5.2.2 平行线的判定 第1课时 平行线的判定
- 格式:docx
- 大小:8.38 KB
- 文档页数:2
5.2.2平行线的判定(第一课时)教学设计教法选择与学法指导教法:引导——操作法、观察法、讨论法、多媒体电化教学法学法:动手实践、自主探索与合作交流相结合.教学流程:创设情境、复习引入——动手操作、自主探索——总结归纳、得出结论——反馈应用、拓展新知——互动交流、谈谈收获——布置作业、达标检测、反思提炼.(设计意图:针对七年级学生的年龄特点和心理特征,以及他们的知识水平,本节课我以教学流程八个环节的方法进行.让学生始终处于主动的学习状态,让学生有充分的思考机会,借助小教具和多媒体演示,让学生在实践中思考,在思考、归纳总结的过程中培养其空间观念、简单的推理能力和有条理表达的能力.)教学过程(提前发导学案,让学生完成导学案的复习回顾部分,前置任务。
)一、知识回顾:1.如果a∥b,b∥c,那么___________。
理由是___________。
2.如图,请填空:①∠1与∠2是直线_____和直线_____被直线_____所截而成_____角;②∠3与∠2是直线_____和直线_____被直线_____所截而成_____角;③∠5与∠6是直线_____和直线_____被直线_____所截而成_____角;④∠4与∠7是直线_____和直线_____被直线_____所截而成_____角;⑤∠8与∠2是直线_____和直线_____被直线_____所截而成_____角。
二、前置任务:1、画图已知直线AB,点P在直线AB外,用直尺和三角尺画过点P的直线CD,使CD∥AB.反思:在用直尺和三角形画平行线过程中,三角尺起着什么样的作用.?(设计意图:通过学生课前的复习,回顾了前一节课所学的知识,并通过对前置任务的思考,为新课的学习做了准备。
)三、动手操作、自主探索通过同学们用移动三角尺的方法画两条平行线的过程?试用这种方法过已知直线外一点画它的平行线. 请说出其中的道理(多媒体动画演示画图过程。
)方法: 一、放, 二、靠, 三、推, 四、画。
io雌翱議的畀定»|锻时的拜庄方注探究新知 活动1知识准备如图5—2—3,直线也吩别交直线血C 歼点G, H,则图中的 同位角有丄对,内错角有/_对,同旁内角有丄对.图5—2—3F活动2教材导学1-如图厂2_4,平行线的画法:一放,二靠,三推,四画.(1)观察画图过程,三角板起到了什么作用?(2)要判断直线平行,你有办法了吗?图5—2_4[答案]⑴三角板起到了截线的作用.⑵略.2- “在同一平面内,垂直于同一条直线的两条直线互相平行” 是否可以看做平行线判定方法的特殊情形?如图5—2 — 5,已知ABJCD, AB_LEF,弼么 CD//E码2CA一□ [答案]是CD/7EFD新知梳理知识点平行线的判定方法1:两条直线被第三条直线所截,如果同位角那么相等,这两条直线平行.简单说成:同位角相等,两直线平行.方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.探究问题一两直线平行的判定方法例1如图5—2—6.⑴因为Z1 = ZJ(已知),所以BC II AD图5—2—(同位角相等,两直线平行);6⑵因为Z3 = Z4(已知),所以AB // CD错角相等,两直线平行);⑶因为Z2 = Z5(已知),所以血〃BC(内错角相等,两直线平行);(4)因为ZADC+ZC=180Q(已知),所以血〃BC(同旁內角互补,两直线平行).[解析]⑴要找到Z1和是由直线风和直线如被直线也所截得的同位角,然后根据同位角相等,确定从和血平行.⑵要找到Z 3和Z4是直线溯I被直线別所截得的内错角•⑶要分清Z2和Z5是直线确皿被直线血所截得的内错角•⑷要知道Z如DZ堤直线也皿被直线術截得的同旁内[归纳总结]同位角相等一一两直线平行内错角相等一一两直线平行同旁内角互补一一两直线平行由角相等或互补关系,判断两直线平行,关键是找出两个角是哪两条直线被哪一条直线所截而成的角.探究问题二两直线平行的推理Zl = 15° , Z2 例2如图5—2 — 7,已知川7丄/£ BDIBF,= 15° ,血与朋平行吗?为什么?G[解析]要判断胚与M是否平行,也就是要找同位角相等或内错角相等或同旁内角互补.由题意有ZEAC=ZFBD=90° ,Z1 = Z2 = 15°,可得ZEAB=ZF氏=90° +15° =105° . 解:平行.理由:因为力GL丛加丄莎(已知),所以ZEAC=ZFBD=90°(垂直的定义). 因为Z1 = Z2(已知),所以ZEAC+ X1 =乙FBD+ Z2 (等式性质), 即乙 EAB= ZFEB,所以M〃莎(同位角相等,两直线平行).例3如图5—2—8所示,直线溯6Z<直线必所截,励平分ZBEF,朋平分乙旳:当Z1与Z2满足什么条件时,AB//CD?/N图5—2—8解:当Z1与Z2互余时,AB/ZCD. 理由:TEG平分ZBEF, FH 平分ZDFE, A ZBEF=2Z1, ZDFE=2Z2.VZ1 + Z2=9O° ,A ZBEF+ZDFE=2(Z1 + Z2) = 2X90° =180° ,所以AB〃CD侗旁内角互补,两直线平行).[归纳总结]要判断两直线平行,也就是找同位角相等或内错角相等或同旁内角互补.判定两条直线是否平行,方法较多,要灵活运用,不能拘泥于某一种判定方法;另外还要注意同旁内角互补,而不是相• ••••• • • • 等,才可判定两直线平行.。
