虚功原理(物理竞赛)
- 格式:doc
- 大小:2.27 MB
- 文档页数:7
高中物理竞赛辅导讲义 功能原理【基础知识】1、虚功法所谓虚功,就是假想某一个力做了一个微功。
“虚功法”,也叫“元功法”。
在物体处于静平衡的状态下,物体所受的合外力为零,在保持平衡的前提下,物体所受各个力的虚功总和为零。
用虚功法可以处理某些平衡问题,并且颇为简单。
2.伯努利方程如图所示,以流管中的ab 段理想流体为研究对象,在极短时间Δt (Δt →0)内,该段流体移至aꞌbꞌ,等效于aaꞌ之间的流体转移至bbꞌ之间,转移的流体质量Δm =ρS 1v 1Δt =ρS 2v 2Δt ,外力对该段流体做的功W =p1S 1v 1Δt −p 2S 2v 2Δt −Δmg (h 2−h 1)。
根据动能定理,有W = 12Δm v 22 − 12Δm v 12 即p 1S 1v 1Δt −p 2S 2v 2Δt −ρS 1v 1Δtg (h 2−h 1) = 12ρS 1v 1Δt (v 22−v 12) 整理得p 1+ρgh 1+12ρv 12 = p 2+ρgh 2+12ρv 22 即p +ρgh +12ρv 2=恒量,此式即为伯努利方程。
它表明,在惯性参考系中,当理想流体做定常流动时,一定流线上(或细流管内)各点的量p +ρgh +12ρv 2为一恒量。
流体水平流动时,或者高度差不显著时(如气体的流动)伯努利方程可表达为p +12ρv 2=恒量。
显然,在流动的流体中,压强跟流速有关,流速v 较大的地方压强p 较小。
【习题选编】1.如图所示,一轻质三足支架每边长均为l ,每边与竖直线成同一角度θ,三足置于光滑水平面上,且恒成一正三角形。
现悬挂一重为G 的重物,用一绳圈套在三足支架的三足上,使其不能改变与竖直线的夹角,试求绳中张力F T 。
2.如图所示,一个半径为R 的四分之一光滑球面置于水平桌面上。
球面上有一条光滑匀质软绳,一端固定于球面顶点A ,另一端恰好与桌面不接触,且单位长度软绳的质量为ρ。
求:(1)软绳A 端所受的水平拉力;(2)软绳所受球面的支持力;(3)软绳重心的位置。
虚功原理(物理竞赛)§2、虚功原理上次课主要是介绍了分析力学中经常要用到的一些基本概念,并由虚功的概念和理想约束的概念导出了解决静力学问题的虚功原理:0=⋅∑i r i F δ。
虚功原理适用的范围是:质点组,它适用的前提条件是只受理想约束。
这次课就举一些具体例子,使我们能够了解如何利用虚功原理去解决静力学问题。
三、应用虚功原理解题:例1、如图所示,有一质量为m ,长度为 的刚性杆子,靠在墙上,在与地面接触的B 端上受一水平向左的外力F ,杆子两端的接触都是光滑的,当杆子与水平地面成α角时,要使杆子处于平衡状态,问作用在杆子B 端上的力F 有多大?求F =?解:由题意可知它是一个静力学问题,而且接触都是光滑的,显然可以应用虚功原理来求解这个问题。
这个例子很简单,简单的题目往往能够清楚地说明物理意义,为了说明虚功原理的意义,如果一开始就举复杂的例子,由于复杂的数字计算将会掩盖物理意义,所以就以这个简单的例子来看看如何应用虚功原理来解出它。
第一步当然也是确定研究对象,即①选系统:在这个例题中,我们就取杆子为应用虚功原理的力学系统。
②找主动力:作用在我们所选取的系统上的主动力有几个?有两个。
一个是水平作用力F ,还有一个是重力m g 作用在杆子的质心上。
因为杆子两端A 、B 处的接触是光滑的,∴在该两处的约束力也就不必考虑。
③列出虚功方程:主动力找出来以后,视计算方便起见,适当选好坐标,并根据虚功原理列出虚功方程。
现在选取如图所示的直角坐标,于是我们现在就可列出系统的虚功方程。
