内蒙古乌兰察布市集宁区2016-2017学年九年级(上)期末数学试卷(解析版)
- 格式:doc
- 大小:386.97 KB
- 文档页数:26
内蒙古乌兰察布市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)在中,,,则的值等于()A .B .C .D .2. (2分)如果点A(-1,)、B(1,)、C(2,)是反比例函数图象上的三个点,则下列结论正确的是()A . >>B . >>C . >>D . >>3. (2分) (2016八上·吴江期中) 等边三角形的内切圆半径、外接圆半径和一边上的高的比为()A . 1::B . 1::2C . 1:2:3D . 1:2:4. (2分)下列说法不正确的是()A . 某种彩票中奖的概率是,买1000张该种彩票一定会中奖B . 了解一批电视机的使用寿命适合用抽样调查C . 若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D . 在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件5. (2分) (2019九上·嘉定期末) 已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是()A . y=(x+2)2+3B . y=(x﹣2)2+3C . y=x2+1D . y=x2+56. (2分)(2017·新泰模拟) 已知:如图,四边形AOBC是矩形,以O为坐标原点,OB、OA分别在x轴、y 轴上,点A的坐标为(0,3),∠OAB=60°,以AB为轴对折后,C点落在D点处,则D点的坐标为()A .B .C .D .7. (2分)如图,方格纸上一圆经过(2,5),(-2,2),(2,-3),(6,2) 四点,则该圆圆心的坐标为()A . (2,-1)B . (2,2)C . (2,1)D . (3,1)8. (2分)钟表上的时间为晚上8点,这时时针和分针之间的夹角(小于平角)的度数是()A . 120°B . 105°C . 100°D . 90°9. (2分) (2016九上·淅川期末) 在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A . 3sin40°B . 3sin50°C . 3tan40°D . 3tan50°10. (2分) (2016九上·宜城期中) 已知关于x的方程x2+3x+a=0有一个根为﹣2,则a的值为()A . 5B . 2C . ﹣2D . ﹣5二、填空题 (共10题;共12分)11. (1分) (2017八下·福州期末) 福州市政府下大力气降低药品价格,某种药品的单价由100元经过两次降价,降至64元。
乌兰察布市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2017八下·萧山期中) 一元二次方程,若,则它的一个根是()A .B .C .D . 22. (2分)如图:将一个矩形纸片ABCD,沿着BE折叠,使C,D点分别落在点C1 , D1处.若∠C1BA=50°,则∠ABE的度数为()A . 15°B . 20°C . 25°D . 30°3. (2分) a、b是实数,点A(2,a)、B(3,b)在反比例函数y=﹣的图象上,则()A . a<b<0B . b<a<0C . a<0<bD . b<0<a4. (2分) (2019九上·东莞期末) 在平面直角坐标系中,点A(6,﹣7)关于原点对称的点的坐标为()A . (﹣6,﹣7)B . (6,7)C . (﹣6,7)D . (6,﹣7)5. (2分) (2019九上·东莞期末) 从,0,π,,6这五个数中随机抽取一个数,抽到有理数的概率是()A .B .C .D .6. (2分) (2019九上·东莞期末) 反比例函数y=﹣(x<0)如图所示,则矩形OAPB的面积是()A . 3B . ﹣3C .D . ﹣7. (2分) (2019九上·东莞期末) 如图,在△ABC中,DE∥BC ,分别交AB , AC于点D , E .若AD =1,DB=2,则△ADE的面积与△ABC的面积的比等于()A .B .C .D .8. (2分) (2019九上·东莞期末) 如图,⊙O的直径AB垂直于弦CD ,∠CAB=36°,则∠BCD的大小是()A . 18°B . 36°C . 54°D . 72°9. (2分) (2019九上·东莞期末) 若关于x的一元二次方程x2﹣2x+m=0没有实数根,则实数m的取值是()A . m<1B . m>﹣1C . m>1D . m<﹣110. (2分)如图,若a<0,b>0,c<0,则抛物线y=ax2+bx+c的大致图象为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2019九上·通州期末) 已知反比例函数<,其图象在第二、四象限内,则k的取值范围是________..12. (1分)点P(-1,m)、Q(2,n)是直线y=-2x上的两点,则m与n的大小关系是________.13. (1分)已知,可以取,,,中任意一个值,则直线的图象经过第四象限的概率是________.14. (1分) (2019九上·东莞期末) m是方程x2+x﹣1=0的根,则式子m2+m+2018的值为________.15. (1分) (2019九上·东莞期末) 如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为________米.16. (1分) (2019九上·东莞期末) 如图,AB与⊙O相切于点B , AO的延长线交⊙O于点C ,连接BC ,若∠ABC=120°,OC=3,则弧BC的长为________(结果保留π).三、解答题 (共9题;共91分)17. (5分) (2017七下·江东期中) 在解关于x,y的方程组时,老师告诉同学们正确的解是,小明由于看错了系数c,因而得到的解为,试求a+b+c的值.18. (10分) (2019九上·东莞期末) 已知:点P是正方形内一点,△ABP旋转后能与△CBE重合.(1)△ABP旋转的旋转中心是什么?旋转了多少度?(2)若BP=2,求PE的长.19. (10分) (2019九上·东莞期末) 袋中有一个红球和两个自球,它们除颜色外其余都相同,任意摸出一球,记下球的颜色,放回袋中,搅匀后再任意摸出一球,记下它的颜色.(1)请把树状图填写完整.(2)根据树状图求出两次都摸到白球的概率.20. (10分) (2019九上·东莞期末) 如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC 于E ,交AC延长线于F .求证:(1)△ADF∽△EDB;(2) CD2=DE•DF .21. (10分) (2019九上·东莞期末) 如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1 .在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)22. (10分) (2019九上·东莞期末) 受益于国家支持新能源汽车发展和“一带一路”倡议,某市汽车零部件生产企业的利润逐年提高,据统计,2017年的利润为2亿元,2019 年的利润为2.88亿元.(1)求该企业从2017年到2019年年利润的平均增长率?(2)若年利润的平均增长率不变,则该企业2020年的利润能后超过3.5亿元?23. (15分) (2019九上·东莞期末) 如图,直线y=2x与反比例函数y= (x>0)的图象交于点A(4,n),AB⊥x轴,垂足为B .(1)求k的值;(2)点C在AB上,若OC=AC ,求AC的长;(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD=S△ACD ,求点D的坐标.24. (10分) (2019九上·东莞期末) 如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E.(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长.25. (11分) (2019九上·东莞期末) 如图,在直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于点A、B ,与y轴交于点C .(1)写出抛物线顶点D的坐标________;(2)点D1是点D关于y轴的对称点,判断点D1是否在直线AC上,并说明理由;(3)若点E是抛物线上的点,且在直线AC的上方,过点E作EF⊥x轴交线段AC于点F ,求线段EF的最大值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共91分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。
内蒙古乌兰察布市九年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是()A . 从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率B . 任意买一张电影票,座位号是2的倍数的概率C . 掷一枚质地均匀的硬币,正面朝上的概率D . 从一副去掉大小王的扑克牌,任意抽取一张,抽到黑桃的概率2. (2分) (2016八上·吴江期中) 关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A . 1B . ﹣1C . 1或﹣1D .3. (2分)(2020·泰州模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分) (2016高一下·新疆期中) 抛物线y=x2-2x-3的顶点坐标是()A . (1,-4)B . (2,-4)C . (-1,4)D . (-2,-3)5. (2分)已知点E在半径为5的⊙O上运动,AB是⊙O的一条弦且AB=8,则使△ABE的面积为8的点E共有()个A . 1B . 2C . 3D . 46. (2分) (2018九上·柳州期末) 如图,BC是⊙O的直径,点A是⊙O上异于B,C的一点,则∠A的度数为()A . 60B . 70C . 80D . 