骤2)代入椭圆方程化简得4241740,a a -+=所以24a =或214a =(舍去). (步骤3) 故椭圆C 的方程为221.43x y +=(步骤4) 9.若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则 ( ) A.5 B.4 C.3 D.2第9题图【测量目标】根据函数的部分图象确定函数解析式.【考查方式】给出正弦函数的未知解析式及正弦函数的部分图象.根据图象求出T ,确定ω的值.【参考答案】B【试题解析】根据图象确定函数的最小正周期,再利用2πT ω=求.ω设函数的最小正周期为T ,由函数图象可知0ππ=,244T x x ⎛⎫+-= ⎪⎝⎭所以π.2T =(步骤1)又因为2π,T ω=可解得 4.ω=(步骤2)10.已知曲线()421128=y x ax a a =++-+在点,处切线的斜率为, ( )A.9B.6C.9-D.6- 【测量目标】导数的几何意义及求导公式等知识.【考查方式】已知曲线在未知点处的切线斜率,利用导数的几何意义求未知数a . 【参考答案】D【试题解析】先对函数求导,利用导数的几何意义得出点()1,2a -+处的切线斜率,解方程所得.342,y x ax '=+由导数的几何意义知在点(1,2)a -+处的切线斜率1|428,x k y a =-'==--=解得 6.a =-11.已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( )A.23 D.13 【测量目标】直线与平面所成角和线面垂直的判定.【考查方式】已知正四棱柱,利用其性质和几何体中的垂直关系求线面角的正弦值. 【参考答案】A【试题解析】利用正四棱柱的性质,通过几何体中的垂直关系,判断点C 在平面1BDC 上的射影位置,确定线平面角,并划归到直角三角形中求解.如图,连接AC ,交BD 于点O ,由正四棱柱的性质,有.AC BD ⊥ 因为1CC ⊥平面ABCD ,所以 BD ⊥(步骤1)又1,CC AC C = 所以BD ⊥平面 O (步骤2) 在平面1CC O 内作1,CH C O ⊥垂足为H ,则.BD CH ⊥又1,BD C O O = 所以CH ⊥平面1,BDC (步骤3) 第11题图 连接DH ,则DH 为CD 在平面1BDC 上的射影,所以CDH ∠为CD 与1BDC 所成的角.(步骤4)设12 2.AA AB ==在1Rt COC △中,由等面积变换易求得2,3CH =在Rt CDH △中,2sin .3CH CDH CD ∠==(步骤5) 12.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k = ( )A .12 D.2 【测量目标】直线与抛物线的位置关系,平面向量的坐标运算等知识.【考查方式】已知抛物线标准方程,利用抛物线性质及直线与抛物线的位置关系求解过焦点的直线的斜率. 【参考答案】D【试题解析】联立直线与抛物线的方程,消元得一元二次方程并得两根之间的关系,由0MA MB =进行坐标运算解未知量k .抛物线C 的焦点为()2,0,F 则直线方程为()2,y k x =-与抛物线方程联立,消去y 化简得()22224840.k x k x k -++=(步骤1)设点()()1122,,,,A x y B x y 则1212284, 4.x x x x k +=+=所以()121284,y y k x x k k+=+-=()21212122416.y y k x x x x =-++=-⎡⎤⎣⎦(步骤2) ()()()()()()112212122,22,22222MA MB x y x y x x y y =+-+-=+++--()()121212122280,x x x x y y y y =+++-++=(步骤3)将上面各个量代入,化简得2440,k k -+=所以 2.k =(步骤4)二、填空题:本大题共4小题,每小题5分.13.设()[)()21,3=f x x f x ∈是以为周期的函数,且当时, . 【测量目标】函数周期的应用及根据函数解析式求值.【考查方式】给出函数()f x 的周期及取值范围,代入解析式求函数值.【参考答案】1-【试题解析】利用周期将自变量转化到已知解析式中x 的范围内,代入解析式计算 . 由于()f x 的周期为2,且当[)1,3x ∈时,()2,f x x =-(步骤1)()2,f x x =-()()()112112 1.f f f -=-+==-=-(步骤2)14.从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答)【测量目标】简单的排列组合知识的应用. 【考查方式】直接利用排列组合知识列式求解. 【参考答案】60【试题解析】利用排列组合知识列式求解. 由题意知,所有可能的决赛结果有12365354C C C 61602⨯=⨯⨯=(种).15.若x y 、满足约束条件0,34,34,x x y x y ⎧⎪+⎨⎪+⎩………则z x y =-+的最小值为 .【测量目标】二元线性规划求目标函数最值.【考查方式】直接给出函数的约束条件,利用线性规划性质及借助数形结合思想求z 的最小值.【参考答案】0【试题解析】作出定义域,借助数形结合寻找最优解.由不等式组作出可行域,如图阴影部分所示()包括边界,且()()41,1040,.3A B C ⎛⎫⎪⎝⎭,,,,由数形结合知,直线y x z =+过点()1,1A 时,min 110.z =-+= 16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K = ,且圆与圆所在的平面所成角为,则球O 的表面积等于 .【测量目标】球的大圆、小圆及球的截面性质,二面角的平面角,球的表面积公式等知识. 【考查方式】已知二面角的平面角,根据球的截面性质,直角三角形的性质,求出球的半径,并由球的表面积公式求球的表面积. 【参考答案】16π 【试题解析】根据球的截面性质以及二面角的平面角的定义确定平面角,把球的半径转化到三角形中计算,进而求得球的表面积.如图所示,公共弦为AB ,设球的半径为R ,则,AB R =取AB 为中点M ,连接OM 、,KM由圆的性质知,,OM AB KM AB ⊥⊥ 所以KMO ∠为圆O 与圆K 所在平面所成的一个二面角的平面角,则60.KOM ∠=(步骤1)Rt KOM △中,3,2OK =所以sin 60OK OM == (步骤2) 在Rt OMA △中,因为222,OA OM AM =+所以2213,4R R =+解得24,R =(步骤3)所以球O 的表面积为24π16π.R =(步骤4)三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式; (II )设{}1,.n n n nb b n S na =求数列的前项和 【测量目标】等差数列的通项公式、裂项相消法求数列的前n 项和.【考查方式】(1)根据等差数列的通项公式求出首项和公差,进而求出等差数列的通项公式.(2)已知通项公式,利用裂项相消法求和.【试题解析】(1)设等差数列{}n a 的公差为d ,则()11.n a a n d =+-因为71994,2,a a a =⎧⎨=⎩所以()11164,1828.a d a d a d +=⎧⎨+=+⎩(步骤1)解得11,1.2a d =⎧⎪⎨=⎪⎩所以{}n a 的通项公式为1.2n n a +=(步骤2) (2)因为()222,11n b n n n n ==-++所以2222222.122311n n S n n n ⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭(步骤3) 18.