列虚功方程时,正、负号是个很重要的问题,如果按虚位移的实际方向与力的方向间的关系确定虚功的正负号,很容易弄错。
为了不容易弄错,我们还是按力的作用点的坐标的正方向与力的方向间的关系来确定虚功的正负号。
这种方法既方便而又不容易搞错。
在列方程时必须要注意这个问题。
∵F 的方向与其作用点的坐标X 的正方向相反,∴F 取负而δX B 取正,∴此力的虚功为负的,即:0=--C B y mg x F δδ……①,由于虚功方程中的两个虚位移不是相互独立的,∴我们还需要将它们化成独立变量,然后才能令独立虚位移前的乘数等于零,从而求出最后的结果。
§2、虚功原理上次课主要是介绍了分析力学中经常要用到的一些基本概念,并由虚功的概念和理想约束的概念导出了解决静力学问题的虚功原理:0=⋅∑i r i F ρϖδ。
虚功原理适用的范围是:质点组,它适用的前提条件是只受理想约束。
这次课就举一些具体例子,使我们能够了解如何利用虚功原理去解决静力学问题。
三、应用虚功原理解题:例1、如图所示,有一质量为m ,长度为λ的刚性杆子,靠在墙上,在与地面接触的B 端上受一水平向左的外力F ρ,杆子两端的接触都是光滑的,当杆子与水平地面成α角时,要使杆子处于平衡状态,问作用在杆子B 端上的力F ρ有多大求F ρ=解:由题意可知它是一个静力学问题,而且接触都是光滑的,显然可以应用虚功原理来求解这个问题。
这个例子很简单,简单的题目往往能够清楚地说明物理意义,为了说明虚功原理的意义,如果一开始就举复杂的例子,由于复杂的数字计算将会掩盖物理意义,所以就以这个简单的例子来看看如何应用虚功原理来解出它。
第一步当然也是确定研究对象,即①选系统:在这个例题中,我们就取杆子为应用虚功原理的力学系统。
②找主动力:作用在我们所选取的系统上的主动力有几个有两个。
一个是水平作用力F ρ,还有一个是重力m g ρ作用在杆子的质心上。
因为杆子两端A 、B 处的接触是光滑的,∴在该两处的约束力也就不必考虑。
③列出虚功方程:主动力找出来以后,视计算方便起见,适当选好坐标,并根据虚功原理列出虚功方程。
现在选取如图所示的直角坐标,于是我们现在就可列出系统的虚功方程。
列虚功方程时,正、负号是个很重要的问题,如果按虚位移的实际方向与力的方向间的关系确定虚功的正负号,很容易弄错。
为了不容易弄错,我们还是按力的作用点的坐标的正方向与力的方向间的关系来确定虚功的正负号。
这种方法既方便而又不容易搞错。
在列方程时必须要注意这个问题。
∵F ρ的方向与其作用点的坐标X 的正方向相反,∴F 取负而δX B 取正,∴此力的虚功为负的,即:0=--C B y mg x F δδ……①,由于虚功方程中的两个虚位移不是相互独立的,∴我们还需要将它们化成独立变量,然后才能令独立虚位移前的乘数等于零,从而求出最后的结果。
§5、2虚功原理(虚位移原理)一、虚位移和实位移实位移:由于运动而实际发生的位移 dt v r d= 对应时间间隔dt ,同时满足运动微分方程虚位移:t 时刻,质点在约束允许情况下可能发生的无限小位置变更虚位移是可能位移,纯几何概念(非运动学概念),以i rδ表示(1)特点(本质):想象中可能发生的位移,它只取决于质点在t 时刻的位置和约束方程,并不对应一段时间间隔()0=t δ,它是一个抽象的等时变分概念(2)直观意义(求法):对于非稳定约束,在t 时刻将约束“冻结”,然后考察在约束允许情况下的可能位移,即视约束方程中的t 不变()0=t δ,对约束方程进行等时变分运算(同微分运算,注意)0=t δ即可得虚位移;对于稳定约束,由于约束方程中不显含t ,“冻结”已无实际意义,等时变分运算与微分运算完全相同。