907. (2分)(2019·沈阳) 如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是()A .B .C .D .8. (2分)关于x的方程(a﹣5)x2﹣4x﹣1=0有实数根,则a满足()A . a≥1B . a>1且a≠5C . a≥1且a≠5D . a≠59. (2分)二次函数y=ax2+bx+c的图象如图所示,则在下列说法中,与此函数的系数相关的一元二次方程ax2+bx+c=0的根的情况,说法正确的是()A . 方程有两个相等的实数根B . 方程的实数根的积为负数C . 方程有两个正的实数根D . 方程没有实数根10. (2分)已知等腰三角形的两边长是5和12,则它的周长是()A . 22B . 29C . 22或29D . 1711. (2分)函数y=ax2+bx+c的图象如图所示,那么关于x的一元二次方程ax2+bx+c-2=0的根的情况是()A . 有两个不相等的实数根B . 有两个异号的实数根C . 有两个相等的实数根D . 没有实数根12. (2分)(2017·兰州) 如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()A .B .C .D .二、填空题 (共6题;共8分)13. (1分)已知关于x的一元二次方程x2-4x+1=0的两个实数根是x1、x2,那么x1+x2=________.14. (1分)(2017·阜康模拟) 如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为________.15. (3分) (2018九上·浠水期末) 函数y=(x﹣1)2+4的对称轴是________,顶点坐标是________,最小值是________.16. (1分) (2018九上·灌南期末) 半径为2的圆的内接正六边形的边长为________.17. (1分) (2019九下·台州期中) 如图,点A是反比例函数y= 的图象上位于第一象限的点,点B在x 轴的正半轴上,过点B作BC⊥x轴,与线段OA的延长线交于点C,与反比例函数的图象交于点D.若直线 AD恰为线段 OC 的中垂线,则sinC=________.18. (1分) (2018九上·杭州月考) 已知抛物线开口向上且经过点,双曲线经过点,给出下列结论:① ;② ;③ ,是关于的一元二次方程的两个实数根;④ .其中正确结论是________(填写序号)三、解答题 (共7题;共55分)19. (10分)已知关于x的一元二次方程 mx2+mx+m﹣1=0有两个相等的实数根.(1)求m的值;(2)解原方程.20. (15分)(2017·山西模拟) 雾霾天气已经成为人们普遍关注的话题,雾霾不仅仅影响人们的出行,还影响着人们的健康,太原市会持续出现雾霾天气吗?在2016年2月周末休息期间,某校九年级1班综合实践小组的同学以“雾霾天气的主要成因”为主题,随机调查了太原市部分市民的观点,并对调查结果进行了整理,绘制了如下不完整的统计图表,观察并回答下列问题:类别雾霾天气的主要成因百分比A工业污染45%B汽车尾气排放mC城中村燃煤问题15%D其他(绿化不足等)n(1)请你求出本次被调查市民的人数及m,n的值,并补全条形统计图;(2)若太原市有300万人口,请你估计持有A,B两类看法的市民共有多少人?(3)学校要求小颖同学在A,B,C,D这四个雾霾天气的主要成因中,随机抽取两项作为课题研究的项目进行考察分析,请用画树状图或列表的方法,求出小颖同学刚好抽到B(汽车尾气排放),C(城中村燃煤问题)的概率.(用A,B,C,D表示各项目)21. (5分) (2017八下·邵东期中) 已知:如图,点E是正方形ABCD的边AB上任意一点,过点D作DF⊥DE 交BC的延长线于点F.求证:DE=DF.22. (5分)如图,已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.23. (5分)如图,已知正方形OABC的边长为2,顶点A,C分别在x轴,y轴的正半轴上,E点是BC的中点,F是AB延长线上一点且FB=1.(1)求经过点O、A、E三点的抛物线解析式;(2)点P在抛物线上运动,当点P运动到什么位置时△OAP的面积为2,请求出点P的坐标;(3)在抛物线上是否存在一点Q,使△AFQ是等腰直角三角形?若存在直接写出点Q的坐标;若不存在,请说明理由.24. (10分)(2017·济宁模拟) 如图,在菱形ABCD中,AB=2,∠ABC=60°,对角线AC、BD相交于点O,将对角线AC所在的直线绕点O顺时针旋转角α(0°<α<90°)后得直线l,直线l与AD、BC两边分别相交于点E 和点F.(1)求证:△AOE≌△COF;(2)当α=30°时,求线段EF的长度.25. (5分)如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,⊙P的半径为2.(1)写出A、B、C、D四点坐标;(2)求过A、B、D三点的抛物线的函数解析式,求出它的顶点坐标.(3)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共8分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共55分)19-1、19-2、20-1、20-2、20-3、21-1、22-1、23-1、24-1、24-2、。
内蒙古乌兰察布市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016九上·和平期中) 已知点A(a,b)与点B(2,2)是关于原点O的对称点,则()A . a=﹣2,b=﹣2B . a=﹣2,b=2C . a=2,b=﹣2D . a=2,b=22. (2分) (2019七下·张店期末) 下列事件中,必然事件是()A . 一定是正数B . 八边形的外角和等于C . 明天是晴天D . 中秋节晚上能看到月亮3. (2分) (2016九上·太原期末) 在平面直角坐标系中,反比例函数y= 的图象位于()A . 第二、四象限B . 第一、三象限C . 第一、四象限D . 第三、四象限4. (2分) (2018九上·东台期中) 二次函数图像的顶点坐标是()A . (1,-1)B . (-1,1)C . (1,1)D . (-1,-1)5. (2分) (2019九上·三门期末) 对于二次函数y=﹣2(x+1)(x﹣3),下列说法正确的是()A . 图象与x轴的交点为(1,0),(﹣3,0)B . 图象的对称轴是直线x=﹣2C . 当x<1时,y随x的增大而增大D . 此函数有最小值为86. (2分)(2020·马山模拟) 如图是抛物线图象的一部分,且抛物线的对称轴为,那么下列说法正确的是()① ;② ;③ ;④ ;⑤ .A . ①②③④B . ②④⑤C . ②③④D . ①④⑤7. (2分)△ABC与△DEF的周长之比为4:9,则△ABC与△DEF的相似比为()A . 2:3B . 4:9C . 16:81D . 9:48. (2分)如图,已知AC∥BD,OA=OC,则下列结论不一定成立的是()A . ∠B=∠DB . ∠A=∠BC . AD=BCD . OA=OB9. (2分)(2019·吴兴模拟) 李白笔下“孤帆一片日边来”描述了在喷薄而出的红日映衬下,远远望见一叶帆船驶来的壮美河山之境.聪明的小芬同学利用几何图形,构造出了此意境!如图半径为5的⊙O在线段AB上方,且圆心O在线段AB的中垂线上,到AB的距离为,已知AB=20.线段PQ在AB上(AP<AQ),PQ=6,以PQ的中点C为顶点向上作Rt△CDE,其中∠D=90°,CD=3,sin∠DCE=sin∠DCQ= ,设AP=m,当边DE与⊙O有交点时,则m的取值范围是()A .B .C .D .10. (2分) (2019·琼中模拟) 方程的解为()A .B .C .D .二、填空题 (共5题;共6分)11. (2分)如图,AD是直角△ABC (∠C=90°)的角平分线,EF⊥AD于D ,与AB及AC的延长线分别交于E , F ,写出图中的一对全等三角形是________;一对相似三角形是________ .12. (1分)如图,大圆半径为6,小圆半径为2,在如图所示的圆形区域中,随机撒一把豆子,多次重复这个实验,若把“豆子落在小圆区域A中”记作事件W ,请估计事件W的概率P(W)的值________.13. (1分)(2012·成都) 如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1 ,△OEF的面积为S2 ,则 =________.(用含m的代数式表示)14. (1分) (2018九上·钦州期末) 如图,在Rt△ABC中,∠ABC=90°,AB=BC=4,将△ABC△绕点A顺时针旋转60°,得到△ADE,连结BE,则BE的长为________.15. (1分) (2019九下·常熟月考) 如图是小章为学校举办的数学文化节没计的标志,在△ABC中,∠ACB =90°,以△ABC的各边为边作三个正方形,点G落在HI上,若AC+BC=6,空自部分面积为10.5,则阴影部分面积为________.三、解答题 (共8题;共101分)16. (15分) (2019七下·邗江期中) 阅读与思考:阅读理解问题——代数问题几何化 1.阅读理解以下文字:我们知道,多项式的因式分解就是将一个多项式化成几个整式的积的形式.通过因式分解,我们常常将一个次数比较高的多项式转化成几个次数较低的整式的积,来达到降次化简的目的.这个思想可以引领我们解决很多相对复杂的代数问题.例如:方程 2x2+3x=0 就可以这样来解:解:原方程可化为 x(2x+3)=0,所以x=0 或者 2x+3=0.解方程 2x+3=0,得 x=- . ∴原方程的解为 x=0或x=- .根据你的理解,结合所学知识,解决以下问题:(1)解方程:3x2-x=0(2)解方程:(x+3)2-4x2=0;(3)已知△ABC 的三边长为 4,x,y,请你判断代数式y2 -8y+16-x2的值的符号.17. (15分)(2018·淅川模拟) 如图,一次函数与反比例函数的图象交于,两点.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式的解集;(3)过点B作轴,垂足为C,求的面积.18. (10分) A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外没有任何区别.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?19. (10分) (2018九上·乐东月考) 电动自行车已成为市民日常出行的首选工具。