(本小题满分12分)设ABC △的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=.(I )求B(II)若1sin sin 4A C =,求C . 【测量目标】余弦定理解三角形,三角恒等变换公式及其应用.【考查方式】已知三角形的三边及三边关系.(1)由已知关系式展开,利用余弦定理求角. (2)三角形内角和得出A C +,由给出的sin sin A C 的形式,联想构造与已知条件相匹配的余弦公式,求出角C .【试题解析】(1)因为()(),a b c a b c ac ++-+=所以222.a c b ac +-=-(步骤1)由余弦定理得2221cos ,22a cb B ac +-==-因此120.B =(步骤2)(2)由(1)知60,A C +=所以()cos cos cos sin sin A C A C A C -=+cos cos sin sin 2sin sin A C A C A C =-+()11cos 2sin sin 2242A C A C =++=+⨯=(步骤1) 故30A C -=或30,A C -=- 因此15C =或45.C =(步骤2) 19.(本小题满分12分)如图,四棱锥P-ABCD 中,==90ABC BAD ∠∠,BC =2AD ,△P AB 与△PAD 都是边长为2的等边三角形. 图(1)(I )证明:;PB CD ⊥(II )求点.A PCD 到平面的距离【测量目标】空间垂直关系的证明和点到平面距离的求解.第19题图【考查方式】已知四棱锥,底面为特殊的直角梯形,侧面为特殊三角形(1)借助线线、线面垂直求解.(2)通过做辅助线将点面距离转化为图形中的线段,再求解.【试题解析】(1)证明:取BC 的中点E ,连接DE ,则四边形ABCD 为正方形. 过点P 作PO ABCD ⊥平面,垂足为O .连接OA ,OB,OD ,OE . 图(2) 由PAB △和PAD △都是等边三角形知,PA PB PD ==(步骤1)所以,O A O B O D ==即O 为正方形ABED 对角线的交点,故 ,OE BD ⊥从而.P B O E ⊥(步骤2)因为O 是BD 的中点,E 是BC 的中点,所以OE //CD .因此.PB CD ⊥(步骤3)(2)解:取PD 的中点F ,连接OF ,则//.OF PB 由(1)知,,PB CD ⊥故.OF CD ⊥(步骤4)又12OD BD ==OP ==故POD △为等腰三角形,(步骤5) 因此.OF PD ⊥又,PD CD D = 所以.OF PCD ⊥平面(步骤6)因为//,AE CD CD PCD ⊂平面,,AE PCD ⊄平面所以//.AE PCD 平面(步骤7) 因此点O 到平面PCD 的距离OF 就是点A 到平面PCD 的距离,(步骤8) 而112OF PB ==,所以点A 到平面PCD 的距离为1. (步骤9) 20.(本小题满分12分)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为1,2各局比赛的结果都相互独立,第1局甲当裁判.(I )求第4局甲当裁判的概率;(II )求前4局中乙恰好当1次裁判概率. 【测量目标】相互独立事件同时发生的概率,互斥事件概率加法公式的应用.【考查方式】(1)直接利用独立事件的概率公式求解.(2)由已知,直接利用互斥事件的加法公式求解.【试题解析】(1)记1A 表示事件“第2局结果为甲胜”,2A 表示“第3局甲参加比赛时,结果为甲负”,A 表示事件“第4局甲当裁判”.则12.A A A = ()()()()12121.4P A P A A P A P A === (步骤1)(2)记1B 表示事件“第1局比赛结果为乙胜”,2B 表示事件“第2局乙参加比赛,结果为乙胜”,3B 表示事件“第3局中乙参加比赛时,结果为乙胜”,B 表示事件“前4局中乙恰好当1次裁判”, 则1312312.B B B B B B B B =++ (步骤2)()()1312312P B P B B B B B B B =++=()()()1312312P B B P B B B P B B ++=()()()()()()()1312312P B P B P B P B P B P B P B ++=111+484+ =5.8(步骤3) 21.(本小题满分12分)已知函数()32=33 1.f x x ax x +++(I )求();a f x =的单调性; (II )若[)()2,0,x f x ∈+∞时,…求a 的取值范围. 【测量目标】导数在研究函数中的应用.【考查方式】已知含未知数a 的函数()f x (1)对()f x 求导,得出()f x =0时的根,根据导数性质讨论函数单调性.(2)利用特殊值法和放缩法求a 的范围.【试题解析】(1)当a =()3231,f x x x =-++()23 3.f x x '=-+(步骤1)令()0,f x '=得121, 1.x x ==(步骤2)当()1x ∈-∞时,()0,f x '>()f x 在()1-∞上是增函数;当)1x ∈时,()0,f x '<()f x 在)1上是减函数;当)1,x ∈+∞时,()0,f x '>()f x 在)1,+∞上是增函数. (步骤3) (2)由()20f …得4.5a -…当45a -…,()2,x ∈+∞时, ()()225321312f x x ax x ⎛⎫'=++-+ ⎪⎝⎭… =()1320,2x x ⎛⎫--> ⎪⎝⎭所以()f x 在()2,+∞上是增函数,(步骤4)于是当[)2+x ∈∞,时,()()20f x f 厖.综上,a 的取值范围是4,.5⎡⎫-+∞⎪⎢⎣⎭(步骤5) 22.(本小题满分12分) 已知双曲线()221222:10,0x y C a b F F a b-=>>的左、右焦点分别为,,离心率为3,直线2y C =与(I )求,;a b(II )2F l C A B 设过的直线与的左、右两支分别相交于、两点,且11,AF BF = 证明:22AF AB BF 、、成等比数列.【测量目标】双曲线的方程、性质,直线与双曲线的位置关系,等比中项等性质.【考查方式】(1)由双曲线与直线的位置关系、双曲线的几何性质求出a,b 值.(2)由直线方程和双曲线方程,利用双曲线与直线的位置关系及两点间距离公式证明线段的等比关系.【试题解析】(1)解:由题设知3,c a =即2229,a b a+=故228.b a = 所以C 的方程为22288.x y a -=(步骤1)将y=2代入上式,求得x =(步骤2)由题设知,=解得2 1.a =所以1,a b ==(步骤3)(2)证明:由(1)知,()()123,0,3,0,F F -C 的方程为2288.x y -=○1(步骤4)由题设可设l 的方程为()3,y k x k =-<将其代入○1并化简,得 ()222286980.k x k x k --++=(步骤5)设()1122,,(,),A x y B x y 则22121212226981,1,,.88k k x x x x x x k k +-+==--剠(步骤6)于是()1131,AF x ==-+123 1.BF x ==+(步骤7)由11,AF BF =得()123131,x x -+=+(步骤8) 即2122262,,383k x x k +=-=--故 解得212419,.59k x x ==-从而(步骤9)由于2113,AF x ===-2231,BF x ===- 故()2212234,AB AF BF x x =-=-+=(步骤10)()221212=39116,AF BF x x x x +--= 因而222,AF BF AB = 所以22AF AB BF 、、成等比数列(步骤11).。