Example 质点被限制在以等速u 匀速上升的水平面内运动,约束方程为 0=-ut z 0=z δ udt dz =(3)实位移是唯一的,虚位移可若干个;对稳定约束,实位移为若干个虚位移中的某一个;对非稳定约束,实位移与虚位移不一致。
见273p 图5.2-1二、理想约束实功-作用在质点上的力(含约束力i R )在实位移rd中所作的功 dW虚功-作用在质点上的力(含约束力i R )在任意虚位移rδ中所作的功 W δ其中 i R为第i 个质点受的约束力 若∑=⋅ii i r R 0δ体系所受诸约束反力在任意虚位移中所作元功之和等于零⇒理想约束例如 光滑曲面、曲线约束,刚性杆,不可伸长的绳索等刚性杆约束 022112111='+'-=⋅+⋅r f r f r f r f δδδδ (21f f-= 21f f =; 21r r '='δδ 刚性杆约束所允许) 由于引入了虚位移,巧妙的消取了约束反力(优点 亦是缺点)三、虚功原理(分析力学重要原理之一)(受约束力学体系的力学原理之一)体系受k 个几何约束,在主动力和约束力的共同作用下处于平衡状态,则其中每个质点均处于平衡状态,即 0=+i i R F (2,1=i ……)n 0=⋅+⋅ii i i r R r F δδ⇒对系统求和⇒0=⋅+⋅∑∑i i ii i ir R r Fδδ 对于理想约束∑=⋅ii i r R 0δ 则=W δ0=⋅∑i i ir Fδ∑=++ii iz i iy i ixz F y F x F)(δδδ 虚功原理⇒具有理想约束力学体系,其平衡的充要条件是所有主动力在任意虚位移中所作元功之和等于零 (1717 伯努利)说明:1、由=W δ0=⋅∑i i ir Fδ ,只能求出平衡条件,不能求出约束反力,欲求约束反力i R,需用拉格朗日未定乘数法2、运用虚功原理求平衡条件的方法步骤(1)确定系统自由度,选择合适的广义坐标;(2)将i r表示为广义坐标q的函数,并求出i rδ(i i i z y x δδδ,,);(3)由虚功原理列出平衡方程,并令αδq 的系数为零,求出平衡条件。
虚功原理单力作功力学上,一力F在其方向上产生位移始作功。
例如,下图所示之力F,以位置向量r说明其在路径s上之位置。
若力沿路径移至新位置r ' = r + d r,其位移为d r,而功dU为一纯量,以点积(dot product)定义如下dU= F⋅d r因d r为一微小量,其大小以ds表示,乃沿路径之微小弧长。
若d r与F尾端间夹角为θ,如上图,依点积之定义,上述方程式可写为dU= Fds cosθ上式功的表示式可以用二种不同方式予以说明:即F与位移在力之方向分量ds cosθ之乘积;或位移与力在位移方向之分量F cosθ之乘积。
若0≤θ≤90︒,则力分量与位移方向相同,功为正值;若90︒≤θ≤180︒,则两向量方向相反,功为负值。
又力与位移垂直,因cos90︒= 0,则dU = 0,或力作用在固定点上,因ds = 0,则功亦为零。
功之基本单位是力及位移之组合单位。
在SI系统,一焦耳(J)相当于1牛顿力使物体移动1米之位移所作之功(1 J = 1 N⋅m)。
在FPS系统,则功之单位为ft⋅lb (呎.磅)。
力矩与功之单位相同;但是力矩与功之观念毫无相关。
力矩为一向量,而功为一纯量。
力偶作功当力偶绕一与其作用面垂直之轴旋转时,此力偶作功。
考虑上图(a)中一物体受到一大小M = Fr之力偶作用。
物体任意微小位移可视为平移与旋转之组合。
物体平移时,沿力作用线方向之位移分量为ds t,如上图(b)所示,一力作正功( Fds t ),而另一力作负功(-Fds t ),两者相互抵消。