2017届九年级数学上期末试卷(含答案和解释) :篇一:2017届九年级上学期期末考试数学试题带答案(人教版)2016—2017学年上学期九年级数学期末检测试卷(全卷三个大题,共23个小题,共4页;满分120分,考试用时120分钟)注意事项:本卷为试题卷。
考生必须在答题卡上解题作答。
答案应写在答题卡的相应位置,在试卷上、草稿纸上作答无效。
一、填空题(本大题共6个小题,每小题3分,共18分) 1. 二次函数y=2(x﹣3)2+5的最小值为. 2. 如图,⊙O的直径AB经过弦CD的中点E,若∠C=25°, 则∠D= .3.若反比例函数的图象经过(-2,3),则其函数表达式为________________ .4. 若两个相似六边形的周长的比是3﹕2,其中较大一个六边形的面积为81,则较小一个六边形的面积为_____________ .2x,x是方程3x?2x?2?05.若1211??_________. x1x26. 一个圆锥的侧面展开图是半径为8cm、圆心角为120°的扇形,则此圆锥底面圆的半径为 cm.二、选择题(本大题共8个小题,每小题4分,共32分) 7. 下列既是轴对称图形又是中心对称图形的是()A.B.C. D.38. 反比例函数y??的图象上有P1(x1,﹣2),P2(x2,﹣3)两点,则xx1与x2的大小关系是()A. x1<x2B.x1=x2C.x1>x2D.不确定9. 事情“父亲的年龄比儿子的年龄大”属于()A.不可能事件B.可能事件C.不确定事件D.必然事件 10.直角三角形的两直角边长分别为3cm、4cm以直角顶点为圆心,2.4cm长为半径的圆与斜边的位置关系是() A.相交 B.相切 C.相离 D.无法确定11. 若x=1是一元二次方程x2+2x+m=0的一个根,则m的值为()A.3B.-3C.1D.-112. 将抛物线y=x2向右平移2个单位,再向上平移3个单位后,平移后的抛物线的解析式为( )A.y=(x+2)2+3B.y=(x-2)2+3C.y=(x+2)2-3D.y=(x-2)2-3 13. 如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB 缩1小为原来的CD,则端点C的坐标为2( )A.(3,3)B.(4,3)C.(3,1)D.(4,1) 14. 如图,AD是正五边形ABCDE 的一条对角线,则∠BAD=().A.36°B.30°C.72°D.60°三、解答题(本大题共9个小题,共70分) 15.解方程(共2个小题,共10分)2x?27?12x (2)3x2?2x?4?0 (1)16. (8分)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当AD?1,AC=3时,求BF的长. BD17. (7分)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC向右平移5个单位,向上平移1个单位得△A1B1C1,再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求点A1运动到点A2的路径总长.18.(8分,第(1)题5分,第(2)题3分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求:(1)该种药品平均每次降价的百分率.(2)若按(1)中的百分率再降一次,则每瓶的售价将为多少元?19. (7分)小亮与小明学习概率初步知识后设计了如下游戏,小亮手中有三张分别标有数字-1,-2,-3的卡片,小明手中有三张分别标有数字1,2,3的卡片,均背面朝上,卡片形状、大小、质地等完全相同,现随机从小亮手中任取一张卡片,卡片的数用m表示;从小明手中任取一张卡片,卡片的数用n表示并记为点(m,n)(1)请你用树状图或列表法列出所有可能的结果;(2)求点(m,n)在函数y=-x的图象上的概率.20. (6分)如图,在平面直角坐标系xOy中,双曲线y?线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点的坐标.21. (8分)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA =CB.(1)求证:直线AB是⊙O的切线;(2)若∠A=30°,AC=6,求⊙O 的周长.m与直 xB22、(7分)如图,已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D. (1)求证:AC=BD;(2)若大圆的半径R=10,小圆的半径r=8,且圆心O直线AB的距离为6,求AC的长.到23.(9分)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)篇二:上海市2017届九年级上期末考试数学试卷含答案2016-2017学年第一学期教学质量调研测试卷一. 选择题a2a?,那么的值为() b3a?b1233A. ; B. ; C. ; D. ; 35542. 已知Rt△ABC中,?C?90?,BC?3,AB?5,那么sinB的值是() 1. 已知A. 3344;B. ;C. ;D. ; 54533. 将抛物线y?x2先向右平移2个单位,再向下平移3个单位,所得抛物线的函数解析式是()A. y?(x?2)2?3;B. y?(x?2)2?3;C. y?(x?2)2?3;D. y?(x?2)2?3;4. 如图,在△ABC中,点D、E分别在AB、AC上,?AED??B,那么下列各式中一定正确的是()A. AE?AC?AD?AB;B. CE?CA?BD?AB;C. AC?AD?AE?AB;D. AE?EC?AD?DB;5. 已知两圆的半径分别是3和5,圆心距是1,那么这两圆的位置关系是()A. 内切;B. 外切;C. 相交;D. 内含;6. 如图所示,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边依次向下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A. 第4张;B. 第5张;C. 第6张;D. 第7张;二. 填空题????7. 化简:2(a?2b)?3(a?b)?8. 如果在比例1:1000000的地图上,A、B两地的图上距离为2.4厘米,那么A、B两地的实际距离为千米;9. 抛物线y?(a?2)x2?3x?a的开口向下,那么a的取值范围是;10. 一斜面的坡度i?1:0.75,一物体由斜面底部沿斜面向前推进了20米,那么这个物体升高了11. 如果一个正多边形的一个外角是36°,那么该正多边形的边数为12. 已知AB是○O的直径,弦CD⊥AB于点E,如果AB?8,CD?6,那么OE?; 13. 如图所示,某班上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子为线段AD,甲的影子为线段AC,已知甲身高1.8米,乙身高1.5米,甲的影长是6米,则甲、乙同学相距米;14. 如图,点A(3,t)在第一象限,OA与x轴正半轴所夹的锐角为?,如果tan??3,那么t的值 2为;15. 如图,平行四边形ABCD中,E是CD的延长线上一点,BE与AD 交于点F,CD?2DE,如果△DEF的面积为1,那么平行四边形ABCD的面积为;16. 如图,在矩形ABCD中,AB?3,BC?5,以B为圆心BC为半径画弧交AD于点E,如果点F是弧EC的中点,联结FB,那么tan?FBC的值为;17. 新定义:我们把两条中线互相垂直的三角形称为“中垂三角形”,如图所示,△ABC中,AF、BE是中线,且AF?BE,垂足为P,像△ABC这样的三角形称为“中垂三角形”,如果?ABE?30?,AB?4,那么此时AC的长为;18. 如图,等边△ABC中,D是边BC上的一点,且BD:DC?1:3,把△ABC折叠,使点A落在边BC上的点D处,那么三. 解答题19. 计算:AM的值为; ANcot45??tan60??cot30?; 2(sin60??cos60?)20. 已知,平行四边形ABCD中,点E在DC边上,且DE?3EC,AC与BE交于点F;????????????????(1)如果AB?a,AD?b,那么请用a、b来表示AF;????????????(2)在原图中求作向量AF在AB、AD方向上的分向量;(不要求写作法,但要指出所作图中表示结论的向量)21. 如图,已知AD∥BE∥CF,它们依次交直线l1、l2于点A、B、C 和点D、E、F, DE2?,AC?14; EF5(1)求AB、BC的长;(2)如果AD?7,CF?14,求BE的长;22. 目前,崇明县正在积极创建全国县级文明城市,交通部门一再提醒司机:为了安全,请勿超速,并在进一步完善各类监测系统,如图,在陈海公路某直线路段MN内限速60千米/小时,为了检测车辆是否超速,在公路MN旁设立了观测点C,从观测点C测得一小车从点A到达点B行驶了5秒钟,已知 ?CAN?45?,?CBN?60?,BC?200米,此车超速了吗?请说明理由;?1.41?1.73)23. 如图1,△ABC中,?ACB?90?,CD?AB,垂足为D;(1)求证:△ACD∽△CBD;(2)如图2,延长DC至点G,联结BG,过点A作AF?BG,垂足为F,AF交CD于点E,求证:CD2?DE?DG;24. 如图,在直角坐标系中,一条抛物线与x轴交于A、B两点,与y轴交于C点,其中B(3,0),C(0,4),点A在x轴的负半轴上,OC?4OA;(1)求这条抛物线的解析式,并求出它的顶点坐标;(2)联结AC、BC,点P是x轴正半轴上一个动点,过点P作PM∥BC 交射线AC于点M,联结CP,若△CPM的面积为2,则请求出点P的坐标;25. 如图,已知矩形ABCD中,AB?6,BC?8,E是BC边上一点(不与B、C重合),过点E作EF?AE交AC、CD于点M、F,过点B作BG?AC,垂足为G,BG交AE于点H;(1)求证:△ABH∽△ECM;EH?y,求y关于x的函数解析式,并写出定义域; EM(3)当△BHE为等腰三角形时,求BE的长;(2)设BE?x,中考数学一模卷一、选择题(本大题共6题,每题4分,满分24分)1.B2.C3.D4.A5.D6.B二、填空题(本大题共12题,每题4分,满分48分)??7.?a?7b8.24 9.a<-210.1611.1013.1 14.17. 18.91 15.1216.235 7三、解答题(本大题共7题,满分78分)19.(本题满分10分)【解】原式? (5)分? …………………………………………………………………1分?2 (3)分 ?2……………………………………………………………………………1分20.(本题满分10分,第1小题5分,第2小题5分)【解】(1)∵四边形ABCD是平行四边形∴AD∥BC且AD=BC,CD∥AB且CD=AB ??????????????