2013高三文科数学第三次联考试题(河南十所名校附答案)2013?绉戯級嫨棰橈級涓ら儴鍒嗭紟鑰冪敓浣滅瓟鏃讹紝灏嗙瓟妗堢瓟鍦ㄧ瓟棰樺崱涓婏紙?閫夋嫨棰?125鍒嗭紟?棰樼洰瑕佹眰鐨勶紟1U R锛岄泦鍚圡锛漿x锝?鈮?x}锛孨锛漿x锝?鈮?}锛屽垯M鈭㎞锛?A锛巤1锛?} B锛巤2 } C锛巤1} D锛嶽1锛?] 2锛巌?锛?锛屽垯锝渮锝滐紳A锛? B锛? C锛?D锛? 3锛庡弻鏇茬嚎?A锛?B锛?C锛?D锛?4锛庢煇瀛︾敓鍦ㄤ竴闂ㄥ姛璇剧殑22A锛?17 B锛?18 C锛?18锛? D锛?19锛? 5锛庡湪鈻矨BC M鏄疉B杈规墍鍦ㄧ洿绾夸笂浠绘剰涓€鐐癸紝鑻?锛濓紞2 锛嬑?锛屽垯位锛?A锛? B锛? C锛? D锛? 6锛庘€渕锛濓紞1鈥濇槸鈥滃嚱鏁癴锛坸锛夛紳ln锛坢x锛夊湪锛堬紞鈭烇紝0锛変笂鍗曡皟閫掑噺鈥濈殑A B锛庡繀瑕佷笉鍏呭垎鏉′欢C锛庡厖瑕佹潯浠?D锛庢棦涓嶅厖鍒嗕篃涓嶅繀瑕佹潯浠?7?梴}鐨勫墠21椤圭殑鍜岀瓑浜庡墠8椤圭殑鍜岋紟鑻?锛屽垯k锛?A锛?0 B锛?1 C锛?2 D锛?3 8?鈥?锛孷锛?锛屽垯杈撳嚭鐨凷锛?A锛? B锛?C锛? D锛?9Н涓?A锛?B锛? C锛?D锛?10锛巈锛屜€嶆垚绔嬬殑鏄?A锛?锛?B锛?锛?锛? C锛?锛?锛? D锛?锛峞锛?锛嵪€11锛庡湪鈻矨BC a A?锛?014 锛屽垯鐨勫€间负A锛? B锛? C锛?013 D锛?01412ABCD AD涓嶣C浜掔浉鍨傜洿锛屼笖AB锛婤D锛滱C 锛婥D?A锛庤嫢鍒嗗埆浣溾柍BAD鍜屸柍CAD鐨勮竟AD涓婄殑楂橈紝鍒欒繖涓ゆ潯楂樻墍鍦ㄧ洿绾垮紓闈?B锛庤嫢鍒嗗埆浣溾柍BAD鍜屸柍CAD鐨勮竟AD涓婄殑楂橈紝鍒欒繖涓ゆ潯楂橀暱搴︾浉绛?C锛嶢B锛滱C涓擠B锛滵C D锛庘垹DAB锛濃垹DAC ?闈為€夋嫨棰??3棰橈綖绗?1?2棰橈綖绗?4?氭湰澶ч?5鍒嗭紟13锛庡渾锛?x锛媘y锛?锛?鍏充簬鎶涚墿绾?锛?y______________ 14锛庝笉绛夊紡缁?瀵瑰簲鐨勫钩闈㈠尯鍩熶负D锛岀洿绾縴锛漦锛坸锛?锛変笌鍖哄煙D鏈夊叕鍏辩偣锛?鍒檏鐨勫彇鍊艰寖鍥存槸______________. 15锛庡凡鐭ュ嚱鏁癴锛坸锛夛紳锛岃嫢瀛樺湪鈭堬紙锛?锛夛紝浣縡锛坰in 锛夛紜f锛坈os 锛夛紳0锛屽垯瀹炴暟a鐨勫彇鍊艰寖鍥存槸________________. 16{ }{ }}锛寋}鐨勫墠n椤瑰拰鍒嗗埆涓?锛?锛庤嫢a3锛漛3锛宎4锛漛4锛屼笖锛?锛屽垯锛漘_____________. 涓夈€佽ВВ绛斿簲鍐欏嚭鏂囧瓧璇存槑,紟17?2鍒嗭級宸茬煡鍑芥暟f锛坸锛夛紳sin2蠅x 锛?sin蠅xcos蠅x锛埾夛紴0锛堚厾锛夋眰蠅鐨勫€煎強鍑芥暟f锛坸锛夌殑鍗曡皟澧炲尯闂达紱锛堚叀锛夋眰鍑芥暟f锛坸锛夊湪[0锛?]涓婄殑鍊煎煙锛?18?2鍒嗭級涓€娌冲崡鏃呮父鍥㈠埌瀹夊窘鏃呮父锛湁锛氭€€杩滅煶姒淬€佺爛灞辨ⅷ銆佸窘宸為潚鏋g瓑19绉嶏紝鐐瑰績绫昏ф晳椹剧瓑3857绉嶏紟璇ユ梾娓稿洟鐨勬父瀹㈠喅瀹氭寜鍒嗗眰6绉嶅甫缁欎翰鏈嬪搧灏濓紟锛堚厾暟锛??绉嶇壒浜т腑闅忔満鎶藉彇2绉嶉鈶犲垪鍑烘墍鏈夊彲鑳界殑鎶藉彇缁撴灉锛?鈶℃眰鎶藉彇鐨?绉嶇壒浜у潎涓哄皬鍚冪殑姒傜巼锛?19?2鍒嗭級濡傚浘鎵€绀虹殑鍑犱綍浣揂BCDFE紝鈻矨BC锛屸柍DFE閮芥槸绛?杈逛笁瑙掑舰锛屼笖鎵€鍦ㄥ钩闈㈠钩琛岋紝鍥CED 2 鏂瑰舰锛屼笖鎵€鍦ㄥ钩闈㈠瀭鐩翠簬骞抽潰ABC锛?锛堚厾锛夋眰鍑犱綍浣揂BCDFE锛堚叀锛夎瘉鏄庯細骞抽潰ADE CF锛?20?2鍒嗭級宸茬煡鍦咰锛?鐨勫崐寰勭瓑浜庢き鍦咵锛?锛坅锛瀊锛?鐨勫彸鐒︾偣F鍦ㄥ渾C鍐咃紝涓斿埌鐩寸嚎l锛歽锛漻锛?鐨勮窛绂讳负锛?锛岀偣M?鍦咰鐨勫叕l浜ゆき鍦咵浜庝笉鍚岀殑涓ょ偣A锛坸1锛寉1锛夛紝B 锛坸2锛寉2锛夛紟E鐨勬柟绋嬶紱锛堚叀锛夋眰璇侊細锝淎F锝滐紞锝淏F锝滐紳锝淏M锝滐紞锝淎M锝滐紟21?2鍒嗭級璁緈涓哄疄鏁帮紝鍑芥暟f锛坸锛夛紳锛?锛?x锛媘锛寈鈭圧锛堚厾锛夋眰f锛坸锛夌殑鍗曡皟鍖洪棿涓庢瀬鍊硷紱锛堚叀锛夋眰璇侊細褰搈鈮?涓攛锛?鏃讹紝锛? 锛?mx锛?.22銆?3銆?4?濡傛灉澶氬仛锛?22锛庯紙?0鍒嗭級閫変慨4鈥?濡傚浘锛屽凡鐭モ姍O鐨勫崐寰勪负1锛孧N O鐨勭洿寰勶紝杩嘙鐐?浣溾姍O鐨勫垏绾緼M锛孋鏄疉M鐨勪腑鐐癸紝AN浜も姍O浜嶣鐐癸紝鑻ュ洓杈瑰舰BCON?锛堚厾锛夋眰AM鐨勯暱锛?锛堚叀锛夋眰sin鈭燗NC 锛?23?0鍒嗭級閫変慨4鈥?锛氬潗鏍囩郴涓庡弬鏁版柟绋?宸茬煡鏇茬嚎C1鐨勬瀬鍧愭爣鏂圭▼涓合乧os锛埼革紞锛夛紳锛?锛屾洸绾緾2鐨勬瀬鍧愭爣鏂圭▼涓合侊紳2 cos锛埼革紞锛夛紟浠ユ瀬鐐逛负鍧愭爣鍘熺偣锛屾瀬杞翠负x锛堚厾锛夋眰鏇茬嚎C2鐨勭洿瑙掑潗鏍囨柟绋嬶紱锛堚叀锛夋眰鏇茬嚎C2涓婄殑鍔ㄧ偣M鍒版洸绾緾1鐨勮窛绂荤殑鏈€澶у€硷紟24?0鍒嗭級閫変慨4鈥?宸茬煡涓嶇瓑寮?锝渪锛?锝滐紜锝渪锛?锝滐紲2a锛?锛堚厾锛夎嫢a锛?锛屾眰涓嶇瓑寮忕殑瑙i泦锛?锛堚叀锛夎嫢宸茬煡涓嶇瓑寮忕殑瑙i泦涓嶆槸绌洪泦锛屾眰a 鐨勫彇鍊艰寖鍥达紟2013ф祴璇?涓?()鈥㈢瓟妗?锛?锛塀锛?锛堿锛?锛塂锛?锛塀锛?锛塁锛?锛堿锛?锛塁锛?锛塀锛?锛塂锛?0锛塂锛?1锛塁锛?2锛堿锛?3锛? 锛?4锛?锛?5锛?锛?6锛?锛?7锛夎В锛氾紙鈪狅級锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙2鍒嗭級寰?.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙3鍒嗭級. 鐢?锛?锛屽緱锛?锛??.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙5鍒嗭級锛堚叀锛夌敱寰?锛?锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙8鍒嗭級锛?鍦?涓婄殑鍊煎煙涓?.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙12鍒嗭級锛?8锛夎В锛氾紙鈪狅級鍥犱负鎵€浠ヤ粠姘?锛?锛?. 鎵涓?.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙4鍒嗭級锛堚叀锛夆憼鍦ㄤ拱鍥炵殑6绉嶇壒浜т腑锛??锛?绉嶇偣蹇冨垎?涓虹敳锛屽垯鎶藉彇鐨?绉嶇壒浜х殑鎵€鏈夊彲鑳芥儏鍐典负锛?锛?锛屽叡15绉?鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙8鍒嗭級6绉嶇壒浜т腑鎶藉彇2绉嶅潎涓哄皬鍚冧负浜嬩欢锛屽垯浜嬩欢鐨勬墍鏈夊彲鑳界粨鏋滀负锛屽叡3绉嶏紝鎵€浠?.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙12鍒嗭級锛?9锛夎В锛氾紙鈪狅級鍙?鐨勪腑鐐?锛?鐨勪腑鐐?锛岃繛鎺?. 鍥犱负锛屼笖骞抽潰骞抽潰锛?鎵€浠?骞抽潰锛屽悓鐞?骞抽潰锛?鍥犱负锛?鎵€浠?.鈥︹€︹€︹€︹€︹€︹€︼紙6鍒嗭級锛堚叀锛夌敱锛堚厾锛夌煡锛?鎵€浠ュ洓杈瑰舰涓哄钩琛屽洓杈瑰舰锛屾晠锛?鍙?锛屾墍浠ュ钩闈?骞抽潰.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙12鍒嗭級锛?0锛夎В锛氾紙鈪狅級璁剧偣锛屽垯鍒扮洿绾?鐨勮窛绂讳负锛屽嵆锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙2鍒嗭級鍥犱负鍦ㄥ渾鍐咃紝鎵€浠?锛屾晠锛涒€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙4鍒嗭級鍥犱负鍦?鐨勫崐寰勭瓑浜庢き鍦?鐨勭煭鍗婅酱闀匡紝鎵€浠?锛??.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙6鍒嗭級锛堚叀锛夊洜涓哄渾蹇?鍒扮洿绾?鐨勮窛绂讳负锛屾墍浠ョ洿绾?