课题《5.2.2平行线的判定》教案【教案背景】1、教学对象:七年级学生2、学科:七年级数学下册(新人教版)3、课时:第1课时4、学生情况:目前,虽然我校学生的数学水平参差不齐,数学抽象思维能力较差,在学习本节课时可能会有一定的困难,但是学生的个性活泼,学习积极性高,而且在此之前学生已经学完“三线八角”,初步了解了平行线的概念、平行线的性质及用三角板和直尺画平行线的方法,是具备学好这节课的基础的。
本学期学生初步接触推理证明,逐步养成言之有据的习惯。
【教学课题】数学七年级下册(新人教版)5.2.2平行线的判定,课型:新授课,课时第一节【教学内容分析】"平行线的判定"是第五章相交线与平行线第二节内容,本节内容安排三个课时,这一课时是本节内容的第一课时,在这一课时里,通过让学生观察两条直线被第三条直线所截的模型,想象有转动的过程中存在有相交的情况,从而得出概念及平行公理,那么本课时教学内容的设计意图主要是让学生在观察、想象两条线存在平行关系的基础上,进一步了解两直线平行的有关判定方法。
本课设计的主要思路是通过让学生观察、实践、操作等方式,使学生经历实践、分析、归纳等过程,从而获得相关知识,增强学生数学实践体验。
一、教学目标1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,培养推理能力和有条理的表达能力。
2.经历探究直线平行的判定方法的过程;掌握直线平行的判定方法,领悟归纳和转化的数学思想。
二、教学重难点教学重点:探索并掌握直线平行的判定方法。
教学难点:直线平行的判定方法的应用。
三、教学方法利用问题情境,让学生在解决问题的过程中复习已有知识,同时这学习新的知识做好准备,在教学中引导学生通过自主探索、合作交流等方式获得新知识、新方法。
在解决问题的过程中多方面尝试,丰富学生的解题策略,教师的适时点拨,精炼概括,使学生的思维逐渐清晰条理,帮助学生积累经验、训练技能。
四、教学过程(一)复习旧知,引入新课1.如图,已知四条直线AB、AC、DE、FG,(1)∠1与∠2是直线_____和直线_____被直线_____所截而成的____角。
5.2.2平行线的判定知识点总结1、平行线的概念在同一个平面内,不相交的两条直线叫做平行线。
平行用符号“‖”表示,如“AB‖CD”,读作“AB平行于CD”。
同一平面内,两条直线的位置关系只有两种:相交或平行。
注意:(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
2、平行线公理及其推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。
3、平行线的判定平行线的判定公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
简称:同位角相等,两直线平行。
平行线的两条判定定理:(1)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
简称:内错角相等,两直线平行。
(2)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
简称:同旁内角互补,两直线平行。
补充平行线的判定方法:(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
公理:同位角相等,两直线平行。
定理1:内错角相等,两直线平行。
条件2:同旁内角互补,两直线平行。
注:这三个判定都是由角的数量关系(相等或互补)来确定直线的位置关系(平行)的,因此能否找到两直线平行的条件,关键是能否正确地找到或识别出同位角,内错角或同旁内角。
补充平行线的判定方法:(1)平行于同一条直线的两条直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
定理1:两直线平行,同位角相等。
定理2:两直线平行,内错角相等。
定理3:两直线平行,同旁内角互补。
定理:平行于同一条直线的两条直线平行复习提纲1、平行线判定定理1:同位角相等,两直线平行。
如下图所示,只要满足∠1=∠2(或者∠3=∠4;∠5=∠7;∠6=∠8),就可以得到AB//CD。
2、平行线判定定理2:内错角相等,两直线平行。
1.掌握两直线平行的判定方法;(重点)
2.了解两直线平行的判定方法的证明过程;
3.灵活运用两直线平行的判定方法证明直线平行.(难点)
一、情境导入
怎样用一个三角板和一把直尺画平行线呢?动手画一画.
