大圆坯连铸结晶器内电磁场分布特性的实验研究
- 格式:pdf
- 大小:73.74 KB
- 文档页数:3
分析结晶器电磁搅拌对连铸坯质量的影响摘要:连铸坯是炼钢炉炼成的钢水经过连铸机铸造后所得的产品。
其应用领域十分广泛,国内外在机械工程设备方面都在使用连铸坯制件。
其中,一些钢用的连铸坯可以直接轧钢,制成管、板、型钢等。
连铸坯在经过结晶器电磁搅拌后能够有效改善一些存在缺陷的地方。
基于此,本文对结晶器电磁搅拌、连铸坯概念以及相关实验进行简要分析。
关键词:结晶器;电磁搅拌;连铸坯引言:连铸坯中最关键的问题就是其中心偏析、夹杂物以及中心缩孔等严重影响铸坯的内部质量。
电磁搅拌是最常使用的连铸生产技术,它通过电磁力来优化消除结晶器内钢水过热度。
铸坯在经过电磁搅拌后其等轴晶率会有明显提高,从而得到良好凝固组织的铸坯,使得成品性能得到改善。
可以有效地解决连铸坯中心缩孔、纯净度等问题。
一、结晶器电磁搅拌及连铸坯概述连铸坯是钢水通过连续铸钢机铸成的钢坯。
连续铸钢技术可以把生产钢水到钢坯的整个过程进行简化,不需要经过初轧过程。
因此,连铸坯具备生产成本低、金属获得率高以及劳动条件好等一系列优点。
目前,连铸坯已是轧钢生产的重要原料。
然而,连铸坯也有一定的缺陷。
例如,一般疏松、中心疏松、锭型偏析、一般点状偏析、边缘偏析、皮下气泡、内部气泡、缩孔残余、翻皮、白点、轴心晶体裂缝、非金属夹杂物和心部裂纹等。
在低倍检验中会出现中心疏松、缩孔、中心偏析、表面角部裂纹、表面边部裂纹等缺陷。
电磁搅拌就是借助在铸坯的液相穴内感生的电磁力强化液相穴内钢水的运动,由此强化钢水的对流、传热和传质过程,从而控制铸坯的凝固过程,对提高铸坯质量具有积极的作用。
其中,结晶器电磁搅拌是目前最常见的、适用于各类连铸机的装置,它对改善铸坯表面质量、细化晶粒和减少铸坯内部夹杂及中心疏松等都有明显的作用。
一般情况下,为避免影响液面自动控制装置的使用,通常将其安装在结晶器的下部。
结晶器电磁搅拌的作用有以下几点:第一,改善铸坯表面质量。
铸坯在结晶器下面其表面呈现凝固的状态,此时可以将搅拌器置于结晶器的弯月面处,以起到对铸坯表面凝固开始前对其“清洗”的作用。
大方坯结晶器电磁搅拌电磁场的数值模拟的开题报
告
一、选题的背景
大方坯是指宽大比大于一的长方体铸件。
大方坯与小方坯相比,具
有木型布局繁琐,浇注温度复杂、气糊现象容易发生,冷却分异明显等
特点,造成缺陷率较高。
为了减少缺陷率,大方坯铸造中应采用合理的
工艺措施。
大方坯结晶器电磁搅拌是一种铸造技术,可在坯内产生一定的电磁
场和电磁搅拌效果,使坯内铸造组织得到改善,提高铸造质量。
因此,
对大方坯结晶器电磁搅拌电磁场的数值模拟研究具有实用意义。
二、选题的目的
本文旨在开展大方坯结晶器电磁搅拌电磁场数值模拟的研究,对大
方坯铸造工艺进行优化,提高铸造质量。
三、论文的内容和步骤
1. 研究大方坯结晶器电磁搅拌的基本原理和结构特点,并对大方坯
铸造中存在的问题进行分析。
2. 基于有限元方法,建立大方坯结晶器电磁搅拌的电磁场数值模型,计算坯内电磁场分布等物理量。
3. 对模拟结果进行分析,得出大方坯结晶器电磁搅拌工艺参数的优
化方案。
4. 进行模拟结果验证实验,评估模拟结果的准确性。
5. 总结研究结果,提出进一步改进的建议。
四、预期成果
通过电磁场数值模拟,得出大方坯结晶器电磁搅拌工艺参数的优化方案,提高铸造质量。
同时,论文还将为大方坯结晶器电磁搅拌铸造工艺的改进提供新的思路和手段。
收稿日期:2010-04-13基金项目:国家自然科学基金资助项目(50834009)作者简介:张 静(1982-),女,辽宁葫芦岛人,东北大学博士研究生;王恩刚(1962-),男,辽宁沈阳人,东北大学教授,博士生导师;赫冀成(1943-),男,辽宁瓦房店人,东北大学教授,博士生导师第31卷第10期2010年10月东北大学学报(自然科学版)Journal of Northeastern U niversity(Natural Science)Vo l.31,No.10O c t. 2010连铸结晶器电磁搅拌参数对磁场分布的影响张 静,王恩刚,邓安元,赫冀成(东北大学材料电磁过程教育部重点实验室,辽宁沈阳 110004)摘 要:结合连铸过程的实际情况,采用现场实测与数值模拟的方法,研究了连铸 250mm 圆坯结晶器电磁搅拌电流和频率对磁感应强度和电磁力分布的影响 