涓庡渾鐩稿垏锛??涓虹洿瑙掍笁瑙掑舰锛屾墍浠?锛?鍙?锛屽彲寰?锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙7鍒嗭級锛屽張锛屽彲寰?锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︼紙9鍒嗭級鎵€浠?锛屽悓鐞嗗彲寰?锛屸€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙11鍒嗭級鎵€浠?锛屽嵆.鈥︹€︹€︹€︹€︹€︹€︼紙12鍒嗭級锛?1锛夎В锛氾紙鈪狅級锛屼护锛?鏄撶煡鏃?锛?芥暟锛?鏃?锛?涓哄噺鍑芥暟锛?鎵€浠ュ嚱鏁?鏈夋瀬澶у€硷紝鏃犳瀬灏忓€硷紝鏋佸ぇ鍊间负.鈥︹€︹€︹€︹€︹€︹€︹€︹€︼紙6鍒嗭級锛堚叀锛変护锛?锛屽垯锛?鐢憋紙鈪狅級鐭ワ紝褰?鏃讹紝锛屾墍浠?锛?鏁?鍦?涓婁负澧炲嚱鏁帮紝鎵€浠?锛屾晠.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙12鍒嗭級锛?2锛夎В锛氾紙鈪狅級杩炴帴锛屽垯锛?鍥犱负鍥涜竟褰??鈭?锛?鍥犱负鏄?鐨勫垏绾匡紝鎵€浠?锛屽彲寰?锛?鍙堝洜涓?鏄?鐨勪腑鐐癸紝鎵€浠?锛?寰?锛屾晠.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙5鍒嗭級锛堚叀锛変綔浜?鐐癸紝鍒?锛岀敱锛堚厾锛夊彲寰?锛?鏁?.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙10鍒嗭級锛?3锛夎В锛氾紙鈪狅級锛?鍗?锛屽彲寰?锛?鏁?鐨勭洿瑙掑潗鏍囨柟绋嬩负.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙5鍒嗭級锛堚叀锛?鐨勭洿瑙掑潗鏍囨柟绋嬩负锛?鐢憋紙鈪狅級鐭ユ洸绾?涓哄渾蹇冪殑鍦嗭紝涓斿渾蹇冨埌鐩寸嚎鐨勮窛绂?锛?鎵€浠ュ姩鐐?鍒版洸绾?鐨勮窛绂荤殑鏈€澶у€间负.鈥︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙10鍒嗭級锛?4锛夎В锛氾紙鈪狅級褰?鏃讹紝涓嶇瓑寮忓嵆涓?锛?鑻?锛屽垯锛?锛?鑸嶅幓锛?鑻?锛屽垯锛?锛?鑻?锛屽垯锛?锛?缁间笂锛屼笉绛夊紡鐨勮В闆嗕负锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙5鍒嗭級锛屽垯锛?锛?锛?锛屽嵆鐨勫彇鍊艰寖鍥翠负锛庘€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︹€︼紙10鍒嗭級。
2013年江西省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、(5分)复数z=i(﹣2﹣i)(i为虚数单位)在复平面内所对应的点在()A、第一象限B、第二象限C、第三象限D、第四象限2、(5分)若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a=()A、4B、2C、0D、0或43、(5分)若sin=,则cosα=()A、﹣B、﹣C、D、4、(5分)集合A={2,3},B={1,2,3},从A,B中各取任意一个数,则这两数之和等于4的概率是()A、B、C、D、5、(5分)总体由编号为01,02,…,19,20的20个个体组成、利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()78166572080263140702436997280198 32049234493582003623486969387481A、08B、07C、02D、016、(5分)下列选项中,使不等式x<<x2成立的x的取值范围是()A、(﹣∞,﹣1)B、(﹣1,0)C、(0,1)D、(1,+∞)7、(5分)阅读如图所示的程序框图,如果输出i=4,那么空白的判断框中应填入的条件是()A、S<8B、S<9C、S<10D、S<118、(5分)一几何体的三视图如图所示,则该几何体的体积为()A、200+9πB、200+18πC、140+9πD、140+18π9、(5分)已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C 相交于点M,与其准线相交于点N,则|FM|:|MN|=()A、2:B、1:2C、1:D、1:310、(5分)如图、已知l1⊥l2,圆心在l1上、半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()A、B、C、D、二、填空题:本大题共5小题,每小题5分,共25分、11、(5分)若曲线y=x a+1(a∈R)在点(1,2)处的切线经过坐标原点,则a=、12、(5分)某班植树小组今年春天计划植树不少于100棵,若第一天植树2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于、13、(5分)设f(x)=sin3x+cos3x,若对任意实数x都有|f(x)|≤a,则实数a的取值范围是、14、(5分)若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是、15、(5分)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为、三、解答题:本大题共6小题,共75分、解答应写出文字说明,证明过程或演算步骤、16、(12分)正项数列{a n}满足:a n2﹣(2n﹣1)a n﹣2n=0、(1)求数列{a n}的通项公式a n;(2)令b n=,求数列{b n}的前n项和T n、17、(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1、(1)求证:a,b,c成等差数列;(2)若C=,求的值、18、(12分)小波已游戏方式决定是去打球、唱歌还是去下棋、游戏规则为以O 为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋(1)写出数量积X的所有可能取值(2)分别求小波去下棋的概率和不去唱歌的概率、19、(12分)如图,直四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=,AA1=3,E为CD上一点,DE=1,EC=3(1)证明:BE⊥平面BB1C1C;(2)求点B1到平面EA1C1的距离、20、(13分)椭圆C:=1(a>b>0)的离心率,a+b=3、(1)求椭圆C的方程;(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m﹣k为定值、21、(14分)设函数常数且a∈(0,1)、(1)当a=时,求f(f());(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点,试确定函数有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC的面积为s(a),求s(a)在区间[,]上的最大值和最小值、2013年江西省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、(5分)复数z=i(﹣2﹣i)(i为虚数单位)在复平面内所对应的点在()A、第一象限B、第二象限C、第三象限D、第四象限分析:化简可得复数z=i(﹣2﹣i)=﹣2i﹣i2=1﹣2i,由复数的几何意义可得答案、解答:解:化简可得复数z=i(﹣2﹣i)=﹣2i﹣i2=1﹣2i,故复数在复平面内所对应的点的坐标为(1,﹣2)在第四象