物体绕一与力偶作用面垂直且交于O点之轴旋转一微小角度dθ,如上图(c)。
(亦可考虑作用面上任意点),图中各力均在其方向产生位移dsθ= ( r /2) dθ。
因此,二力作功为或dU = Mdθ若M与dθ方向相同则作正功,反之则作负功。
如同力矩向量,dθ之方向乃遵照右手定则(right-hand rule),即右手四指为旋转方向而姆指指向即为dθ之方向。
§2、虚功原理上次课主要是介绍了分析力学中经常要用到的一些基本概念,并由虚功的概念和理想约束的概念导出了解决静力学问题的虚功原理:0=⋅∑i r i F δ。
虚功原理适用的范围是:质点组,它适用的前提条件是只受理想约束。
这次课就举一些具体例子,使我们能够了解如何利用虚功原理去解决静力学问题。
三、应用虚功原理解题:例1、如图所示,有一质量为m ,长度为 的刚性杆子,靠在墙上,在与地面接触的B 端上受一水平向左的外力F ,杆子两端的接触都是光滑的,当杆子与水平地面成α角时,要使杆子处于平衡状态,问作用在杆子B 端上的力F有多大?求F =?解:由题意可知它是一个静力学问题,而且接触都是光滑的,显然可以应用虚功原理来求解这个问题。
这个例子很简单,简单的题目往往能够清楚地说明物理意义,为了说明虚功原理的意义,如果一开始就举复杂的例子,由于复杂的数字计算将会掩盖物理意义,所以就以这个简单的例子来看看如何应用虚功原理来解出它。
第一步当然也是确定研究对象,即①选系统:在这个例题中,我们就取杆子为应用虚功原理的力学系统。
②找主动力:作用在我们所选取的系统上的主动力有几个?有两个。
一个是水平作用力F ,还有一个是重力m g 作用在杆子的质心上。
因为杆子两端A 、B 处的接触是光滑的,∴在该两处的约束力也就不必考虑。
③列出虚功方程:主动力找出来以后,视计算方便起见,适当选好坐标,并根据虚功原理列出虚功方程。
现在选取如图所示的直角坐标,于是我们现在就可列出系统的虚功方程。
列虚功方程时,正、负号是个很重要的问题,如果按虚位移的实际方向与力的方向间的关系确定虚功的正负号,很容易弄错。
为了不容易弄错,我们还是按力的作用点的坐标的正方向与力的方向间的关系来确定虚功的正负号。
这种方法既方便而又不容易搞错。
在列方程时必须要注意这个问题。
∵F 的方向与其作用点的坐标X 的正方向相反,∴F 取负而δX B取正,∴此力的虚功为负的,即:0=--C B y mg x F δδ……①,由于虚功方程中的两个虚位移不是相互独立的,∴我们还需要将它们化成独立变量,然后才能令独立虚位移前的乘数等于零,从而求出最后的结果。
我们从图上很容易得出:αcos l x B =,αsin 2l C y =。
则αδαδsin l x -=,对C y 变分则有:αδαδcos 2l C y =,将它们代入①式就可得到:0]cos sin [21=-αδααδαmgl Fl →0)cos sin (21=-δαααmgl Fl ,∵δα是独立的,可以使它不等于零。
∴δα之前的乘数应该等零,故有:0cos sin 21=-ααmgl Fl 。
于是就可解得题目所要求的结果为:αmgctg F 21=。
对于这个问题,如果按位移的实际方向与力的方向确定虚功正负的话,将会得出这样的结果,设想杆子在F 的作用下向里有一虚位移,∵F 的方向与虚位移方向相同,∴F 是作正功的,应该为正的。
而重力m g 的方向与力的作用点的位移δy C 的方向相反,∴重力的功是负的,于是得到的结果:0=-C B y mg x F δδ是错的。
对这个简单例子的求解主要是说明了应用虚功原理的解题步骤。
