第二章 卷积和和卷积积分
- 格式:ppt
- 大小:1.31 MB
- 文档页数:80
⏹卷积☐卷积的定义☐卷积的物理意义☐卷积的性质☐卷积的计算⏹信号的分解☐信号分解为基本信号之和☐…δ(t )是卷积的单位元δ(t-t 0)是卷积的延迟器u (t )是卷积的积分器δ’(t )是卷积的微分器温故知新,上讲回顾第二章信号的时域分析§2.1常用信号及其基本特性§2.2信号的时域运算Array§2.3信号的时域分解§2.4卷积积分§2.5卷积和信号分类;基本信号特性;信号分解与运算;卷积/卷积和周期/非周期判断;奇异函数运算;信号展缩平移;卷积/卷积和1. 掌握卷积和的定义/性质并进行计算(解析法、图解法、竖式法、性质求解)2. 习题课(信号时域分析几类常见题目)§2.5卷积和一、卷积和的定义及物理意义二、卷积和的性质三、卷积和的计算设x 1(n ) 和x 2(n )是两个序列,则1212()()()()k k k x n x n x x n ∞=−∞∗=−∑如果x 1(n ) 和x 2(n )都是因果序列,则11202()()()()nk x n x n x k x n k =∗=−∑1212()()()()d f t f t f f t τττ∞−∞∗=−⎰卷积和:卷积积分:1. 定义任意序列x (n ) 可以表示为单位样值信号δ(n ) 的移位加权和。
{}()=+(1)(1)+(0)()+(1)(1)+(2)(2)+()()()()k x n x n x n x n x n x k n k x k n k δδδδδδ∞=−∞−+−−+−+=− LTI 系统δ(n )h (n )x (n )?2. 物理意义输入δ(n-k )h (n-k )输出时不变x (k )δ(n-k )x (k )h (n-k )齐次性()=()()k x n x k n k δ∞=−∞−∑zs =()()()*(())k y n x k h n k h x n n ∞=−∞−∑ 可加性系统特性LTI 系统δ(n )h (n )卷积和卷积和的物理意义:揭示了LTI离散系统零状态响应与输入信号和系统单位样值响应之间的关系。
第二章 总结一﹑LTI 连续系统响应(一)微分方程经典解法=解开方式:全解y (t )=通解)(特解)(t y t y p n + 1﹑通解(齐次解):令右侧为零由特征方程n a +n λ1-n a +1-n λ…+0a a 01=+λ确定通解形式,再由n 个+0初始条件确定系数。
总结:齐次解模式由系统决定,系数由n 个初始条件决定,有时与f (t )有关。
2﹑特解:函数形式与f (t )有关,根据f (t )形式选择特定形式后,代入原微分方程,球的系数。
3﹑全解:) y (t )=)()(t y t y p n + 响应。
)又称强迫响应或受迫(响应;)又称自由响应或固有(t y t y p n (二)初始条件与-00+(1)经典系统的响应应限于到正无穷范围。
+0(2)不能将{)(-n 0y }作为微分方程初始条件。
(3){)(+0y n }由{)(-n 0y }导出,{)(+0y n }又称导出初始条件。
(三)零输入响应与零状态响应y (t )=)()(t y t y zs zi + 定义求解:(1)求解zi y :微分方程→特征方程→特征根→zi y (t )模式→数由{)(-n 0y }确定。
(2))(t y zs 求解:经典法﹑卷积积分法。
二﹑卷积积分卷积积分及其图解计算(1)定义: (2)图解计算:∑=n 1i i i t y a )()(∑=m 1j j j t f b )()(()()()τττd 21⎰∞∞--=t f f t f ττ ),()(.111积分变量改为f t f →)()()()(.22222τττ-−−→−-−−→−→t f f f t f 平移翻转τττd )(.)