限,故选:D、点评:本题考查复数的代数表示法及其几何意义,属基础题、2、(5分)若集合A={x∈R|ax2+ax+1=0}其中只有一个元素,则a=()A、4B、2C、0D、0或4分析:当a为零时,方程不成立,不符合题意,当a不等于零时,方程是一元二次方程只需判别式为零即可、解答:解:当a=0时,方程为1=0不成立,不满足条件当a≠0时,△=a2﹣4a=0,解得a=4故选:A、点评:本题主要考查了元素与集合关系的判定,以及根的个数与判别式的关系,属于基础题、3、(5分)若sin=,则cosα=()A、﹣B、﹣C、D、分析:由二倍角的余弦公式可得cosα=1﹣2sin2,代入已知化简即可、解答:解:由二倍角的余弦公式可得cosa=1﹣2sin2=1﹣2×=1﹣=故选:C、点评:本题考查二倍角的余弦公式,把α看做的二倍角是解决问题的关键,属基础题、4、(5分)集合A={2,3},B={1,2,3},从A,B中各取任意一个数,则这两数之和等于4的概率是()A、B、C、D、分析:由分步计数原理可得总的方法种数为2×3=6,由列举法可得符合条件的有2种,由古典概型的概率公式可得答案、解答:解:从A,B中各取任意一个数共有2×3=6种分法,而两数之和为4的有:(2,2),(3,1)两种方法,故所求的概率为:=、故选:C、点评:本题考查古典概型及其概率公式,属基础题、5、(5分)总体由编号为01,02,…,19,20的20个个体组成、利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()78166572080263140702436997280198 32049234493582003623486969387481 A、08 B、07 C、02 D、01分析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字开始向右读,依次为65,72,08,02,63,14,07,02,43,69,97,28,01,98,…,其中08,02,14,07,01符合条件,故可得结论、解答:解:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件依次为:08,02,14,07,01,故第5个数为01、故选:D、点评:本题主要考查简单随机抽样、在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的、6、(5分)下列选项中,使不等式x<<x2成立的x的取值范围是()A、(﹣∞,﹣1)B、(﹣1,0)C、(0,1)D、(1,+∞)分析:通过x=,,2验证不等式是否成立,排除选项B、C、D、即可得到正确选项、解答:解:利用特殊值排除选项,不妨令x=时,代入x<<x2,得到<,显然不成立,选项B不正确;当x=时,代入x<<x2,得到,显然不正确,排除C;当x=2时,代入x<<x2,得到,显然不正确,排除D、故选:A、点评:本题考查分式不等式的解法,由于本题是选择题,利用特殊值验证法是快速解答选择题的一种技巧、当然可以直接解答,过程比较复杂、7、(5分)阅读如图所示的程序框图,如果输出i=4,那么空白的判断框中应填入的条件是()A、S<8B、S<9C、S<10D、S<11分析:由框图给出的赋值,先执行一次运算i=i+1,然后判断得到的i的奇偶性,是奇数执行S=2*i+2,是偶数执行S=2*i+1,然后判断S的值是否满足判断框中的条件,满足继续从i=i+1执行,不满足跳出循环,输出i的值、解答:解:框图首先给变量S和i赋值S=0,i=1,执行i=1+1=2,判断2是奇数不成立,执行S=2×2+1=5;判断框内条件成立,执行i=2+1=3,判断3是奇数成立,执行S=2×3+2=8;判断框内条件成立,执行i=3+1=4,判断4是奇数不成立,执行S=2×4+1=9;此时在判断时判断框中的条件应该不成立,输出i=4、而此时的S的值是9,故判断框中的条件应S<9、若是S<8,输出的i值等于3,与题意不符、故选:B、点评:本题考查了程序框图,考查了循环结构,内含条件结构,整体属于当型循环,解答此题的关键是思路清晰,分清路径,属基础题、8、(5分)一几何体的三视图如图所示,则该几何体的体积为()A、200+9πB、200+18πC、140+9πD、140+18π分析:根据题意,该几何体是下部是长方体、上部是半圆柱所组成、根据所给出的数据可求出体积、解答:解:根据图中三视图可得出其体积=长方体的体积与半圆柱体积的和长方体的三度为:10、4、5;圆柱的底面半径为3,高为2,所以几何体的体积=10×4×5+32π×2=200+9π、故选:A、点评:本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽、9、(5分)已知点A(2,0),抛物线C:x2=4y的焦点为F,射线FA与抛物线C 相交于点M,与其准线相交于点N,则|FM|:|MN|=()A、2:B、1:2C、1:D、1:3分析:求出抛物线C的焦点F的坐标,从而得到AF的斜率k=﹣、过M作MP ⊥l于P,根据抛物线物定义得|FM|=|PM|、Rt△MPN中,根据tan∠MNP=,从而得到|PN|=2|PM|,进而算出|MN|=|PM|,由此即可得到|FM|:|MN|的值、解答:解:∵抛物线C:x2=4y的焦点为F(0,1),点A坐标为(2,0)∴抛物线的准线方程为l:y=﹣1,直线AF的斜率为k==﹣,过M作MP⊥l于P,根据抛物线物定义得|FM|=|PM|∵Rt△MPN中,tan∠MNP=﹣k=,∴=,可得|PN|=2|PM|,得|MN|==|PM|因此,,可得|FM|:|MN|=|PM|:|MN|=1:故选:C、点评:本题给出抛物线方程和射线FA,求线段的比值、着重考查了直线的斜率、抛物线的定义、标准方程和简单几何性质等知识,属于基础题、10、(5分)如图、已知l1⊥l2,圆心在l1上、半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=cosx,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()A、B、C、D、分析:通过t的增加,排除选项A、D,利用x的增加的变化率,说明余弦函数的变化率,得到选项即可、解答:解:因为当t=0时,x=0,对应y=1,所以选项A,D不合题意,当t由0增加时,x的变化率由大变小,又y=cosx是减函数,所以函数y=f(t)的图象变化先快后慢,所以选项B满足题意,C正好相反、故选:B、点评:本题考查函数图象的变换快慢,考查学生理解题意以及视图能力、二、填空题:本大题共5小题,每小题5分,共25分、11、(5分)若曲线y=x a+1(a∈R)在点(1,2)处的切线经过坐标原点,则a=2、分析:求出函数的导函数,求出x=1时的导数值,写出曲线y=x a+1(a∈R)在点(1,2)处的切线方程,把原点坐标代入即可解得α的值、解答:解:由y=x a+1,得y′=ax a﹣1、所以y′|x=1=a,则曲线y=x a+1(α∈R)在点(1,2)处的切线方程为:y﹣2=a(x﹣1),即y=ax﹣a+2、把(0,0)代入切线方程得,a=2、故答案为:2、点评:本题考查了利用导数研究曲线上某点处的导数,考查了直线方程点斜式,是基础题、12、(5分)某班植树小组今年春天计划植树不少于100棵,若第一天植树2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(n∈N*)等于6、分析:由题意可得,第n天种树的棵数a n是以2为首项,以2为公比的等比数列,根据等比数列的求和公式求出n天中种树的棵数满足s n≥100,解不等式可求解答:解:由题意可得,第n天种树的棵数a n是以2为首项,以2为公比的等比数列s