研究结果表明,数值模拟计算值与现场实测数据基本一致;当电流相同时,随着频率的增加,磁感应强度减小;沿着结晶器方向,电磁力随着频率的增加而增加,且随着频率的增加,最大电磁力增加量减小,但在搅拌器中心对应的径向上,随着频率的增加,电磁力减小;当频率相同时,随着电流强度的增加,钢液内的磁感应强度和电磁力都增加 结合数值模拟的具体结果,电磁搅拌电流和频率为480A ,3Hz 时,能起到良好的搅拌效果 关 键 词:磁场;电磁搅拌;磁感应强度;电磁力;数值模拟中图分类号:T F 777 文献标志码:A 文章编号:1005 3026(2010)10 1432 05Effects of Mold EMS Parameters on Distributions of Magnetic Induction and Electromagnetic Force During Continuous CastingZ H AN G Jing ,WANG En gang,DEN G A n yuan,H E Ji cheng(K ey L aboratory of National Education M inistry for Electr omag netic P rocessing of M ater ials,N ortheastern U niversity,Shenyang 110004,China.Correspondent:ZHA NG Jing,E mail:jing510@)Abstract :A numerical simulation in combination w ith in situ measurement w as conducted according to the actual continuous casting process for the M EMS(mold electrom agnetic stirring )behavior of 250mm bloom.The effects of EMS current and frequency on the distributions of magnetic induction and electrom agnetic force w ere then investig ated.T he results showed that the simulated results conform basically w ith the measured data.With the current kept constant and frequency increased,the mag netic induction decreases,and along the centerline in mold,the electrom agnetic force increases w ith frequency though its increment decreases gradually.But,along the radius of electromagnetic stirrer the electromag netic force decreases w ith increasing frequency and w ith the frequency kept constant and current intensity increased,the magnetic induction and electromagnetic force both increase in molten steel.Considering the results of numerical simulation as a whole,the optimal EM S parameters should be as follows:stirring current=480A w ith a frequency=3Hz.Key words:magnetic field;electrom agnetic stirring;mag netic induction;electromagnetic force;numerical simulation电磁搅拌技术作为提高铸钢质量的有效手段之一已经广泛应用在连铸过程中[1-3] 电磁搅拌的作用机理是通过对钢水的搅动,一方面柱状晶被打断,再与钢水混在一起,作为等轴晶的核心;另一方面增加钢液流动,提高凝固相间的热传递,降低过热度,减少凝固前沿的温度梯度,抑制柱状晶的定向增大,从而促进等轴晶的生成 因此在连铸过程中普遍采用结晶器电磁搅拌,来改善铸坯的质量[5-7]本文从连铸过程的实际情况出发,采用现场实测与数值模拟的方法,研究了连铸 