(.321-⎰∞∞-t f f 乘积的积分:总结:翻卷(翻转+平移)→乘积→积分三﹑卷积的性质:(一)卷积的代数性质:(1) 交换性:(2) 分配性:(3) 结合律: (二)延时特性:卷积的延迟量等于相卷积的两函数卷积之和(三)函数与冲激函数卷积)()()(t f t t f =*δ卷积奇偶性:同偶异奇(四)卷积的导数与积分:1﹑卷积导数:[)()(t f t f 21*]´=)()(t f t f 21*´=)()(,t f t f 21* 推广:)()()()()()(t f t f t f t f n 2n 121-*=* 2、卷积积分)()()()()()(t f dx x f dx x f t f dx x f x f 2t 1t 212t 1*=*=*⎰⎰⎰∞-∞-∞- 若y (t )=)()(t f t f 21*,则)()()()()()(t f t f t y j -i 2j 1i *= (五)相关函数dt t f t f dt t f t )()()(f R 212-112•+=-•=⎰⎰∞∞-∞∞τττ)()( dt t f t f dt t f t )()()(-f R 212-121τττ+•=•=⎰⎰∞∞-∞∞)()( )-(R 2112ττR =)( )()(ττ-R R 1221=自相关函数:若)()()(t f t f t f 21==,则R (τ)称为自相关函数。
卷积和积分运算卷积和积分运算先看到卷积运算,知道了卷积就是把模版与图像对应点相乘再相加,把最后的结果代替模版中⼼点的值的⼀种运算。
但是,近来⼜看到了积分图像的定义,⽴马晕菜,于是整理⼀番,追根溯源⼀下吧。
1 卷积图像1.1 源头⾸先找到了⼀篇讲解特别好的博⽂,原⽂为:贴过正⽂来看:---------------------------------------------------------------------------------------------------------------信号处理中的⼀个重要运算是卷积.初学卷积的时候,往往是在连续的情形, 两个函数f(x),g(x)的卷积,是∫f(u)g(x-u)du 当然,证明卷积的⼀些性质并不困难,⽐如交换,结合等等,但是对于卷积运算的来处,初学者就不甚了了。
其实,从离散的情形看卷积,或许更加清楚, 对于两个序列f[n],g[n],⼀般可以将其卷积定义为s[x]= ∑f[k]g[x-k] 卷积的⼀个典型例⼦,其实就是初中就学过的多项式相乘的运算, ⽐如(x*x+3*x+2)(2*x+5) ⼀般计算顺序是这样, (x*x+3*x+2)(2*x+5) = (x*x+3*x+2)*2*x+(x*x+3*x+2)*5 = 2*x*x*x+3*2*x*x+2*2*x+ 5*x*x+3*5*x+10 然后合并同类项的系数, 2 x*x*x 3*2+1*5 x*x 2*2+3*5 x 2*5 ---------- 2*x*x*x+11*x*x+19*x+10 实际上,从线性代数可以知道,多项式构成⼀个向量空间,其基底可选为 {1,x,x*x,x*x*x,...} 如此,则任何多项式均可与⽆穷维空间中的⼀个坐标向量相对应, 如,(x*x+3*x+2)对应于 (1 3 2), (2*x+5)对应于 (2,5). 线性空间中没有定义两个向量间的卷积运算,⽽只有加法,数乘两种运算,⽽实际上,多项式的乘法,就⽆法在线性空间中说明.可见线性空间的理论多么局限了. 但如果按照我们上⾯对向量卷积的定义来处理坐标向量, (1 3 2)*(2 5) 则有 2 3 1 _ _ 2 5 -------- 2 2 3 1 _ 2 5 ----- 6+5=11 2 3 1 2 5 ----- 4+15 =19 _ 2 3 1 2 5 ------- 10 或者说, (1 3 2)*(2 5)=(2 11 19 10) 回到多项式的表⽰上来, (x*x+3*x+2)(2*x+5)= 2*x*x*x+11*x*x+19*x+10 似乎很神奇,结果跟我们⽤传统办法得到的是完全⼀样的. 换句话,多项式相乘,相当于系数向量的卷积. 其实,琢磨⼀下,道理也很简单, 卷积运算实际上是分别求 x*x*x ,x*x,x,1的系数,也就是说,他把加法和求和杂合在⼀起做了。