n==2n+1﹣2≥100∴2n+1≥102∵n∈N*∴n+1≥7∴n≥6,即n的最小值为6故答案为:6点评:本题主要考查了等比数列的求和公式在实际问题中的应用,解题的关键是等比数列模型的确定13、(5分)设f(x)=sin3x+cos3x,若对任意实数x都有|f(x)|≤a,则实数a的取值范围是a≥2、分析:构造函数F(x)=|f(x)|=|sin3x+cos3x|,利用正弦函数的特点求出F (x)max,从而可得答案、解答:解:∵不等式|f(x)|≤a对任意实数x恒成立,令F(x)=|f(x)|=|sin3x+cos3x|,则a≥F(x)max、∵f(x)=sin3x+cos3x=2sin(3x+)∴﹣2≤f(x)≤2∴0≤F(x)≤2F(x)max=2∴a≥2、即实数a的取值范围是a≥2故答案为:a≥2、点评:本题考查两角和与差公式及构造函数的思想,考查恒成立问题,属于中档题、14、(5分)若圆C经过坐标原点和点(4,0),且与直线y=1相切,则圆C的方程是、分析:设出圆的圆心坐标与半径,利用已知条件列出方程组,求出圆的圆心坐标与半径,即可得到圆的方程、解答:解:设圆的圆心坐标(a,b),半径为r,因为圆C经过坐标原点和点(4,0),且与直线y=1相切,所以,解得,所求圆的方程为:、故答案为:、点评:本题考查圆的标准方程的求法,列出方程组是解题的关键,考查计算能力、15、(5分)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为4、分析:判断EF与正方体表面的关系,即可推出正方体的六个面所在的平面与直线EF相交的平面个数即可、解答:解:由题意可知直线EF与正方体的左右两个侧面平行,与正方体的上下底面相交,前后侧面相交,所以直线EF与正方体的六个面所在的平面相交的平面个数为4、故答案为:4、点评:本题考查直线与平面的位置关系,基本知识的应用,考查空间想象能力、三、解答题:本大题共6小题,共75分、解答应写出文字说明,证明过程或演算步骤、16、(12分)正项数列{a n}满足:a n2﹣(2n﹣1)a n﹣2n=0、(1)求数列{a n}的通项公式a n;(2)令b n=,求数列{b n}的前n项和T n、分析:(1)通过分解因式,利用正项数列{a n},直接求数列{a n}的通项公式a n;(2)利用数列的通项公式化简b n=,利用裂项法直接求数列{b n}的前n 项和T n、解答:解:(1)由正项数列{a n}满足:﹣(2n﹣1)a n﹣2n=0,可得(a n﹣2n)(a n+1)=0所以a n=2n、(2)因为a n=2n,b n=,所以b n===,T n===、数列{b n}的前n项和T n为、点评:本题考查数列的通项公式的求法,裂项法求解数列的和的基本方法,考查计算能力、17、(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知sinAsinB+sinBsinC+cos2B=1、(1)求证:a,b,c成等差数列;(2)若C=,求的值、分析:(1)由条件利用二倍角公式可得sinAsinB+sinBsinC=2 sin2B,再由正弦定理可得ab+bc=2b2,即a+c=2b,由此可得a,b,c成等差数列、(2)若C=,由(1)可得c=2b﹣a,由余弦定理可得(2b﹣a)2=a2+b2﹣2ab•cosC,化简可得5ab=3b2,由此可得的值、解答:解:(1)在△ABC中,角A,B,C的对边分别为a,b,c,∵已知sinAsinB+sinBsinC+cos2B=1,∴sinAsinB+sinBsinC=2 sin2B、再由正弦定理可得ab+bc=2b2,即a+c=2b,故a,b,c成等差数列、(2)若C=,由(1)可得c=2b﹣a,由余弦定理可得(2b﹣a)2=a2+b2﹣2ab•cos C=a2+b2+ab、化简可得5ab=3b2,∴=、点评:本题主要考查等差数列的定义和性质,二倍角公式、余弦定理的应用,属于中档题、18、(12分)小波已游戏方式决定是去打球、唱歌还是去下棋、游戏规则为以O 为起点,再从A1,A2,A3,A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋(1)写出数量积X的所有可能取值(2)分别求小波去下棋的概率和不去唱歌的概率、分析:(1)由题意可得:X的所有可能取值为:﹣2,﹣1,0,1,(2)列举分别可得数量积为﹣2,﹣1,0,1时的情形种数,由古典概型的概率公式可得答案、解答:解:(1)由题意可得:X的所有可能取值为:﹣2,﹣1,0,1,(2)数量积为﹣2的有,共1种,数量积为﹣1的有,,,,,共6种,数量积为0的有,,,共4种,数量积为1的有,,,共4种,故所有的可能共15种,所以小波去下棋的概率P1=,去唱歌的概率P2=,故不去唱歌的概率为:P=1﹣P2=1﹣=点评:本题考查古典概型及其概率公式,涉及平面向量的数量积的运算,属中档题、19、(12分)如图,直四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AD⊥AB,AB=2,AD=,AA1=3,E为CD上一点,DE=1,EC=3(1)证明:BE⊥平面BB1C1C;(2)求点B1到平面EA1C1的距离、分析:(1)过点B作BF⊥CD于F点,算出BF、EF、FC的长,从而在△BCE中算出BE、BC、CE的长,由勾股定理的逆定理得BE⊥BC,结合BE⊥BB1利用线面垂直的判定定理,可证出BE⊥平面BB1C1C;(2)根据AA1⊥平面A1B1C1,算出三棱锥E﹣A1B1C1的体积V=、根据线面垂直的性质和勾股定理,算出A1C1=EC1=3、A1E=2,从而得到等腰△A1EC1的面积=3,设B 1到平面EA1C1的距离为d,可得三棱锥B1﹣A1C1E的体积V=××d=d,从而得到=d,由此即可解出点B 1到平面EA1C1的距离、解答:解:(1)过点B作BF⊥CD于F点,则:BF=AD=,EF=AB=DE=1,FC=EC﹣EF=3﹣1=2在Rt△BEF中,BE==;在Rt△BCF中,BC==因此,△BCE中可得BE2+BC2=9=CE2∴∠CBE=90°,可得BE⊥BC,∵BB1⊥平面ABCD,BE⊂平面ABCD,∴BE⊥BB1,又∵BC、BB1是平面BB1C1C内的相交直线,∴BE⊥平面BB1C1C;(2)∵AA1⊥平面A1B1C1,得AA1是三棱锥E﹣A1B1C1的高线∴三棱锥E﹣A 1B1C1的体积V=×AA1×=在Rt△A1D1C1中,A1C1==3同理可得EC1==3,A1E==2∴等腰△A1EC1的底边A1C1上的中线等于=,可得=×2×=3设点B 1到平面EA1C1的距离为d,则三棱锥B1﹣A1C1E的体积为V=××d=d,可得=d,解之得d=即点B1到平面EA1C1的距离为、点评:本题在直四棱柱中求证线面垂直,并求点到平面的距离、着重考查了线面垂直的判定与性质、勾股定理与其逆定理和利用等积转换的方法求点到平面的距离等知识,属于中档题、20、(13分)椭圆C:=1(a>b>0)的离心率,a+b=3、(1)求椭圆C的方程;(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意点,直线DP交x轴于点N直线AD交BP于点M,设BP的斜率为k,MN的斜率为m,证明2m﹣k为定值、分析:(1)由题目给出的离心率及a+b=3,结合条件a2=b2+c2列式求出a,b,则椭圆方程可求;(2)设出直线方程,和椭圆方程联立后解出P点坐标,两直线方程联立解出M 