∴BC?AD?b 又∵AB?a ?????????????? ∴AC?AB?BC?a?b ……………………………………………………2分∵DE=3EC ∴DC=4EC又∵AB=CD∴AB=4EC篇三:最新2017年九年级上期末数学试卷含答案解析九年级(上)期末数学试卷一、选择题(2015秋江北区期末)若3x=2y,则x:y的值为() A.2:3 B.3:2 C.3:5 D.2:52.如果∠A是锐角,且sinA=cosA,那么∠A=()A.30° B.45° C.60° D.90°3.圆锥的母线长为4,侧面积为12π,则底面半径为()A.6 B.5 C.4 D.34.6只黄球,5只白球,一个袋子中有7只黑球,一次性取出12只球,其中出现黑球是()A.不可能事件 B.必然事件C.随机事件 D.以上说法均不对5.下列函数中有最小值的是()C.y=2x2+3xA.y=2x﹣1 B.y=﹣ D.y=﹣x2+16.如果用表示1个立方体,用表示两个立方体叠加,用表示三个立方体叠加,那么下图由6个立方体叠成的几何体的主视图是()A. B. C. D.7.⊙O内有一点P,过点P的所有弦中,最长的为10,最短的为8,则OP的长为()A.6 B.5 C.4 D.38.下列m的取值中,能使抛物线y=x2+(2m﹣4)x+m﹣1顶点在第三象限的是()A.4 B.3 C.2 D.19.四个直立在地面上的字母广告牌在不同情况下,在地面上的投影(阴影部分)效果如图.则在字母L、K、C的投影中,与字母N属同一种投影的有()A.L、K B.C C.K D.L、K、C 10.如图,圆内接四边形ABCD的BA,CD的延长线交于P,AC,BD交于E,则图中相似三角形有()A.2对 B.3对 C.4对 D.5对11.如图,AB是⊙O的直径,弦CD⊥AB于点G.点F是CD上一点,且满足=,连接AF并延长交⊙0于点E.连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF=4.其中正确的是()A.①②④ B.①②③ C.②③④ D.①③④ 12.如图,在平面直角坐标系中,⊙P与y轴相切,交直线y=x于A,B两点,已知圆心P的坐标为(2,a)(a>2),AB=2,则a的值为()A.4 B.2+ C. D.二、填空题。
内蒙古乌兰察布市九年级上学期数学期末联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列关于的方程:① ;② ;③ ;④ 中,一元二次方程的个数是()A . 1个B . 2个C . 3个D . 4个2. (2分)在下列关于x的函数中,一定是二次函数的是()A . y=x2B . y=ax2+bx+cC . y=8xD . y=x2(1+x)3. (2分)(2016·上海) 如果一次函数y=(m+1)x+m的图像不经过第一象限,那么关于x的一元二次方程x+2x-m=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法确定4. (2分)把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A . y=-(x-1)2-3B . y=-(x+1)2-3C . y=-(x-1)2+3D . y=-(x+1)2+35. (2分)(2018·覃塘模拟) 如图,已知二次函数的图象与y轴的正半轴交于点A,其顶点B在轴的负半轴上,且OA=OB,对于下列结论:① ≥0;② ;③关于的方程无实数根;④ 的最小值为3.其中正确结论的个数为()A . 1个B . 2个C . 3个D . 4个6. (2分) (2017七下·盐都开学考) 小李解关于x的方程5a-x=12时,误将-x看作+x,得方程的解为x=-3,则原方程的解是()A . x=-2B . x=1C . x=3D . x=27. (2分)已知m,n,k为非负实数,且m﹣k+1=2k+n=1,则代数式2k2﹣8k+6的最小值为()A . -2B . 0C . 2D . 2.58. (2分)如图是二次函数y=ax2+bx+c(a≠0)的图象,下列结论正确的个数是()①顶点是(﹣1,4)②方程ax2+bx+c=0的解是x1=﹣3,x2=1③4a+2b+c>0④不等式ax2+bx+c>0的解为﹣2<x<0.A . 1B . 2C . 3D . 49. (2分)已知二次函数y=x2+bx+c的图象如图所示,若y>0,则x的取值范围是()A . ﹣1<x<3B . ﹣1<x<4C . x<﹣1或x>3D . x<﹣1或x>410. (2分)(2018·秦皇岛模拟) 某县为发展教育事业,加强了对教育经费的投入,2007年投入3000万元,预计2009年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A . 3000(1+x)2=5000B . 3000x2=5000C . 3000(1+x%)2=5000D . 3000(1+x)+3000(1+x)2=500011. (2分)将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到的抛物线是()A . y=2(x+1)2-5B . y=2(x+1)2+5C . y=2(x-1)2-5D . y=2(x-1)2+512. (2分)在二次函数y=ax2+bx+c,x与y的部分对应值如下表:x…﹣2023…y…8003…则下列说法:①图象经过原点;②图象开口向下;③图象经过点(﹣1,3);④当x>0时,y随x的增大而增大;⑤方程ax2+bx+c=0有两个不相等的实数根.其中正确的是()A . ①②③B . ①③⑤C . ①③④D . ①④⑤二、填空题 (共6题;共6分)13. (1分) (2019九下·温州竞赛) 如图,已知抛物线y=-x2+2x+3与X轴交于A,B两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,则P点到直线BC的距离PD的最大值是 ________ .14. (1分)(2017·赤壁模拟) 对于二次函数y=x2﹣2mx﹣3,有下列结论:①它的图象与x轴有两个交点;②如果当x≤﹣1时,y随x的增大而减小,则m=﹣1;③如果将它的图象向左平移3个单位后过原点,则m=1;④如果当x=2时的函数值与x=8时的函数值相等,则m=5.其中一定正确的结论是________.(把你认为正确结论的序号都填上)15. (1分)(2018·扬州) 有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是________.16. (1分)(2012·贵港) 若直线y=m(m为常数)与函数y= 的图象恒有三个不同的交点,则常数m的取值范围是________.17. (1分)已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(-1,0),(3,0).对于下列命题:①b-2a=0;②abc<0;③a-2b+4c<0;④8a+c>0.其中正确的有________。
内蒙古乌兰察布市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2018九上·广州期中) 方程的解是()A .B .C .D .2. (2分)下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是()A . y=(x﹣2)2+1B . y=(x+2)2+1C . y=(x﹣2)2﹣3D . y=(x+2)2﹣33. (2分) (2018九上·天台月考) 在平面直角坐标系中,点P(-3,-5)关于原点对称的点的坐标是()A . (3,-5)B . (-3,5)C . (3,5)D . (-3,-5)4. (2分) (2016九上·红桥期中) 如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OA 交圆O于点F,则∠CBF等于()A . 12.5°B . 15°C . 20°D . 22.5°5. (2分)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A . 1种B . 2种C . 3种D . 4种6. (2分)(2018·覃塘模拟) 如图,在菱形ABCD中,点E是BC边的中点,动点M在CD边上运动,以EM 为折痕将△CEM折叠得到△PEM,联接PA,若AB=4,∠BAD=60°,则PA的最小值是()A .B . 2C .D .7. (2分) (2019九上·红安月考) 下列一元二次方程两实数根和为-4的是()A . x2+2x-4=0B . x2-4x+4=0C . x2+4x+10=0D . x2+4x-5=08. (2分)(2019·湖州模拟) 把同一副扑克牌中的红桃、红桃、红桃三张牌背面朝上放在桌子上,从中随机抽取两张,牌面的数字之和为奇数的概率为()A .B .C .D .9. (2分)(2020·溧阳模拟) 如图,在平面直角坐标系中,△AOB中,∠AOB=90°,∠ABO=30°,顶点A 在反比例函y=(x>0)上运动,此时顶点B也在反比例函数y=上运动,则m的值为()A . -9B . -12C . -15D . -1810. (2分)数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A . 勾股定理B . 直径所对的圆周角是直角C . 勾股定理的逆定理D . 90°的圆周角所对的弦是直径11. (2分)已知一次函数y=kx+b的图象经过第一、二、四象限,则函数y= 的图象在()A . 第一、三象限B . 第二、四象限C . 第三、四象限D . 第一、二象限12. (2分)(2019·鹿城模拟) 如图,已知抛物线y=x2﹣2x﹣3与x轴相交于点A,B,若在抛物线上有且只有三个不同的点C1 , C2 , C3 ,使得△ABC1 ,△ABC2,△ABC3的面积都等于a,则a的值是()A . 6B . 8C . 12D . 