二、合作探究
探究点一:应用同位角相等,判断两直线平行
如图,∠1=∠2=55°,∠3等于多少度?直线AB,CD平行吗?说明理由.
解析:利用对顶角相等得到∠3=∠2,再由已知∠1=∠2,等量代换得到同位角相等,利用“同位角相等,两直线平行”即可得到AB与CD平行.
解:∠3=55°,AB∥CD.理由如下:∵∠3=∠2,∠1=∠2=55°,∴∠1=∠3=55°,
∴AB∥CD(同位角相等,两直线平行).
方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同位角(“F”型)相等,从而可以应用“同位角相等,两直线平行”.
探究点二:应用内错角相等,判断两直线平行
如图,已知BC平分∠ACD,且∠1=∠2,AB与CD平行吗?为什么?
解析:根据BC平分∠ACD,∠1=∠2,可得∠2=∠BCD,然后利用“内错角相等,两直线
平行”即可得到AB∥CD.
解:AB∥CD.理由如下:∵BC平分∠ACD,∴∠1=∠BCD.∵∠1=∠2,∴∠2=∠BCD,
∴AB∥CD(内错角相等,两直线平行).
方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到内错角(“Z”型)相等,从而可以应用“内错角相等,两直线平行”.
探究点三:应用同旁内角互补,判断两直线平行
如图,∠1=25°,∠B=65°,AB⊥AC.AD与BC有怎样的位置关系?为什么?
解析:先根据∠1=25°,∠B=65°,AB⊥AC得出∠B与∠BAD的关系,进而得出结论.
解:AD∥BC.理由如下:∵∠1=25°,∠B=65°,AB⊥AC,∴∠BAD=90°+25°=
115°.∵∠BAD+∠B=115°+65°=180°,∴AD∥BC.
方法总结:准确识别三种角是判断两条直线平行的前提条件,本题中易得到同旁内角(“U”型)
相等,从而可以应用“同旁内角互补,两直线平行”.
探究点四:平行线的判定方法的运用
【类型一】利用平行线判定方法的推理格式判断
如图,下列说法错误的是()
A.若a∥b,b∥c,则a∥c
B.若∠1=∠2,则a∥c
C.若∠3=∠2,则b∥c
D.若∠3+∠4=180°,则a∥c
解析:根据平行线的判定方法进行推理论证.A选项中,若a∥b,b∥c,则a∥c,利用了平
行公理,正确;B选项中,若∠1=∠2,则a∥c,利用了“内错角相等,两直线平行”,正确;C选项中,∠3=∠2,不能判断b∥c,错误;D选项中,若∠3+∠4=180°,则a∥c,利用
了“同旁内角互补,两直线平行”,正确.故选C.
方法总结:解决此类问题的关键是识别截线和被截线,找准同位角、内错角和同旁内角,从
而判断出哪两条直线是平行的.
【类型二】根据平行线的判定方法,添加合适的条件
如图所示,要想判断AB是否与CD平行,我们可以测量哪些角?请你写出三种方案,并说明理由.
解析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此答题.
解:(1)可以测量∠EAB与∠D,如果∠EAB=∠D,那么根据“同位角相等,两直线平行”,得出AB与CD平行;
(2)可以测量∠BAC与∠C,如果∠BAC=∠C,那么根据“内错角相等,两直线平行”,得出AB与CD平行;
(3)可以测量∠BAD与∠D,如果∠BAD+∠D=180°,那么根据“同旁内角互补,两直线平行”,得出AB与CD平行.
方法总结:解决此类问题的关键是找准同位角、内错角和同旁内角.
三、板书设计
平行线的判定两直线平行
平行线的判定是平行线内容的进一步拓展,是进一步学习平行线的有力工具,为学习平行线的性质、三角形、四边形等知识打下基础,在整个初中几何中占有非常重要的地位.学生虽然已经学了平行线的定义、平行公理,具备了探究直线平行的基础,但学生在文字语言、符号语言和图形语言之间的转换能力比较薄弱,在逻辑思维和合作交流的意识方面发展不够均衡,还需逐渐提高。