点坐标,由D,P,N三点共线解出N点坐标,由两点求斜率得到MN的斜率m,代入2m﹣k化简整理即可得到2m﹣k为定值、解答:(1)解:因为,所以,即a2=4b2,a=2b、又a+b=3,得a=2,b=1、所以椭圆C的方程为;(2)证明:因为B(2,0),P不为椭圆顶点,则可设直线BP的方程为、联立,得(4k2+1)x2﹣16k2x+16k2﹣4=0、所以,、则、所以P()、又直线AD的方程为、联立,解得M()、由三点D(0,1),P(),N(x,0)共线,得,所以N()、所以MN的斜率为=、则、所以2m﹣k为定值、点评:本题考查了椭圆的标准方程,考查了直线与圆锥曲线的关系,训练了二次方程中根与系数关系,考查了由两点求斜率的公式,是中高档题、21、(14分)设函数常数且a∈(0,1)、(1)当a=时,求f(f());(2)若x0满足f(f(x0))=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点,试确定函数有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中x1,x2,设A(x1,f(f(x1))),B(x2,f(f(x2))),C(a2,0),记△ABC的面积为s(a),求s(a)在区间[,]上的最大值和最小值、分析:(1)当a=时,根据所给的函数解析式直接求值即可得出答案;(2)根据二阶周期点的定义,分段进行求解,找出符号定义的根即为所求;(3)由题意,先表示出s(a)的表达式,再借助导数工具研究s(a)在区间[,]上的单调性,确定出最值,即可求解出最值、解答:解:(1)当a=时,求f ()=,故f (f ())=f ()=2(1﹣)=(2)f (f (x ))=当0≤x ≤a 2时,由=x ,解得x=0,因为f (0)=0,故x=0不是函数的二阶周期点;当a 2<x ≤a 时,由=x ,解得x=因为f ()==≠,故x=是函数的二阶周期点;当a <x ≤a 2﹣a +1时,由=x ,解得x=∈(a ,a 2﹣a +1),因为f()=,故得x=不是函数的二阶周期点;当a 2﹣a +1<x ≤1时,由,解得x=∈(a 2﹣a +1,1),因为f ()=≠,故x=是函数的二阶周期点;因此函数有两个二阶周期点,x 1=,x 2=(3)由(2)得A (,),B (,)则s (a )=S △OCB ﹣S △OCA =×,所以s′(a )=×, 因为a ∈(),有a 2+a <1,所以s′(a )=×=>0(或令g (a )=a 3﹣2a 2﹣2a +2利用导数证明其符号为正亦可) s (a )在区间[,]上是增函数,故s(a)在区间[,]上的最小值为s ()=,最大值为s ()=点评:本题考查求函数的值,新定义的理解,利用导数求函数在闭区间上的最值,第二题解答的关键是理解定义,第三题的关键是熟练掌握导数工具判断函数的单调性,本题考查了方程的思想,转化化归的思想及符号运算的能力,难度较大,综合性强,解答时要严谨认真方可避免会而作不对现象的出现、21/ 21。
攸县二中2013届高三第四次月考文科数学试题一、选择题:本大题共9小题,每小题5分,共45分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合{}{}1,0,,01A a B x x =-=<<,若A B ≠∅,则实数a 的取值范围是A .(,0)-∞B .(0,1)C .{}1D .(1,)+∞2.复数12()1iz i i -=-为虚数单位在复平面上对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.函数22cos ()sin ()44y x x ππ=+-+的最小正周期为 A .4π B .2π C .π D .2π4.一个圆台的正视图如图所示,则其体积..等于 A .6π B .65π C .143πD .14π 5.设n S 是等差数列{}n a 的前n 项和,已知355,9a a ==,则7S 等于A .13B .35C .49D .636.下列有关命题的说法正确的是A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”.B .“6x =”是“2560x x --=”的必要不充分条件.C .命题“对任意,R x ∈均有210x x -+>"的否定是:“存在,R x ∈使得第4题图210x x -+>”. D .命题“若x y =,则cos cos x y ="的逆否命题为真命题.7.若曲线x xx f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)8. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====b a b OB a OA 其中若10,≤≤≤+=μλμλ且b a OC ,C 点所有可能的位置区域用阴影表示正确的是9.设第一象限内的点(,)x y 满足约束条件26020x y x y --≤⎧⎨-+≥⎩,若目标函数(0,z ax by a =+>0)b >的最大值为40,则51a b+的最小值为 A .256B .94C .1D .4 二、填空题:本大题共6小题,每小题5分,共30分。
2014届高三第三次月考四校联考试卷文科数学时量:120分钟 总分:150分一、选择题:(本大题共9小题,每小题5分,共45分)1.设全集{2,1,0,1,2}U =--,集合{1,1,2}A =-,{1,1}B =-,则)(B C A U 为( )A .{1,2}B .{1} C.{2} D .{1,1}-2、“x=3”是“x 2=9”的( )(A )充分而不必要的条件 (B )必要而不充分的条件 (C )充要条件 (D )既不充分也不必要的条件3. 下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是( )A .21y x =-+B .lg ||y x =C .1y x=D .x y e -= 4. 在各项都为正数的等比数列}{n a 中,首项为3,前3项和为21,则3a 等于( ) A .15 B .12 C .9 D .65. 已知函数()()()40,40.x x x f x x x x +<⎧⎪=⎨-≥⎪⎩,, 则函数()f x 的零点个数为( )A .1B .2C .3D .46已知函数y=f (x )的图象如图所示,则函数y=f (|x|)的图象为( )BC .D .7.在ABC ∆中, ︒=∠120A ,1AB AC ⋅=-,则||BC 的最小值是( ) A 、B 、2CD 、68.奇函数)(x f 在区间]1,1[-上是增函数,且1)1(-=-f ,当]1,1[-∈x 时,函数12)(2+-≤at t x f 对一切]1,1[-∈a 恒成立,则实数t 的取值范围是 ( )22.≤≤-t A 22.≥-≤t t B 或 20.≥≤t t C 或 022.=≥-≤t t t D 或或9.若关于x 的不等式02<-+c ax x 的解集为{|21}x x -<<,且函数223c x mx ax y +++=在区间)1,21(上不是单调函数,则实数m 的取值范围为 ( ) []),,、(),(),、(,、、∞+-∞∞+∞--3[]2--32--3-2-)3,2( D C B A二、填空题:本大题共6小题。
攸县二中2013届高三第三次月考文科数学试题
满分:150分 时量:120分钟
一、 选择题(本大题共
9个小题,每个小题 5 分,共 45分)
1、已知集合}{{}1,3,5,7,9,0,3,6,9,12A B ==,则A B = ( )
A }{3,5
B }{3,6
C }{3,7
D }{3,9
2、设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M ∩N ≠∅,则k 的取值范围是( )
A .]2,(-∞
B .),1[+∞-
C .),1(+∞-
D .[-1,2] 3、下列各式错误..