250m m 圆坯结晶器电磁搅拌电流和频率对钢液磁感应强度和电磁力分布的影响,找出了合适的工艺参数,为后续的流动及凝固提供可参考的依据1 数学模型1.1 模型假设钢水是不可压缩的导电流体;钢水密度、运动黏性系数、电磁率和电导率等物性参数为标量常数;连铸电磁搅拌电流频率为低频,忽略位移电流;钢水与坯壳磁导率均取为真空磁导率 1.2 基本参数电磁搅拌器安装在结晶器外部,搅拌器线圈由铁芯和铜线绕组而成,具体参数为:结晶器长度850mm,铜板厚度30mm ,搅拌器高度570mm,搅拌器距结晶器顶端距离350mm相关物性参数为:铁芯相对磁导率3000,铜板和钢液的电阻率分别为1 7 10-8和1 4 10-6 m,钢液的密度和黏度分别为6850kg/m 3和0 0053kg/(m s)1.3 控制方程麦克斯韦方程组包括以下几个方面:法拉第电磁感应定律: E =- Bt,安培环路定律: H =J ,高斯定律: B =0,本构方程:B =!H ,欧姆定律:J =∀(E +u B) 1.4 边界条件与初始条件1)初始条件:采用三相低频电源,各相电流的相位差为120!,相对应的两个线圈施加相同的电流,具体见式(1),采用谐波分析,计算t =0时刻磁场的分布I a =I 0N [sin (#t )+icos (#t)],I b =I 0N [sin (#t -2∃/3)+icos (#t -2∃/3)],I c =I 0N [sin (#t +2∃/3)+icos (#t +2∃/3)](1)2)边界条件:施加磁力线平行条件,垂直条件自然发生,不用施加2 结果与分析2.1 模拟计算结果与实测值的对比为了验证数值模拟的正确性,采用美国Lake Shore 数字信号处理模式特斯拉计475对 250mm 结晶器电磁搅拌空载情况的磁场进行了在线测试,并与数值模拟结果进行对比 电流为480A,频率为3H z 时沿结晶器高度方向以及搅拌器径向上的磁感应强度分布的对比如图1所示 数值模拟结果与实测结果基本上是一致的,存在的误差是由于现场实测的干扰和人为因素,以及数值模拟过程中的假设所造成的 这说明数值模拟具有可信性图1 现场实测值与数值模拟结果的对比Fig.1 Comparison between magnetic inducti on simulated and m eas ured(a)∀沿结晶器中心线;(b)∀搅拌器径向电流为480A,频率为3Hz 时,结晶器中心线上不同方向的磁感应强度与电磁力的分布如图2所示,其中z 方向为拉速方向 由图2可知,磁感应强度主要分布在x 和y 方向,z 方向很小,而电磁力主要分布在z 方向,x 和y 方向很小 磁感应强度的最大值与电磁力的最大值是相对应的,位于搅拌器中下部,并未在搅拌器中心位置(距结晶器顶端730mm)处 磁感应强度的最大值约为0 052T,电磁力的最大值约为1 125kN/m 3由图2a 可见,磁感应强度的分布沿高度方向出现两个峰值,这是由于结晶器铜板的屏蔽作用造成的 钢液在出结晶器后由于铜管的屏蔽作用消失,钢液磁感应强度再一次出现峰值 因此,需要考虑结晶器对钢液磁感应强度和电磁力的影响1433第10期 张 静等:连铸结晶器电磁搅拌参数对磁场分布的影响图2 沿结晶器中心线不同方向的磁感应强度和电磁力分布Fig.2 Distributions of magnetic i nduction and electromagnetic force along centerli ne of mold2.2 电流对磁感应强度和电磁力分布的影响由图3a 可知,随着电流的增加,磁感应强度也相应地增加 由图3b 可知,电磁力随着电流的增加而增加,电磁力的最大值位于搅拌器中心下部,出现在距结晶器顶端约850mm 处,并未出现在搅拌器的中心位置 电流每增加50A,磁感应强度最大值增加约0 005T ,电磁力最大值增加约300N/m 3 虽然电流的增加会增大电磁力,但是电流过大会导致搅拌器寿命的降低,而且,过强的搅拌会使铸坯出现负偏析 当电磁力大于1kN/m 3效果比较显著[8] 因此,结晶器电磁搅拌电流为480A 时即能达到良好的搅拌效果由图4a 可见,随着电流的增加,磁感应强度也相应地增加,但变化较平缓;磁感应强度由铸坯边缘向中心逐渐减小 由图4b 可见,电磁力随着电流的增加而增加,且与径向距离成正比,变化较快 电磁力由铸坯边缘向中心逐渐减小,电磁力最大值由400A 时的4 2kN/m 3增加到600A 时的9 5kN/m 3 电磁力增加了4倍多,这验证了电磁力与电流的平方成正比图3 