16二、填空题 (共5题;共9分)13. (1分) (2016九上·嘉兴期末) 将抛物线y=x2向左平移1个单位后的抛物线表达式为________.14. (1分)(2019·光明模拟) 如图所示,一根水平放置的圆柱形输水管道横截面,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是________.15. (1分) (2020八上·淮阳期末) 已知数据: ,其中无理数出现的频率是________.16. (5分)如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动________ 次后该点到原点的距离不小于41.17. (1分)如图,在△ABC中,∠A=90°,AB=AC=2,点O是边BC的中点,半圆O与△ABC相切于点D、E,则阴影部分的面积等于________三、解答题 (共9题;共101分)18. (5分) (2018九上·仁寿期中) 在一幅长8分米,宽6分米的矩形风景画(如图①)的外面四周镶宽度相同的金色纸边,制成一幅矩形挂图(如图②).如果要使整个挂图的面积是80平方分米,求金色纸边的宽.19. (10分)(2019·湖州模拟) 计算:(1);(2) x2-4x=-320. (10分)国务院办公厅在2015年3月16日发布了《中国足球发展改革总体方案》,这是中国足球史上的重大改革,为进一步普及足球知识,传播足球文化,我市某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.21. (10分)(2019·通辽模拟) 如图,已知A、F、C、D四点在同一条直线上,AF=CD ,AB∥DE ,且AB =DE .(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.22. (10分) (2017七下·大同期末) 某中学对七年级学生数学学期成绩的评价规定如下:学期评价得分由期末测试成绩(满分100分)和期中测试成绩(满分100分)两部分组成,其中期末测试成绩占70%,期中测试成绩占30%,当学期评价得分大于或等于85分时,该生数学学期成绩评价为优秀.(1)小明的期末测试成绩和期中成绩两项得分之和为170分,学期评价得分为87分,则小明期末测试成绩和期中测试成绩各得多少分?(2)某同学期末测试成绩为75分,他的综合评价得分有可能达到优秀吗?为什么?(3)如果一个同学学期评价得分要达到优秀,他的期末测试成绩至少要多少分(结果保留整数)?23. (15分) (2019七下·忠县期中) 如图,△A1B1C1是△ABC向右平移四个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A、B、C的坐标;(2)求出△AOA1的面积.24. (15分) (2020九上·广东开学考) 如图所示,已知抛物线经过点B(3,0),C(0,3),D(4,-5),且与轴交于点A.(1)求抛物线的解析式;(2)若点M是抛物线的顶点,求△ABM的面积.25. (11分) (2017七上·濮阳期中) 若我们定义a※b =4ab-a÷b,其中符号“※’是我们规定的一种运算符号,例如,6※2 =4×6 ×2-6÷2=48-3=45.(1)求(-4)※(-2),(-2) ※2;(2)若x ※2 =15,求x.26. (15分)(2019·绍兴模拟) 如图,在平面直角坐标系中,△AOB的三个顶点的坐标分别是A(4,3),O (0,0),B(6,0).点M是OB边上异于O,B的一动点,过点M作MN∥AB,点P是AB边上的任意点,连接AM,PM,PN,BN.设点M(x,0),△PMN的面积为S.(1)求出OA所在直线的解析式,并求出点M的坐标为(1,0)时,点N的坐标;(2)求出S关于x的函数关系式,写出x的取值范围,并求出S的最大值;(3)若S:S△ANB=2:3时,求出此时N点的坐标.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共9分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共101分)18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。
内蒙古乌兰察布市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·崇左) 一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()A .B .C .D .2. (2分)两个相似三角形的面积比为1∶4,那么这两个三角形的周长比为()A . 1∶2;B . 1∶4;C . 1∶8;D . 1∶16.3. (2分) (2016八下·桂阳期末) 正六边形具备而菱形不具备的性质是()A . 对角线互相平分B . 对角线互相垂直C . 对角线相等D . 每条对角线平分一组对边4. (2分)用配方法解一元二次方程,下列变形正确的是()A .B .C .D .5. (2分) (2019八下·尚志期中) 下列四个命题中错误的是()A . 对角互补的平行四边形是矩形B . 有两边相等的平行四边形是菱形C . 对角线相等的平行四边形是矩形D . 一组邻边相等的矩形是正方形6. (2分)袋子里有10个红球和若干个蓝球,小明从袋子里有放回地任意摸球,共摸100次,其中摸到红球次数是25次,则袋子里蓝球大约有()A . 20B . 30C . 40D . 507. (2分)如图,AB∥CD,AC、BD交于点O,若DO=3,BO=5,DC=4,则AB长为()A . 6B . 8C .D .8. (2分)(2018·抚顺) 如图,菱形ABCD的边AD与x轴平行,A,B两点的横坐标分别为1和3,反比例函数y= 的图象经过A,B两点,则菱形ABCD的面积是()A . 4B . 4C . 2D . 29. (2分) (2017七上·马山期中) 某商场实行8折优惠销售,现售价为x元的商品的原价是()A . 0.2xB . 0.8xC . 1.25xD . 5x10. (2分)对于反比例函数y=,下列说法不正确的是()A . 它的图象是双曲线并且在第一、三象限B . 点(-4,-)在它的图象上C . 它的图象是中心对称图形D . y随x的增大而增大二、填空题 (共5题;共6分)11. (1分)用________法解方程3(x﹣2)2=2x﹣4比较简便.12. (1分)(2019·嘉善模拟) 如图,圆柱的侧面是由一张长16πcm、宽3cm的长方形纸条围成(接缝处重叠部分忽略不计),那么该圆柱的体积是________cm3.13. (1分)从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是________ .14. (1分) (2016九上·石景山期末) 如图,在平面直角坐标系xOy中,点B在y轴上,AB=AO,反比例函数的图象经过点A,若△ABO的面积为2,则k的值为________.15. (2分) (2017八下·钦州期末) 若矩形的一个内角的平分线把矩形的一条边分成3cm和5cm的两段,则该矩形的周长为________.三、解答题 (共8题;共76分)16. (10分) (2019八下·嘉兴开学考) 解方程:(1)( +4)²=5( +4)(2) 2x2+4x-3=017. (10分) (2018九上·巴南月考) 如果一个三位数,十位数字等于百位数字与个位数字的平均数,我们称这个三位数为“顺子数”,例如:630,123.如果一个三位数,十位数字等于百位数字与个位数字的积的算术平方根,我们称这个三位数为“和谐数”,例如:139,124.(1)若三位数是“顺子数”,且各位数字之和大于7小于10,且百位数字a使得一元二次方程(a﹣5)x2+2ax+a﹣6=0有实数根,求这个“顺子数”;(2)若三位数既是“顺子数”又是“和谐数”,请探索a,b,c三者的关系.18. (10分)(2017·滨湖模拟) 江苏卫视《最强大脑》曾播出一期“辨脸识人”节目,参赛选手以家庭为单位,每组家庭由爸爸妈妈和宝宝3人组成,爸爸、妈妈和宝宝分散在三块区域,选手需在宝宝中选一个宝宝,然后分别在爸爸区域和妈妈区域中正确找出这个宝宝的父母,不考虑其他因素,仅从数学角度思考,已知在本期比赛中有A、B、C三组家庭进行比赛.(1)若机器人智能小度选择A组家庭的宝宝,求小度在妈妈区域中正确找出其妈妈的概率;(2)如果任选一个宝宝(假如选A组家庭),通过列表或树状图的方法,求机器人智能小度至少正确找对宝宝父母其中一人的概率.19. (5分)如图,锐角△ABC中,边BC长为3,高AH长为2,矩形EFMN的边MN在BC边上,其余两个顶点E,F分别在AB,AC边上,EF交AH于点G.(1)求的值;(2)当EN为何值时,矩形EFMN的面积为△ABC面积的四分之一.20. (10分) (2019八下·合浦期中) 如图,在中,,点是中点,,.(1)求证:四边形是菱形;(2)过点作于点,,,求的长.21. (10分) (2019九上·大田期中) 现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查:某家快递快递公司今年八月份与十月份完成投递的快递总件数分别为10万件和12.1万件,假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.55万件,请问该公司至少需要几名业务员才能完成十一月份的快递投递任务?22. (10分) (2017八下·徐州期末) 如图,已知直线a∥b,a、b之间的距离为4cm.A、B是直线a上的两个定点,C、D是直线b上的两个动点(点C在点D的左侧),且AB=CD=10cm,连接AC、BD、BC,将△ABC沿BC翻折得△A1BC.(1)当A1、D两点重合时,AC=________cm;(2)当A1、D两点不重合时,①连接A1D,求证:A1D∥BC;②若以点A1、C、B、D为顶点的四边形是矩形,求AC的长.23. (11分) (2017九上·乐清期中) 如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD 为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为________.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4、答案:略5-1、6-1、7-1、8-1、9-1、10、答案:略二、填空题 (共5题;共6分)11、答案:略12-1、13-1、14-1、15-1、三、解答题 (共8题;共76分)16、答案:略17、答案:略18-1、18-2、19-1、20-1、20-2、21-1、21-2、22、答案:略23-1、。