的是 ( ) A. 0.8
0.7
33
> B.0..50..5log 0.4log 0.6>
C. 0.10.10.750.75-<
D.lg1.6lg1.4>
4、已知两个单位向量12,e e
的夹角为θ,则下列结论不正确...
的是 ( )
A .12e e
在方向上的投影为cos θ B .22
12e e =
C .1212()()e e e e +⊥-
D .121e e ⋅=
5、函数223
0()2ln 0
x x x f x x
x ⎧+-≤=⎨
-+>⎩的零点个数为 ( )
A 、3
B 、2
C 、1
D 、0
6、已知函数m x x x f +-=3)(3在区间]0,3[-上的最大值与最小值的和为14-,则实数m 的值为 ( )
A .1
B .2
C .9-
D .8- 7、sin(2)3
y x π
=+
的图像经过怎样的平移后得到cos 2y x =的图像 ( )
A .向左平移12
π
个单位 B .向左平移
6
π
个单位
C .向右平移
12
π个单位 D .向右平移
6
π
个单位
8、已知函数y =f (x )是偶函数,且y =f (x -2)在[0,2]上是单调递减函数,则 ( ) A. f(-1)<f(2)<f(0) B. f(-1)<f(0)<f(2) C. f(0)<f(-1)<f(2) D. f(2)<f(-1)<f(0)
9、函数11()(sin cos )sin cos 2
2
f x x x x x
=
+-
-,则()f x 的值域是 ( )
A .[]1,1-
B. 2⎡
⎤-
⎢⎥⎣⎦
C.2⎡
-⎢⎣
⎦
D. 1,2⎡
--
⎢⎣⎦
二、填空题(本大题共6个小题.每个小题5分,共30分)
10、若函数[]2(2)3,,y x a x x a b =+++∈的图象关于直线x =1对称,则b =___ ;
11、已知向量a (2,1),(1,),(1,2).b m c =-=-=-
若()//a b c
+
,则
m = ;
12、已知|||
|a b == ,
(2)()2a b a b +-=-
,则a
与b
的夹角
为 ; .
13、已知1s i n
c o s 2αα=+
,且(0,)2
π
α∈,则
c o s
2
s i n (
)
4
απ
α-的值
为 ; . 14、已知函数(
)11sin 244f x x x x
=
-
-
的图象在点()()00,A x f x 处的切线斜率为
12
,则)4
tan(0π
+
x 的值为 ;
15、2()lg(1)(),f x x ax a a R =+--∈已知函数给出下列命题: ①1()--+;a f x =∞⋃∞时,的定义域为(,2)(1,) ②()f x 有最小值;
③当0();a f x R =时,的值域为
④若()f x a ∞在区间[2,+)上是增函数,则实数的取值范围是∞[-4,+). 其中正确结论的序号是 .(填上所有正确命题的序号)
三、解答题(共6小题,共75分,解答题应写出必要的文字说明、证明过程或演算步骤) 16、(本小题12
分)已知向量(3,1),(1,)
A B A C a ==-
,a R ∈
(1)若D 为BC
中点,(,2)A D m =
,求,a m
的值
(2)若A B C ∆是以角B 为直角的三角形,求a 的值
17、(本小题12
分)在三角形ABC 中,已知2A B A C A B A C ∙=∙
,设C A B α∠=.
(Ⅰ)求角α的值;
(Ⅱ)若cos(-)=7
βα,其中5(,
)3
6
βππ
∈,求cos β的值
18、(本小题12分)已知函数()sin cos ,
f x x x =+/
()f x 是()f x 的导函数。
(1)求/2()()()()F x f x f x f x =+的最大值和最小正周期 (2)若/
()2()f x f x =,求2
2
1sin cos sin cos x x x x
+-的值。
19、(本小题13分)设函数32
()39,f x x x x =
--()15g x x a =+
(1)求()f x 的极值;
(2)若函数()f x 的图像与()g x 的图像恰有三个交点,求a 的取值范围。
20、(本小题13分)如图,四棱锥S -ABCD 的底面是矩形,SA ⊥底面ABCD ,
P 为BC 边的中点,AD =2,AB=1.SP 与平面ABCD 所成角为4
π
.
(1)求证:平面SPD ⊥平面SAP;
(2)求三棱锥S -APD 的体积,
21、(本小题13分)某公司准备年底推出一新产品,为将产品推向市场,公
司决定拨出一部分资金作为广告费用,经预算,平均每件产品的广告费用为0.5元,在产品投放市场之前,销售人员做了认真的市场调查,为了增强市场对该产品的认知度,准备在投放市场的同时进行产品促销活动,经预算,用于促销活动费用()Q x 与月销售量x (万件)之间的关系式()34
k Q x x =
+。
若在产品投放市
场之前,促销活动的费用(前期准备工作)已花费6万元。
(1)求该公司一年用于该产品的广告费用与促销费用总和()f x 与月销售量x (万件)之间的关系式;
(2)求当月销售量是多少时该公司一年用于该产品的广告费用与促销费用总和
()f x 最少。
攸县二中2013届高三第三次月考
文科数学试题(答卷)
满分:150分 时量:120分钟
一、 选择题(本大题共9小题,每小题5 分,共 45分)
二、填空题(本大题共7个小题,考生作答6个小题.每个小题5分,共30分,把答案填在答题卡中对应题号后的横线上)
10、 11、 12、
13、 14、 15、 三、解答题(共6小题,共75分,解答题应写出必要的文字说明、证明过程或演算步骤) 16、(本小题12分)
班级: 考号 考室号
座位号
*******密*********************封*********************线*********************
17、(本小题12分)
18、(本小题12分)
19、(本小题12分)
20、(本小题13分)
21、(本小题13分)
*****封*********************线*********************
内 不 准 作 答。