不同电流下沿结晶器方向铸坯中心线磁感应强度和电磁力的分布Fi g.3 Distri butions of magnetic induction and electrom agneti c force along centerline of bl oomin mold at different current图4 不同电流下搅拌器径向上磁感应强度和电磁力的分布F i g.4 Distri butions of magnetic induction and electr omagnetic force along sti rrer radius at different current1434东北大学学报(自然科学版) 第31卷2.3 频率对磁感应强度和电磁力分布的影响由图5可见,随着电流频率的增加,沿结晶器方向铸坯中心线的磁感应强度减小,而电磁力却随着频率的增加而增加 这是因为随着频率的增加,结晶器铜管的屏蔽作用增强,使得磁感应强度减小 而电磁力近似与电流的平方和频率成正比[8],所以随着频率的增加电磁力也增大 但是频率对电磁力的影响却随着频率的增加而逐渐减小 频率从1Hz 增加到2Hz 时最大电磁力增加约450N/m 3 频率从2Hz 增加到3Hz 时最大电磁力增加约200N/m 3 频率从3H z 增加到4H z 时最大电磁力增加约100N/m 3 在4,5和6Hz 时增大频率对电磁力影响很小,因此在结晶器电磁搅拌过程中存在一个最佳的频率 结合数值模拟结果,频率为3H z 比较合适由图6可知,随着电流频率的增加,沿铸坯径向的磁感应强度和电磁力都相应的减小 与图4相类似,磁感应强度和电磁力由铸坯边缘向中心逐渐减小 但是电磁力的变化幅度要明显大于磁感应强度 对于中高碳钢,当铸坯中心磁感应强度达到0 045~0 006T 时,搅拌效果比较显著[9] 从图6a 可知,当电流为480A,频率为3H z,即能达到这个标准图5 不同频率下沿结晶器方向铸坯中心线磁感应强度和电磁力的分布F i g.5 Distri butions of magnetic i nduction and electr omagnetic force at differentfrequencies图6 不同频率下搅拌器对应铸坯径向中心线磁感应强度和电磁力的分布Fig.6 D i stributi ons of magnetic inducti on and electrom agnetic force along bl oom radius at di fferent frequenci es3 结 论1)沿着结晶器方向,磁感应强度主要分布在水平方向,拉速方向很小 电磁力主要分布在拉速方向,水平方向很小2)钢液内磁感应强度随频率的增大而减小,随着电流的增加而增加 钢液边缘的磁感应强度和电磁力大于中心部位的磁感应强度和电磁力3)钢液内电磁力沿结晶器方向随着电流和频率的增大而增大,而沿着搅拌器中心对应的铸坯径向,随着电流的增大而增大,随着频率的增加反而减小 钢液边缘的电磁力明显大于中心部位的电磁力4)连铸(断面 250mm)的电磁搅拌电流为480A,频率为3Hz 时,能起到良好的搅拌效果 参考文献:[1]李建超,崔建忠,王宝峰,等 大方坯连铸跨结晶器电磁搅拌的数值模拟[J ] 东北大学学报:自然科学版,2006,27(5):497-500 (Li Jian chao,Cui Jian zhong,Wang Bao feng,et al .Numerical simul ation of M EM S for bloom conti nuous casting [J ].Jou rnal of Nor theastern Univ ersity :Natural S cience ,1435第10期 张 静等:连铸结晶器电磁搅拌参数对磁场分布的影响2006,27(5):497-500.)[2]Partinen J,Saluja N,Szekely J,et al.Experimental andcom putational i n vestigation of rotary EM S in w oods metal system[J].I SIJ International,1994,34(9):707-714. [3]Bettlman L.Effect of mold EM S design on billet castingproductivity and product quality[J].Ca nad ian M etallurgic alQuarter ly,2000,38(3):301-309.