由上面的求解过程可以看出,应用虚功原理解题的步骤一般是:第一步先找出所要考虑的质点组或者刚体,也就是1、找出所要研究的系统。
2、找出系统所受的主动力。
3、列出虚功方程。
列出的虚功方程中的虚位移里的坐标不一定要独立,虚功的正负号很重要,要正确判断。
我们还是以所选坐标的正方向为标准,也就是上面解题时所采用的方法。
另外还得注意:计算虚功的参考系必须是静止的。
4、虚功方程列出之后,要把方程中的虚位移化成独立的变量。
其方法有两种:一种是先找出坐标间的关系,再微分得出,这种方法就叫分析法,我们上面的例子采用的就是这种方法。
另外一种是观察法,根据观察直接找出虚位移之间的关系。
这种方法只在某些简单的情况下可行。
5、最后就是将找出的虚位移之间的关系代入虚功方程求解出最后的结果。
应用虚功原理解题的步骤一般来说大致是这样的。
当然对具体的题目要作具体的处理,并不一定要这样呆板,可灵活地去做,对我们初学者来说,有据可依总是有益处的。
当然这个例子也可以用牛顿力学中的静力平衡方程很容易地解出……。
下面我再举一个应用虚功原理求约束力的例子。
例2、如图中所示的框架,它是由四根重量和长度都相同的杆子光滑铰接而成的四边形框架,中间B 、D 两端又光滑铰接一轻杆,A 端是挂在天花板上的,已知框架上每一根秆子的重量为p ,长度为 ,试求平衡时此轻杆所受之力?解:可见这个例子要我们求的是轻杆两头所受的力。
为此我们可以把B 、D 撤消,撤消杆子也就等于撤消约束。
(在框架的B 、D 两)将约束去掉而代之的是作用在框架B 、D 两处向外的作用力T (如下图所示)并使系统仍处于原来的平衡状态,这里的系统自然是指这个平行四边形框架。
此时我们就可以将去掉的约束而代之的两个作用力T 看作为系统所受的主动力,而其他的约束仍然是理想的。
于是就可应用虚功原理求出这两个力。
这两个力其实就是杆子对框架的约束压力,求出了它当然也就求出了杆子所受的力。
现在我们对所讨论的问题和系统都已明确,于是就可着手找出系统的主动力。
对框架这个系统除了受到T 这两个主动力之外,还有作用于各杆上的四个重力,这四个重力的合力可用作用在框架对称中心E 点的4P 代替。
在这里坐标就取垂直对称轴向下为Y 轴的正向,A 为坐标原点,水平向右为x 轴的正方向。
根据对称性可以直接写出系统的虚功方程为:042=+E D y P x T δδ,由图可得:αsin l x D =,αcos l y E =,∴αδαδcos l x D =,αδαδsin l y E -=.代入虚功方程中去,得:0)sin 4cos 2(=-δαααpl Tl ,∴αptg T 2=。
这种把约束去掉,代之以力而求约束力的方法是一种重要的方法,我们必须要掌握。
上面我们所举的两个例子,所考虑的系统都是刚性系统,如果我们碰到要考虑的系统不是刚性时,不要忘了计算主动内力所作的虚功。
例如:将一弹簧圈放在光滑的球面上,求弹簧圈静止时的位置,此时弹簧圈就不是一个刚体,它内力的虚功不等于零。
此时必须要把内主动力的虚功计算进去[如果把弹簧圈割开使内力暴露出来而转化为外力,割开后的弹簧圈可看作刚体处理] 。
§3、达朗伯----拉格朗日方程以上我们所研究的是分析静力学问题,现在我们就开始转到对分析动力学问题的研究。
研究分析动力学的出发点仍然是牛顿第二运动定律。
达朗伯原理从牛顿第二定律可以直接推出达朗伯原理,而达朗伯原理与虚功原理相结合就可得到分析动力学的普遍方程即——达朗伯--拉格朗日方程。
现在我们就按这条路径来走。
假设由n 个质点组成的力学体系,根据牛顿第二定律可得,质点组中的第i 个质点的动力学方程就是i i i i a m R F =+,i=1,2……n ,将i a m 移到等式的左边成为:0=-+i i i i a m R F ……*,这样的形式。
