【课件】1.3平行线的判定
- 格式:ppt
- 大小:830.00 KB
- 文档页数:19
专题1.3 平行线的判定1.掌握同位角相等,两直线平行;2.掌握内错角相等,两直线平行;3.掌握同旁内角互补,两直线平行;4.掌握垂直同一直线的两条直线互相平行;知识点01 同位角相等两直线平行【知识点】判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行 简单说成: 同位角相等,两直线平行。
几何语言:∵∠1=∠2∴ AB ∥CD (同位角相等,两直线平行)【典型例题】例1.(2022秋·内蒙古乌兰察布·七年级校考期末)如图是两条直线平行的证明过程,证明步骤被打乱,则下列排序正确的是( )如图,已知13Ð=Ð,2+3=180Ðа,求证:AB 与DE 平行.证明:①:AB DE ∥;②:24180Ð+Ð=°,23180Ð+Ð=°;③:3=4ÐÐ;④:14Ð=Ð;⑤:13Ð=Ð.A .①②③④⑤B .②③⑤④①C .②④⑤③①D .③②④⑤①【答案】B 【分析】先证明3=4ÐÐ,结合13Ð=Ð,证明14Ð=Ð,从而可得结论.【详解】根据平行线的判定解答即可.证明:∵24180Ð+Ð=°(已知),24180Ð+Ð=°(邻补角的定义),∴3=4ÐÐ(同角的补角相等).∵13Ð=Ð(已知),∴14Ð=Ð(等量代换),∴AB DE ∥(同位角相等,两直线平行).所以排序正确的是②③⑤④①,故选:B .【点睛】本题考查的是补角的性质,平行线的判定,证明14Ð=Ð是解本题的关键.例2.2.(2022春·甘肃陇南·七年级校考阶段练习)如图,两直线a ,b 被直线c 所截,已知,162a b Ð=°∥,则2Ð的度数为( )A .62°B .108°C .118°D .128°【答案】C 【分析】根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义,即可求得∠2的度数.【详解】解:∵a ∥b ,∠1=62°,∴∠3=∠1=62°,∴∠2=180°-∠3=118°.故选:C .【点睛】此题考查了平行线的性质与邻补角的定义.解题的关键是熟练掌握两直线平行,同位角相等定理的应用.例3.(2022春·甘肃陇南·七年级校考期末)如图,AB MN ^,垂足为B ,CD MN ^,垂足为D ,1Ð=2Ð.在下面括号中填上理由.因为AB MN ^,CD MN ^,所以ABM Ð=CDM Ð=90°.又因为1Ð=2Ð( ),所以1ABM Ð-Ð=2CDM Ð-Ð(),即EBM Ð=FDM Ð.所以EB FD ∥( )【答案】 已知 等量减等量,差相等 同位角相等,两直线平行【分析】根据垂线的定义,得出ABM Ð=CDM Ð=90°,再根据角的等量关系,得出EBM Ð=FDM Ð,然后再根据同位角相等,两直线平行,得出EB FD ∥,最后根据解题过程的理由填写即可.【详解】因为AB MN ^,CD MN ^,所以ABM Ð=CDM Ð=90°.又因为1Ð=2Ð(已知),所以1ABM Ð-Ð=2CDM Ð-Ð(等量减等量,差相等),即EBM Ð=FDM Ð.所以EB FD ∥(同位角相等,两直线平行).【点睛】本题考查了垂线的定义、平行线的判定,解本题的关键在熟练掌握平行线的判定定理.【即学即练】P的是1.(2022春·浙江温州·七年级瑞安市安阳实验中学校考期中)下列图形中,能由∠1=∠2得到AB CD()A.B.C.D.【答案】D【分析】根据平行线的判定定理逐一判断即可.P,【详解】∵中由∠1=∠2不能得到AB CD∴不符合题意;∥,∵中由∠1=∠2得到AD CB∴不符合题意;P,∵中由∠1=∠2不能得到AB CD∴不符合题意;P,∵中由∠1=∠2得到AB CD∴符合题意;故选D.【点睛】本题考查了平行线的判定定理,熟练掌握平行线的判定定理是解题的关键.2.(2022秋·八年级单元测试)如图,1Ð和2Ð分别为直线3l与直线1l和2l相交所成角.如果162Ð=°,那么添加下列哪个条件后,可判定12l l ∥.( ).A .2118Ð=°B .4128Ð=°C .328Ð=°D .528Ð=°【答案】A 【分析】通过同位角相等两直线平行进行判定即可.【详解】A.∵2118Ð=°,∴∠3=180 º-∠2=62 º=∠1,∴能判定12l l ∥,此选项正确;B.∵4128Ð=°,∴∠3=180 º-∠4=52 º≠∠1,∴不能判定12l l ∥,此选项错误;C.∵328Ð=°,∴∠3≠∠1,∴不能判定12l l ∥,此选项错误;D.∵528Ð=°,∴∠3=∠28º≠∠1,∴不能判定12l l ∥,此选项错误;故选:A【点睛】此题考查平行线的判定,掌握同位角相等两直线平行是解答此题的关键.3.(2021·浙江·统考模拟预测)如图,用直尺和三角尺画图:已知点P 和直线a ,经过点P 作直线b ,使//b a ,其画法的依据是( )A .过直线外一点有且只有一条直线与已知直线平行B .两直线平行,同位角相等C .同位角相等,两直线平行D .