内蒙古乌兰察布市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共10分)1. (1分)(2017·永州) 下列运算正确的是()A . a•a2=a2B . (ab)2=abC . 3﹣1=D .2. (1分)(2017·重庆模拟) 下列线段中,能成比例的是()A . 3cm、6cm、8cm、9cmB . 3cm、5cm、6cm、9cmC . 3cm、6cm、7cm、9cmD . 3cm、6cm、9cm、18cm3. (1分)下列方程中有相等的实数根的是()A . x2+x+1=0B . x2+8x+1=0C . x2+x+2=0D . x2﹣2x+1=04. (1分) (2019八下·长春期中) 为把我市创建成全国文明城市,某社区积极响应市政府号召,准备在一块正方形的空地上划出部分区域栽种鲜花,如图中的阴影“ ”带,鲜花带一边宽1m,另一边宽2m,剩余空地的面积为18m2 ,求原正方形空地的边长xm,可列方程为()A . (x﹣1)(x﹣2)=18B . x2﹣3x+16=0C . (x+1)(x+2)=18D . x2+3x+16=05. (1分)如图,在△ABC中,DE∥BC,若AD:DB=1:3,DE=4,则BC=()A . 10B . 12C . 15D . 166. (1分)如果两个相似三角形对应中线之比是1:4,那么它们的周长之比是()A . 1:2B . 1:4C . 1:8D . 1:167. (1分)如图,△AB C中,∠ACB=90°,CD⊥AB于点D,若CD:AC=2:3,则sin∠BCD的值是()A .B .C .D .8. (1分)已知两点A(7,4),B(5,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A . (2,3)B . (3,2)C . (2,1)D . (3,3)9. (1分)如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是()A . 3B . 4C . 2+D .10. (1分)如图,关于抛物线y=(x-1)2-2,下列说法错误的是()A . 顶点坐标为(1,-2)B . 对称轴是直线x=lC . 开口方向向上D . 当x>1时,y随x的增大而减小二、填空题 (共4题;共4分)11. (1分)(2018·达州) 如图,平面直角坐标系中,矩形OABC的顶点A(﹣6,0),C(0,2 ).将矩形OABC绕点O顺时针方向旋转,使点A恰好落在OB上的点A1处,则点B的对应点B1的坐标为________.12. (1分) (2017九上·梅江月考) 袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率为________.13. (1分)把20cm长的铁丝剪成两段后,分别围成正方形,则两个正方形面积之和的最小值是________.14. (1分) (2020九下·无锡月考) 平面直角坐标系内,A(-1,0),B(1,0),C(4,﹣3),P 在以 C 为圆心 1 为半径的圆上运动,连接 PA,PB,则的最小值是________ .三、解答题 (共8题;共19分)15. (2分) (2016九上·鄂托克旗期末) 解下列方程:(1) 2(x+2)2-8=0(2)(x+3)2 + 3(x+3)-4 = 016. (2分)(2012·福州) 如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t 秒(t≥0).(1)直接用含t的代数式分别表示:QB=________,PD=________.(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.17. (3分) (2016九上·北京期中) 阅读下面材料:如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.观察图象可知:①当x=﹣3或1时,y1=y2;②当﹣3<x<0或x>1时,y1>y2 ,即通过观察函数的图象,可以得到不等式ax+b>的解集.有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.下面是他的探究过程,请将(2)、(3)、(4)补充完整:(1)①将不等式按条件进行转化:当x=0时,原不等式不成立;当x>0时,原不等式可以转化为x2+4x﹣1>;当x<0时,原不等式可以转化为x2+4x﹣1<;②构造函数,画出图象设y3=x2+4x﹣1,y4= ,在同一坐标系中分别画出这两个函数的图象.双曲线y4= 如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)(2)确定两个函数图象公共点的横坐标观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为________(3)借助图象,写出解集结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为________.18. (3分)(2017·集宁模拟) 如图,有A,B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)计算点P在函数y= 图象上的概率.19. (1分)(2017·青浦模拟) 某校兴趣小组想测量一座大楼AB的高度.如图6,大楼前有一段斜坡BC,已知BC的长为12米,它的坡度i=1:.在离C点40米的D处,用测角仪测得大楼顶端A的仰角为37°,测角仪DE的高为1.5米,求大楼AB的高度约为多少米?(结果精确到0.1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73.)20. (2分)(2019·海门模拟) 某企业接到一批帽子生产任务,按要求在20天内完成,约定这批帽子的出厂价为每顶8元.为按时完成任务,该企业招收了新工人,设新工人小华第x天生产的帽子数量为y顶,y与x满足如下关系式:y=(1)小华第几天生产的帽子数量为220顶?(2)如图,设第x天每顶帽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若小华第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m天的利润至少多49元,则第(m+1)天每顶帽子至少应提价几元?21. (3分)(2015·金华) 如图,抛物线y=ax2+c(a≠0)与y轴交于点A,与x轴交于B,C两点(点C在x轴正半轴上),△ABC为等腰直角三角形,且面积为4,现将抛物线沿BA方向平移,平移后的抛物线过点C时,与x轴的另一点为E,其顶点为F,对称轴与x轴的交点为H.(1)求a、c的值.(2)连接OF,试判断△OEF是否为等腰三角形,并说明理由.(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过点E,另一直角边与y轴相交于点P,是否存在这样的点Q,使以点P、Q、E为顶点的三角形与△POE全等?若存在,求出点Q的坐标;若不存在,请说明理由.22. (3分)(2018·肇庆模拟) 在平面直角坐标系中,抛物线与x轴交于A、B(A点在B点的左侧)与y轴交于点C。
2016-2017学年内蒙古乌兰察布市集宁区九年级(上)期末数学试卷一、精心选一选1.在下列图案中,既是中心对称,又是轴对称图形的是()A.B.C.D.2.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()A.必然事件B.随机事件C.不可能事件D.无法确定3.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得的抛物线是()A.y=3(x+3)2﹣2 B.y=3(x+3)2+2 C.y=3(x﹣3)2﹣2 D.y=3(x﹣3)2+2 4.如果2是方程c﹣x2=0的一个根,那么常数c是()A.2 B.﹣2 C.4 D.﹣45.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°6.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.107.二次函数y=x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.38.已知⊙O的半径为4,则垂直平分这条半径的弦长是()A.B.C.4 D.9.关于x的一元二次方程x2+2(m﹣1)x+m2=0的根的情况是()A.无法确定B.有两个不等实根C.有两相等实根D.有实根10.如图,在正方形ABCD中,对角线BD的长为.若将BD绕点B旋转后,点D落在BC延长线上的点D′处,点D经过的路径为,则图中阴影部分的面积是()A.﹣1 B.﹣C.﹣D.π﹣211.下列命题中,假命题是()A.等弧所对的圆周角相等B.经过圆心的每一条直线都是圆的对称轴C.直径所对的圆周角是直角D.平分弦的直径垂直于弦,并平分弦所对的弧12.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1 B.2 C.3 D.4二、细心填一填13.如果函数y=(k﹣3)+kx+1是二次函数,那么k的值一定是.14.一个口袋里有10个白球和一些黑球,为了估计口袋里有多少黑球,小明随机从口袋里摸出一球,记下颜色,在放回,不断重复上述过程,小明共摸了50次,有10次摸到白球,因此可以估计口袋里有个黑球.15.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是.16.已知(﹣3,y1),(4,y2),(﹣1,y3)是二次函数y=x2﹣4x上的点,则y1,y2,y3从小到大用“<”排列是.17.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是度.18.若圆锥的底面半径为2cm,沿一条母线将圆锥的侧面剪开并展平,得到一个扇形,扇形的圆心角为90°,则该圆锥的母线长为cm.19.已知直角三角形的两直角边分别为5,12,则它的内切圆半径为.20.如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为.三、耐心答一答(共60分)21.小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的2支红笔和1支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.22.解下列方程:(1)x2﹣4x+3=24(2)2x2+3x=3(3)x2﹣7x﹣1=0.23.