[4]Oh K S,Chang Y W.M acrosegregation behavior i ncontinuously cast high carbon steel blooms and billets at thefinal stage of solidification in combination stirring[J].ISIJIn ternational,2001,41(10):1229-1235.[5]Raj M,Pandey J C.Optimi zation of electromagnetic stirring i ncontinuous cast steel billets using ultrasonic C scan imaging techn ique[J].Ironmaking and Steelmaking,2008,35(4):288-296.[6]M edina M,Duterrail Y,Durand F,et al.Channelsegregation during solidification and the effects of analternating traveli ng magnetic field[J].M etallurgic al andM aterials Transactions B,2004,35(8):743-754.[7]Ludlow V,Normanton A,Anderson A.S trategy to minimizecentral segregation in high carbon steel grades during billet casting[J].Ironmaking a nd S teelmaking,2005,32(1):69 -72.[8]张宏丽 线性电磁搅拌在钢液凝固过程中的作用规律[D]沈阳:东北大学,2002(Zhang Hong li.Rule of linear electromagn etic stirring during solidification process of molten steel[D].Sh enyang: Northeastern University,2002.)[9]Leonardo B,Antonio C F V.Numerical m odel ofelectromagnetic stirring for continuous casting billets[J].I EEE T ransactions on M agnetic,2002,38(6):3658-3662.(上接第1431页)[5]Nagahisa L.Advanced automation on the new plate mill:aM izushima works[J].I ron and S teel E ngineer,1978,55(12):34-40.[6]Zhao J,Wang W,Liu Q L,et al.A two s tage schedulingmethod for hot rol ling and i ts application[J].ControlE ngineering Practice,2009,17(6):629-641.[7]Pan C C,Yang G K.A m ethod of solvi ng a large scale rollingbatch scheduling problem i n steel production using a variant ofcolumn generation[J].Compu ters&Ind ustrialEngineering,2009,56(1):165-178.[8]Peter C.A flex i ble decision support system for steel hotrolling mill scheduli ng[J].Comp uter s&Ind ustrialEngineering,2003,45(2):307-321.[9]Tang L X,Liu J Y,Rong A Y,et al.A multiple travelingsales man problem model for hot rolling scheduling in ShanghaiBaoshan Iron&S teel Complex[J].Eu ropean Jou rnal ofOperational Research,2000,124(2):267-282.