这样移一下项得出来的方程式有什么意义呢?在数学上看来,是没有多大意义的,只不过是进行了一次移项手续而已,但在我们物理学上来看物理意义就大不相同了。
∵移项前它是个动力学方程,而移项后,如果把-m i a 也看作力,那么它就成了一个平衡方程,其实-m i a 正是我们已经熟悉的惯性力。
于是这个方程也就表明了作用在一质点组中每个质点上的主动力,约束力和惯性力三者保持平衡,这种平衡关系人们就称它为达朗伯原理。
要注意达朗伯原理的坐标系是选在与质点没有相对运动上的,引入达朗伯原理的意义在于选择与质点无相对运动的坐标系以后,只要加上惯性力,使得原来的动力学的问题就可变成静力学问题,这种方法也就叫作动静法。
将动力学问题变成静力学问题,它不仅为我们多提供了一条解决动力学问题的途径。
而且一般来讲,静力学问题要比动力学问题简单,因此将动力学问题变成静力学问题还会给解题带来方便。
工程上特别喜欢用静力学方法……我们由达朗伯原理的方程式可以得到两个推论:①∵作用在质点组中任一质点上的主动力,约束力和惯性力互成平衡,因此将这几个等式相加后仍然等于零,即:0=-++∑∑∑ii ii i i i a m R F ,其次,由质点对任一固定点的位矢i r 叉乘*式的两边,并将n 个方程相加,就可得到:0)()()(=⨯-⨯+⨯∑∑∑i i i i i i i i i i r m r R r F r 。
这些力对任一点的力矩的总和也等于零。
下面利用达朗伯原理来解下面的题目。
例:一直角形刚性杆件AOB 的质量可以忽略不计,直角的顶点O 用光滑铰链连到垂直轴Z 上,使它既能在铅垂面内绕O 点转动,同时又能绕Z 轴转动。
在A 、B 两端固结着两个质量为m 1和m 2的小球,已知:OA=a, OB=b ,求:当OA 和Z 轴为α角而这个α角稳定不变时,他们绕Z 轴转动的角速度ω=?解:∵稳定为α角,∴ω=0。
我们以两个质点和直角杆件组成的系统为研究系统。
因为整个研究系统都以同样的角速度ω作匀速转动,将坐标系就取在所研究的系统上,随系统一起转动。
则系统所受的力有重力↓m 1g 1, ↓m 2g 2和惯性力m 2ω2bcos α和m 1ω2asin α,除此之外还有O 处的约束力。
为了消去未知的约束力,我们可以对O 点应用力矩的平衡方程。
要想用力矩的平衡方程,还得先规定力矩的正方向,在这里我们就规定:力矩的逆时针方向为正,并对O 点取矩。
则有:m 2ω2bcos αbsin α-m 2gbcos α-m 1ω2asin αacos α+m 1gasin α=0解此方程很快可以得到:ααααωcos sin )()sin m -cos (212212a m b m g a b m -=。
由此可见,应用了达朗伯原理之后,这个题目只要一个平衡方程就解出了它的结果。
如果不采用达朗伯原理去解,而是采用动力学的方法去解的话,此题目是很难解的。
因此它充分地显示了应用达朗伯原理解题的优越性。
朗伯——拉格朗日方程:既然达朗伯原理的关系式:0=⋅-+i i i i a m R F 是一种平衡方程,当然也可以用虚功原理的形式表示出来。
我们用虚位移i r δ标乘上面这个平衡方程,并对i求和则有:0)(=⋅+⋅-∑∑i ii i i i i i r N r a m F δδ。
如果体系受到的是理想约束,∵在理想约束的情况下:约束力的虚功之和必等于零:0=⋅∑i i r R δ,则上式就可写成为:0)(=⋅-∑ii i i i r a m F δ,显然,它在形式上完全类似于虚功原理,这个方程就叫做达朗伯——拉格朗日方程。