如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.(1)在图中作出⊙O;(不写作法,保留作图痕迹)(2)求证:BC为⊙O的切线.24.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:…同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?25.如图,直线y=x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数:y=的图象上,CD平行于y轴,S△=.OCD(1)求点A、B、C的坐标;(2)求点D的坐标;(3)求k的值.26.如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;=4S△BOC,求点P的坐标;(2)若点P在抛物线上,且S△POC(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.2016-2017学年内蒙古乌兰察布市集宁区九年级(上)期末数学试卷参考答案与试题解析一、精心选一选1.在下列图案中,既是中心对称,又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称,不是轴对称图形,故此选项错误;B、是中心对称,不是轴对称图形,故此选项错误;C、是中心对称,是轴对称图形,故此选项正确;D、是中心对称,不是轴对称图形,故此选项错误;故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.将一枚硬币向上抛掷10次,其中正面向上恰有5次是()A.必然事件B.随机事件C.不可能事件D.无法确定【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件【解答】解:将一枚硬币向上抛掷10次,其中正面向上恰有5次是随机事件,故B符合题意,故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得的抛物线是()A.y=3(x+3)2﹣2 B.y=3(x+3)2+2 C.y=3(x﹣3)2﹣2 D.y=3(x﹣3)2+2【考点】二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:抛物线y=3x2先向上平移2个单位,得:y=3x2+2;再向右平移3个单位,得:y=3(x﹣3)2+2;故选D.【点评】主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.4.如果2是方程c﹣x2=0的一个根,那么常数c是()A.2 B.﹣2 C.4 D.﹣4【考点】一元二次方程的解.【分析】根据一元二次方程的定义,把x=2代入方程得到关于c的一次方程,然后解一次方程即可.【解答】解:把x=2代入c﹣x2=0得c﹣4=0,解得c=4.故选C.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.6.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.10【考点】解一元二次方程﹣因式分解法;三角形三边关系;等腰三角形的性质.【分析】先通过解方程求出等腰三角形两边的长,然后利用三角形三边关系确定等腰三角形的腰和底的长,进而求出三角形的周长.【解答】解:解方程x2﹣4x+3=0,(x﹣1)(x﹣3)=0解得x1=3,x2=1;∵当底为3,腰为1时,由于3>1+1,不符合三角形三边关系,不能构成三角形;∴等腰三角形的底为1,腰为3;∴三角形的周长为1+3+3=7.故选:B.【点评】此题考查用因式分解一元二次方程,三角形三边关系,注意计算结果的分类检验.7.二次函数y=x2﹣2x+1与x轴的交点个数是()A.0 B.1 C.2 D.3【考点】抛物线与x轴的交点.【分析】根据b2﹣4ac与零的关系即可判断出二次函数y=x2﹣2x+1的图象与x轴交点的个数.【解答】解:∵△=b2﹣4ac=(﹣2)2﹣4×1×1=0,∴二次函数y=x2﹣2x+1的图象与x轴有一个交点.故选B.【点评】本题考查二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,是基础题型.8.已知⊙O的半径为4,则垂直平分这条半径的弦长是()A.B.C.4 D.【考点】垂径定理.【分析】根据垂径定理和勾股定理求解.【解答】解:利用勾股定理可得,弦的一半==2,根据垂径定理弦长=4.故选B.【点评】本题主要利用勾股定理和垂径定理求值.9.关于x的一元二次方程x2+2(m﹣1)x+m2=0的根的情况是()A.无法确定B.有两个不等实根C.有两相等实根D.有实根【考点】根的判别式.【分析】根据方程的系数结合根的判别式即可得出△=4﹣8m,由于m的值不确定,所以不能确定△的正负,故方程的解无法确定.【解答】解:∵在方程x2+2(m﹣1)x+m2=0中,△=[2(m﹣1)]2﹣4m2=4﹣8m,∴无法确定△的正负,∴关于x的一元二次方程x2+2(m﹣1)x+m2=0的根的情况无法确定.故选A.【点评】本题考查了根的判别式,熟练掌握“①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根”是解题的关键.10.如图,在正方形ABCD中,对角线BD的长为.若将BD绕点B旋转后,点D落在BC延长线上的点D′处,点D经过的路径为,则图中阴影部分的面积是()A.﹣1 B.﹣C.﹣D.π﹣2【考点】扇形面积的计算;正方形的性质;旋转的性质.【分析】首先根据正方形的性质可得∠DBD′=45°,BC=CD,然后根据勾股定理可得BC、CD长,再计算出扇形BDD′和△BCD的面积可得阴影部分面积.【解答】解:∵四边形ABCD是正方形,∴∠DBD′=45°,BC=CD,∵BD的长为,∴BC=CD=1,∴S 扇形BDD′==,S △CBD =1×1=,∴阴影部分的面积:﹣.故选:C .【点评】此题主要考查了正方形的性质,扇形的面积和三角形的面积计算,关键是掌握扇形的面积公式:S=.11.下列命题中,假命题是( ) A .等弧所对的圆周角相等B .经过圆心的每一条直线都是圆的对称轴C .直径所对的圆周角是直角D .平分弦的直径垂直于弦,并平分弦所对的弧 【考点】命题与定理.【分析】利用圆周角定理、圆的对称性及垂径定理分别判断后即可确定正确的选项.【解答】解:A 、等弧所对的圆周角相等,正确,是真命题;B 、经过圆心的每一条直线都是圆的对称轴,正确,是真命题;C 、直径所对的圆周角是直角,正确,是真命题;D 、平分弦(不是直径)的直径垂直于弦,并平分弦所对的弧,故错误,是假命题; 故选D .【点评】本题考查了命题与定理的知识,解题的关键是了解圆周角定理、圆的对称性及垂径定理的知识,难度不大.12.如图,二次函数y=ax 2+bx +c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,且对称轴为x=1,点B 坐标为(﹣1,0).则下面的四个结论:①2a +b=0;②4a ﹣2b +c <0;③ac >0;④当y <0时,x <﹣1或x >2.其中正确的个数是()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】根据对称轴为x=1可判断出2a+b=0正确,当x=﹣2时,4a﹣2b+c<0,根据开口方向,以及与y轴交点可得ac<0,再求出A点坐标,可得当y<0时,x<﹣1或x>3.【解答】解:∵对称轴为x=1,∴x=﹣=1,∴﹣b=2a,∴①2a+b=0,故此选项正确;∵点B坐标为(﹣1,0),∴当x=﹣2时,4a﹣2b+c<0,故此选项正确;∵图象开口向下,∴a<0,∵图象与y轴交于正半轴上,∴c>0,∴ac<0,故ac>0错误;∵对称轴为x=1,点B坐标为(﹣1,0),∴A点坐标为:(3,0),∴当y<0时,x<﹣1或x>3.,故④错误;故选:B.【点评】此题主要考查了二次函数与图象的关系,关键掌握二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、细心填一填13.如果函数y=(k﹣3)+kx+1是二次函数,那么k的值一定是0.【考点】二次函数的定义.【分析】根据二次函数的定义,列出方程与不等式求解即可.【解答】解:由题意得:k2﹣3k+2=2,解得k=0或k=3;又∵k﹣3≠0,∴k≠3.∴当k=0时,这个函数是二次函数.故答案为:0.【点评】本题考查二次函数的定义,关键是掌握二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.14.一个口袋里有10个白球和一些黑球,为了估计口袋里有多少黑球,小明随机从口袋里摸出一球,记下颜色,在放回,不断重复上述过程,小明共摸了50次,有10次摸到白球,因此可以估计口袋里有40个黑球.【考点】用样本估计总体.【分析】因为共摸了50次,其中10次摸到白球,则有40次摸到黑球;所以摸到白球与摸到黑球的次数之比可求出,由此可估计口袋中白球和黑球个数之比,进而可计算出黑球数.【解答】解:∵小明共摸了50次,其中10次摸到白球,则有40次摸到黑球,∴白球与黑球的数量之比为1:4,∵白球有10个,∴黑球有4×10=40(个).故答案为:40.【点评】本题考查的利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.解答此题的关键是要计算出口袋中白色球所占的比例.15.如果关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,那么k的取值范围是﹣≤k<且k≠0.【考点】根的判别式;一元二次方程的定义.【分析】根据方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后就可以求出k的取值范围.【解答】解:∵关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,∴k≠0,△=(﹣)2﹣4k>0,∴k<且k≠0,∵2k+1≥0,∴k≥﹣,∴k的取值范围是﹣≤k<且k≠0,故答案为:﹣≤k<且k≠0.【点评】此题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根,注意到二次项系数不等于0这一条件是解题的关键.16.已知(﹣3,y1),(4,y2),(﹣1,y3)是二次函数y=x2﹣4x上的点,则y1,y2,y3从小到大用“<”排列是y2<y3<y1.