[10]姚小兰,梁启宏,张迪生 控制轧制节奏的优化[J] 北京理工大学学报,2004,24(4):327-330(Yao Xiao lan,Liang Qi hong,Zhang Di sh eng.Optimization of rhythm s in controlled rolli ng[J].Jou rnal ofBeij ing I nstitute of T e ch nology,2004,24(4):327-330.)1436东北大学学报(自然科学版) 第31卷。
永钢大圆坯连铸工艺装备特点及实践卢洪星1陆剑锋 2 李占春 2 陆健2(1江苏沙钢集团淮钢特钢股份有限公司,223002;2江苏永钢集团联峰能源装备有限公司215628)摘要介绍了江苏永钢集团联峰能源装备有限公司电炉大圆坯连铸装备特点,调试与生产情况,对连铸设备与工艺技术、产品质量进行分析,提出相关改进措施。
关键词圆坯连铸工艺装备特点实践Practice and Process Equipment Charateristic of Continuous Cast Machinefor Big Bloom in Yonggang SteelLuhongxing1Lujianfeng2Lizhanchun2Lujian2(1.Jiangsu Shasteel Group Huaigang Special Steel Co.,Ltd,HuaiAn 223002;2.Jiangsu Yongsteel Group Energy Equipment Co.,Ltd,YongGang 215628)Abstract Process equipment charateristics,debugging and production situation of continuous cast machine for big round bloom by EAF process in Yonggang Steel CO.,Ltd are introduced,The continuous cast equipment,technique and quality of billet steel are analysed,and adopting related improving and assuring measures。
Key Words Continuous Cast for Round Bloom Process Equipment Charateristic Practice江苏永钢集团能源装备有限公司电炉特殊钢大圆坯连铸机是中冶京城设计、制造,于2013年06月投产,主要生产钢种为优质碳素结构钢、合金结构钢、及低合金高强度钢等,生产初期存在的主要缺陷为铸坯芯部裂纹、外部纵裂、外形尺寸偏差。
圆坯连铸结晶器内电磁场、流场的数值模拟与实验研究的开题报告一、选题背景连铸技术是钢铁工业生产中重要的工艺环节之一,其直接关系到产品的质量和产量。
圆坯连铸结晶器内流场和电磁场的研究对提高连铸技术的效率和改善产品质量具有重要意义。
因此,本文提出了圆坯连铸结晶器内电磁场、流场的数值模拟及实验研究,以深入了解连铸过程中结晶器内的热传递、流动和结晶行为。
二、研究目的和意义圆坯连铸结晶器内电磁场、流场数值模拟和实验研究旨在:1. 为圆坯连铸结晶器的热流场和结晶行为的研究提供理论基础和实验支持。
2. 分析结晶器内电磁场、流场的特点,为进一步优化结晶器结构、提高产品质量和连铸效率提供基础数据。
3. 提出可以用于优化结晶器中的电磁场和流场的设计建议。
三、研究内容和方法1. 研究结晶器内的电磁场的分布特性,通过建立电磁场的数学模型,利用有限元方法进行数值模拟,验证模型的有效性。
2. 研究结晶器内的流场分布特性,通过建立流场模型,利用计算流体力学(CFD)方法进行数值模拟,验证模型的有效性。
3. 利用热像仪和热电偶等实验手段,对圆坯连铸结晶器内的温度分布情况进行实时监测和记录,验证数值模拟结果的正确性。
4. 基于数值模拟结果和实验数据,分析结晶器内的电磁场、流场与温度分布的关系,并提出结晶器内电磁场、流场优化设计建议。