内错角相等,两直线平行【答案】C【分析】根据平行线的判定定理即可得出结论.【详解】解:由画法可知,其画法的依据是同位角相等,两直线平行.故选:C.【点睛】本题考查了作图-复杂作图,熟知平行线的判定定理是解答此题的关键.4.(2022春·天津滨海新·七年级统考期末)李强同学学完“相交线与平行线”一章后,在一本数学读物上看到一种只利用圆规和无刻度直尺作图的方法:①以∠AOB的顶点O为圆心,以适当长为半径画弧,交OA边于点M,交OB边于点N;②作一条射线CD,以点C为圆心,以OM长为半径画弧,与射线CD交于点E;③以点E为圆心,以MN长为半径画弧,与②中所画弧交于点F;④过点F作射线CP,则∠PCD=∠BOA.如图1:李强想利用这种方法过平面内一点Q作直线l的平行线a,如图2.(1)李强同学能借助上述方法作出直线l的平行线a吗?______(填“能”或“不能”).(2)如果能,请在图2中作出直线a, 保留作图痕迹,并说明能够证明这两条直线平行的理由:________________.【答案】能图见解析,同位角相等,两直线平行【分析】(1)根据题目中所列的方法即可判断;(2)根据题目中所列的方法即可画出图形【详解】解:(1)根据题目中的方法,作出角与已知角相等,再由平行线的判定从而得到平行线,即可用上述方法作出直线l的平行线a;(2)如图所示,证明这两条直线平行的理由:同位角相等,两直线平行故答案为:能;图见解析;同位角相等,两直线平行.【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.5.(2020春·广东广州·七年级统考期末)完成下面的证明.如图,AC⊥BC,DG⊥AC,垂足分别为点C,G,∠1=∠2.求证:CD//EF.证明:∵AC⊥BC,DG⊥AC,(已知)∴∠DGA=∠BCA=90°,(垂直的定义)∴ // ( )∴∠2=∠BCD,( )又∵∠l=∠2,(已知)∴∠1=∠ ,(等量代换)∴CD//EF.(同位角相等,两直线平行)【答案】DG,BC,同位角相等,两直线平行,两直线平行,内错角相等,BCD.【分析】根据垂直的定义求出∠DGA=∠BCA=90°,根据平行线的判定得出DG//BC,根据平行线的性质得出∠2=∠BCD,求出∠1=∠BCD,根据平行线的判定得出即可.【详解】∵AC⊥BC,DG⊥AC(已知),∴∠DGA=∠BCA=90°,(垂直的定义),∴DG//BC(同位角相等,两直线平行),∴∠2=∠BCD(两直线平行,内错角相等),又∵∠l=∠2,(已知)∴∠1=∠BCD(等量代换),∴CD//EF(同位角相等,两直线平行),故答案为:DG,BC,同位角相等,两直线平行,两直线平行,内错角相等,BCD.【点睛】本题考查平行的证明,解题关键是通过角度的转化,推导得出∠1=∠BCD,从而证明平行.6.(2022秋·全国·八年级专题练习)学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的(如图①~④).从图中操作过程你知道小敏画平行线的依据吗?请把你的想法写出来.【答案】见解析【分析】由折叠的性质可得∠1=∠2=90°,根据同位角相等,即可证明两直线平行.【详解】由折叠得:AB⊥PE,CD⊥PE,∴∠1=∠2=90°,∥.∴AB CD∴依据是:同位角相等,两直线平行【点睛】本题考查了折叠的性质及平行线的判定,熟练掌握知识点是解题的关键.知识点02 内错角相等两直线平行【知识点】判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行。
平行线的判定ppt
平行线的判定
一、平行线的定义
平行线是指在同一个平面上,永不相交的两条直线。
二、平行线的性质
1. 平行线之间的距离永远相等。
2. 平行线的斜率相等或互为相反数。
3. 平行线的倾斜角度相同。
三、平行线的判定方法
1. 通过两个点判定平行线
当两条直线上的任意两个点坐标的斜率相等时,可以判定这两条直线是平行线。
2. 通过斜率判定平行线
当两条直线的斜率相等时,可以判定这两条直线是平行线。
3. 通过截距判定平行线
当两条直线的斜率不存在(即为垂直于x轴或平行于y轴)且截距相等时,可以判定这两条直线是平行线。
4. 通过向量判定平行线
当两条直线的法向量相等时,可以判定这两条直线是平行线。
四、例题解析
1. 已知直线l1经过点A(-2, 3),斜率为2,判断直线l2是
否与l1平行。
首先求出l1的斜率为2,然后找出直线l2经过的点B(x, y),得出l2的斜率。
如果l1和l2的斜率相等,那么l2与l1平
行。
2. 已知直线l1的方程为y = -3x + 4,求直线l2与l1
平行且经过点C(2, 5)的方程。
首先根据l1的方程得出其斜率为-3,然后根据l2经过点C(2, 5)的条件,可以得出l2的方程为y = -3x + k。
再代入C点
的坐标,解方程得到k的值,最后得出l2的方程。
三、小结
通过两个点、斜率、截距或向量的判定方法,我们可以简便地判断两条直线是否平行。
在解题中,注意运用这些方法可以更快速、准确地得出答案。