【考点】二次函数图象上点的坐标特征.【分析】可分别求出y1、y2、y3的值后,再进行比较大小.【解答】解:y1=(﹣3)2+4×3=21,y2=42﹣4×4=0,y3=(﹣1)2+4×1=5,∴y2<y3<y1,故答案为:y2<y3<y1,【点评】本题考查二次函数图象上的点的特征,解题的关键是求出各点的函数值,本题属于基础题型.17.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是105度.【考点】圆周角定理;圆心角、弧、弦的关系.【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=15°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AOD=30°,∴∠ACD=15°,∴∠BCD=∠ACB+∠ACD=105°.【点评】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.18.若圆锥的底面半径为2cm,沿一条母线将圆锥的侧面剪开并展平,得到一个扇形,扇形的圆心角为90°,则该圆锥的母线长为8cm.【考点】圆锥的计算.【分析】首先求得展开之后扇形的弧长也就是圆锥的底面周长,进一步利用弧长计算公式求得扇形的半径,也就是圆锥的母线l.【解答】解:扇形的弧长=2×2π=4πcm,=4π解得:l=8cm.故答案为:8.【点评】此题考查了圆锥的计算及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.19.已知直角三角形的两直角边分别为5,12,则它的内切圆半径为2.【考点】三角形的内切圆与内心.【分析】先利用勾股定理计算出斜边的长,然后利用直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边)求解.【解答】解:直角三角形的斜边==13,所以它的内切圆半径==2.故答案为2.【点评】本题考查了三角形的内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角;直角三角形的内切圆的半径为(其中a、b为直角边,c为斜边).20.如图,AB是⊙O的直径,BC是弦,点E是的中点,OE交BC于点D.连接AC,若BC=6,DE=1,则AC的长为8.【考点】垂径定理;勾股定理;三角形中位线定理.【分析】连接OC,根据圆心角与弧之间的关系可得∠BOE=∠COE,由于OB=OC,根据等腰三角形的性质可得OD⊥BC,BD=CD.在直角三角形BDO中,根据勾股定理可求出OB,进而求出OD长,再根据三角形中位线定理可得AC的长.【解答】解:连接OC,如图所示.∵点E是的中点,∴∠BOE=∠COE.∵OB=OC,∴OD⊥BC,BD=DC.∵BC=6,∴BD=3.设⊙O的半径为r,则OB=OE=r.∵DE=1,∴OD=r﹣1.∵OD⊥BC即∠BDO=90°,∴OB2=BD2+OD2.∵OB=r,OD=r﹣1,BD=3,∴r2=32+(r﹣1)2.解得:r=5.∴OD=4.∵AO=BO,BD=CD,∴OD=AC.∴AC=8.【点评】本题考查了在同圆或等圆中等弧所对的圆心角相等、等腰三角形的性质、勾股定理、三角形中位线定理等知识,有一定的综合性.三、耐心答一答(共60分)21.小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的2支红笔和1支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.【考点】游戏公平性;列表法与树状图法.【分析】(1)画树状图展示所有6种等可能的结果数;(2)先确定所取笔的颜色相同的结果数,则可计算出小明胜的概率=,利用<可判断本游戏规则不公平,对小军有利.【解答】解:(1)画树状图为:共有6种等可能的结果数;(2)所取笔的颜色相同的结果数为2,所以小明胜的概率==,由于<,所以本游戏规则不公平,对小军有利.【点评】本题考查了游戏的公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.22.解下列方程:(1)x2﹣4x+3=24(2)2x2+3x=3(3)x2﹣7x﹣1=0.【考点】解一元二次方程﹣因式分解法;解一元二次方程﹣配方法;解一元二次方程﹣公式法.【分析】(1)因式分解法求解可得;(2)公式法求解可得;(3)公式法求解可得.【解答】解:(1)∵x2﹣4x﹣21=0,∴(x+3)(x﹣7)=0,则x+3=0或x﹣7=0,解得:x=﹣3或x=7;(2)2x2+3x﹣3=0,a=2,b=3,c=﹣3,△=9﹣4×2×(﹣3)=33>0,∴x=;(3)∵a=1,b=﹣7,c=﹣1,∴△=49﹣4×1×(﹣1)=53>0,则x=.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.如图,已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.(1)在图中作出⊙O;(不写作法,保留作图痕迹)(2)求证:BC为⊙O的切线.【考点】切线的判定.【分析】(1)作图思路:可做AD的垂直平分线,这条垂直平分线与AB的交点就是所求圆的圆心,这个圆心和A点或D点的距离就是圆的半径.(2)要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.本题中可先连接OD再证明OD⊥BC即可.【解答】解:(1)如图;(2)连接OD;∵AD平分∠BAC,∴∠BAD=∠DAC;又∵OD=OA,∴∠ODA=∠OAD,∴∠ODA=∠DAC,∴OD∥AC,∴∠ODC=∠C=90°,∴BC为⊙O的切线.【点评】本题考查了学生的运用基本作图的知识作复杂图的能力,以及切线的判定等知识点.本题中作图的理论依据是垂径定理.24.某公司销售一种进价为20元/个的计算器,其销售量y(万个)与销售价格x(元/个)的变化如下表:…同时,销售过程中的其他开支(不含进价)总计40万元.(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?【考点】二次函数的应用.【分析】(1)根据数据得出y与x是一次函数关系,进而利用待定系数法求一次函数解析式;(2)根据z=(x﹣20)y﹣40得出z与x的函数关系式,求出即可;(3)首先求出40=﹣(x﹣50)2+50时x的值,进而得出x(元/个)的取值范围.【解答】解:(1)根据表格中数据可得出:y与x是一次函数关系,设解析式为:y=ax+b,则,解得:,故函数解析式为:y=﹣x+8;(2)根据题意得出:z=(x﹣20)y﹣40=(x﹣20)(﹣x+8)﹣40=﹣x2+10x﹣200,=﹣(x2﹣100x)﹣200=﹣ [(x﹣50)2﹣2500]﹣200=﹣(x﹣50)2+50,故销售价格定为50元/个时净得利润最大,最大值是50万元.(3)当公司要求净得利润为40万元时,即﹣(x﹣50)2+50=40,解得:x1=40,x2=60.如上图,通过观察函数y=﹣(x﹣50)2+50的图象,可知按照公司要求使净得利润不低于40万元,则销售价格的取值范围为:40≤x≤60.而y与x的函数关系式为:y=﹣x+8,y随x的增大而减少,因此,若还需考虑销售量尽可能大,销售价格应定为40元/个.【点评】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式、二次函数最值问题等知识,根据已知得出y与x的函数关系是解题关键.25.如图,直线y=x﹣2与x轴、y轴分别交于点A和点B,点C在直线AB上,且点C的纵坐标为﹣1,点D在反比例函数:y=的图象上,CD平行于y轴,S△=.OCD(1)求点A、B、C的坐标;(2)求点D的坐标;(3)求k的值.【考点】反比例函数与一次函数的交点问题.【分析】(1)分别令x=0,y=0,y=﹣1代入y=x﹣2求出相应x、y的值即可求出点A、B、C的坐标.(2)设CD交x轴于点E,根据△OCD的面积即可求出CD的长度从而求出点D 的坐标.(3)将点D的坐标代入反比例函数的解析式中即可求出k的值.【解答】解:(1)令x=0代入y=x﹣2,∴y=﹣2,∴B(0,﹣2),令y=0代入y=x﹣2,∴x=4,∴A (4,0)令y=﹣1代入y=x ﹣2,∴x=2, ∴C (2,﹣1)(2)设CD 交x 轴于点E , ∵CD ∥y 轴, ∴OE=2,∵S △OCD =,∴OECD=,∴CD=,∴D 的纵坐标为:﹣1=,∴D 的坐标为:(2,)(3)将点D (2,)代入y=,∴k=2×=3,【点评】本题考查反比例函数的解析式,解题的关键是根据直线的解析式求出点A 、B 、C 的坐标,本题属于基础题型.26.如图,对称轴为直线x=﹣1的抛物线y=a (x ﹣h )2﹣4(a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P 在抛物线上,且S △POC =4S △BOC ,求点P 的坐标;(3)设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值.【考点】二次函数综合题.【分析】(1)由对称轴确定h的值,代入点A坐标即可求解;(2)设出点P坐标并表示△POC的面积根据题意列出方程求解即可;(3)设出点Q,D坐标并表示线段QD的长度,建立二次函数,运用二次函数的最值求解即可.【解答】解:(1)由题意对称轴为直线x=﹣1,可设抛物线解析式:y=a(x+1)2﹣4,把点A(﹣3,0)代入可得,a=1,∴y=(x+1)2﹣4=x2+2x﹣3,(2)如图1,y=x2+2x﹣3,当x=0时,y=﹣3,所以点C(0,﹣3),OC=3,令y=0,解得:x=﹣3,或x=1,∴点B(1,0),OB=1,设点P(m,m2+2m﹣3),=×OC×|m|=|m|,此时S△POCS△BOC==,由S△POC=4S△BOC得|m|=6,解得:m=4或m=﹣4,m2+2m﹣3=21,或m2+2m﹣3=5,所以点P的坐标为:(4,21),或(﹣4,5);(3)如图2,设直线AC的解析式为:y=kx+b,把A(﹣3,0),C(0,﹣3)代入得:,解得:,所以直线AC:y=﹣x﹣3,设点Q(n,﹣n﹣3),点D(n,n2+2n﹣3)所以:DQ=﹣n﹣3﹣(n2+2n﹣3)=﹣n2﹣3n=﹣(n+)2+,所以当n=﹣时,DQ有最大值.【点评】此题主要考查二次函数综合问题,会求函数解析式,会根据面积相等建立方程并准确求解,知道运用二次函数可以解决线段最值问题,是解题的关键.。