四、研究进度安排一月份:阐述选题背景和研究目的,并提出研究方法和内容;二月份:对相关领域的文献进行综述和分析,明确研究的重点和难点;三月份:建立连铸结晶器内电磁场的数学模型,进行数值模拟,验证模型的正确性和可行性;四月份:建立连铸结晶器内流场的数学模型,进行数值模拟,验证模型的正确性和可行性;五月份:利用热像仪和热电偶等实验手段,对圆坯连铸结晶器内的温度分布情况进行实时监测和记录;六月份:基于数值模拟结果和实验数据,分析结晶器内的电磁场、流场与温度分布的关系,并提出结晶器内电磁场、流场优化设计建议;七月份:总结研究成果,撰写毕业论文,并进行答辩。
重钢方坯连铸结晶器电磁搅拌数值模拟及应用研究的开题报告一、选题背景及研究意义随着钢铁制造工艺的不断更新与发展,连铸技术已经成为制造优质钢铁的重要手段之一。
在连铸过程中,结晶器起着至关重要的作用,它直接关系到钢坯的质量及产品性能。
因此,如何优化连铸结晶器的工艺参数,提高结晶器温度场的均匀性和结晶器内流场的稳定性,是当今钢铁行业需要解决的重要问题。
电磁搅拌技术是一种通过施加电磁力对流体进行搅拌的方法,可以显著改善熔体流动状态,使其温度分布均匀,同时消除流动中产生的气泡、夹杂物等缺陷,提高钢坯的质量。
因此,在连铸结晶器中应用电磁搅拌技术,可以有效改进结晶器内流场的稳定性与均匀性。
本研究拟采用数值模拟方法,研究重钢方坯连铸结晶器电磁搅拌技术在结晶器内流场变化中的作用,分析电磁搅拌参数对结晶器温度分布的影响,探讨电磁搅拌技术在提高钢坯质量、优化结晶器工艺参数方面的应用前景。
二、研究内容1.建立重钢方坯连铸结晶器电磁搅拌数值模型2.对比分析结晶器内流场变化及温度分布的差异3.优化结晶器电磁搅拌工艺参数4.探究电磁搅拌技术在提高连铸钢坯质量中的应用三、研究方法和技术路线本研究采用数值模拟方法,建立重钢方坯连铸结晶器电磁搅拌数值模型;利用Fluent软件对结晶器内流场变化和温度分布进行数值模拟,并对不同电磁搅拌参数下的结晶器内流场和温度场进行对比分析;通过优化结晶器电磁搅拌工艺参数,提高连铸钢坯的质量,增加产量。
同时,通过理论分析,探究电磁搅拌技术在钢铁制造过程中的应用前景。
四、预期成果1.建立重钢方坯连铸结晶器电磁搅拌数值模型2.分析电磁搅拌参数对结晶器内温度分布和流场的影响3.探讨电磁搅拌技术在提高连铸钢坯质量的应用前景4.撰写1篇学术论文,撰写1份实验报告五、研究进度安排第1-2周:文献调研及相关技术知识学习第3-4周:建立数值模型、进行参数选择与网格划分第5-6周:对结晶器内流场和温度场进行数值模拟,并进行数据分析第7-8周:对比分析不同电磁搅拌参数下的结晶器内温度分布和流场的差异第9-10周:优化电磁搅拌工艺参数,并进行实验验证第11-12周:分析实验结果并进行讨论第13周:完成实验报告第14-15周:撰写学术论文六、预计存在的问题及解决方法可能存在的问题:数值模拟的结果与实验结果存在差异。
板坯连铸结晶器内电磁制动控制效果的研究发表日期:2006-9-5 阅读次数:261 前言连铸板坯的表面和内部缺陷与结晶器内钢液的流动条件紧密相关。
从结晶器的浸入式水口流出的钢液射流夹带着非金属夹杂物和气泡冲击结晶器的窄面后分成两个很强的流股,其中一个流股向上流动,引起弯月面的不稳定性并易造成卷渣;另一个流股穿入板坯深处,使非金属夹杂物和气泡聚集在凝固壳上。
在高速连铸下,这些现象更为严重并恶化了最终产品质量。
因此,控制从水口流出的钢液成为高速连铸中的关键技术。
为解决上述问题,开发了应用稳恒磁场制动从水口流出的钢液即电磁制动技术。
电磁制动技术(Electromagnetic Brake-EMBR>就是在水口区域设置与水口出流垂直的稳恒磁场,在导电的液态金属中将产生感生电流,感生电流与稳恒磁场的交互作用又在液态金属中产生与流速方向相反的洛仑兹力,从而使液态金属的流动受到抑制。
在连铸中应用电磁制动技术可减少连铸坯的内部和皮下夹杂物,消除保护渣的卷渣,减少纵向和横向裂纹,达到高拉速下生产高质量连铸坯的目的。
本文用Pb- Sn- Bi低熔点合金进行了电磁制动模拟实验以证实电磁制动的效果,研究了单条形稳恒磁场对结晶器内流体流动的影响,并考察各操作参数(磁通量密度、浇铸速度、水口出口角度>对电磁流动控制效果的影响。
2 实验装置和实验方法实验装置如图1所示。
模拟结晶器与实际结晶器几何相似,其比例为1:3。
金属液从模拟中间包通过浸入式水口流入结晶器中,然后通过结晶器底部的出口流入金属液储槽,同时,通过钢包不断地往中间包内补充金属液,使金属液在结晶器内形成连续的循环流动。
流动过程中金属液的流量用中间包内的塞棒和结晶器出口处的流量控制阀进行调节。
通过用钢包不断往中间包补充金属液使中间包内金属液的液面稳定,从而使结晶器内金属液面保持稳定。
每次实验,金属液在结晶器内的稳定流动时间保持3~5min,以得到稳定可靠的实验结果。