大学高等代数与几何教案
- 格式:docx
- 大小:10.79 KB
- 文档页数:3
一、课程名称:高等代数二、授课对象:大学本科生三、教学目标:1. 掌握线性空间、线性方程组、矩阵、行列式等基本概念;2. 理解线性变换、特征值、特征向量等线性代数的基本理论;3. 学会运用线性代数知识解决实际问题。
四、教学内容:1. 线性空间2. 线性方程组3. 矩阵4. 行列式5. 线性变换6. 特征值与特征向量五、教学重点:1. 线性空间、线性方程组、矩阵、行列式等基本概念;2. 线性变换、特征值、特征向量等线性代数的基本理论。
六、教学难点:1. 线性空间、线性方程组、矩阵、行列式等基本概念的深刻理解;2. 线性变换、特征值、特征向量等线性代数理论的灵活运用。
七、教学方法:1. 讲授法:系统讲解线性代数的基本概念和理论;2. 案例分析法:通过具体案例讲解线性代数的应用;3. 讨论法:引导学生积极参与课堂讨论,提高学生的思考能力;4. 练习题讲解法:针对课堂练习题进行讲解,帮助学生掌握解题方法。
八、教学过程:第一课时:线性空间1. 引入线性空间的概念,讲解线性空间的基本性质;2. 举例说明线性空间的实际应用;3. 学生课堂练习,巩固线性空间的基本概念。
第二课时:线性方程组1. 介绍线性方程组的求解方法,如高斯消元法;2. 讲解矩阵的秩与线性方程组的解的关系;3. 学生课堂练习,巩固线性方程组的求解方法。
第三课时:矩阵1. 介绍矩阵的基本运算,如矩阵乘法、转置等;2. 讲解矩阵的逆、伴随矩阵等概念;3. 学生课堂练习,巩固矩阵的基本运算。
第四课时:行列式1. 介绍行列式的概念,讲解行列式的性质;2. 讲解行列式的计算方法,如拉普拉斯展开法;3. 学生课堂练习,巩固行列式的计算方法。
第五课时:线性变换1. 介绍线性变换的概念,讲解线性变换的性质;2. 讲解线性变换的矩阵表示法;3. 学生课堂练习,巩固线性变换的概念和矩阵表示法。
第六课时:特征值与特征向量1. 介绍特征值与特征向量的概念,讲解特征值的性质;2. 讲解求解特征值与特征向量的方法;3. 学生课堂练习,巩固特征值与特征向量的求解方法。
《高等代数与解析几何》教学大纲学时数:192 学分:12适用专业:数学与应用数学、信息与计算科学一、课程说明高等代数与解析几何是高校数学系课程中联系十分密切的两门的基础课.作为高等代数的主要内容,线性代数是由二维、三维几何空间中的向量代数进一步抽象推广得来的,高等代数的多数概念和方法都有着很强的几何背景.而解析几何的研究对象则是用代数的方法研究空间的几何问题.因此,高等代数与解析几何有着紧密的联系,它们的关系可归纳为“代数为几何提供研究方法,几何为代数提供直观背景.”本课程的主要任务是使学生获得代数的基本思想方法和行列式、矩阵、向量代数、线性方程组、多项式理论、二次型、向量空间、线性变换、欧氏空间、二次型、常见曲面等方面的系统知识.它一方面为后继课程(如近世代数、离散数学、计算方法、微分方程、泛涵分析)提供一些所需的基础理论和知识;另一方面还对提高学生的思维能力,开发学生智能、加强“三基”(基础知识、基本理论、基本理论)及培养学生创造型能力等重要作用.二、与其它课程的关系本课程作为一门基础课,是学习近世代数、离散数学、计算方法、微分方程、泛涵分析等课程的基础.三、大纲部分以下按各章具体写出第一章预备知识(6学时)本章的内容为介绍性质的,主要是为本课程的学习所做的预备工作,因而其中的内容基本相对独立.教学目的与要求理解数环与数域的定义;突出三个常用的数域,即有理数域、实数域和复数域,理解整数的整除性;理解第二归纳法原理;理解映射的定义、满射、单射和双射.数学重点数域的定义,映射的定义和性质.教学难点对映射定义的理解;对满射的理解和应用.新知识点数域性质的应用;整数整除性质的推广.教学方法与手段以“细读——精讲——习作”这一现代教学方法完成本章的主要内容.教学内容1.数环和数域12.整数和整除性3.数学归纳法4.映射课堂训练方案充分利用“习作”这一环节,补充有关数域的性质例题和独立思考题.课外训练指导方案1.首先组成课外学习小组;2.以数域和整数的整除性以及双射等内容补充相关的练习题;3.由教师指导以及相互讨论的方式完成上述难度大的练习题.自学指导方案本章将以映射为自学内容,先由教师给出自学提纲,让学生带着问题读书,以达到能充分理解映射的定义和性质.考试设计本章以数域和映射为主要测试试点;主要测试分析问题和解决问题的能力.参考书目1.北大编,高等代数,高教出版社(1988);2.北师大编,高等代数,高教出版社(1983).课时安排共6学时,讲授6学时.第二章行列式(14学时)教学目的与要求掌握行列式的定义与性质,能熟练应用行列式的定义及性质计算并证明行列式,掌握用行列式解线性方程组的方法.教学重点行列式的定义与性质.教学难点行列式的定义与性质.新知识点排列,n阶行列式的定义与性质,行列式依行依列展开,克莱姆法则,拉普拉斯定理.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.二阶与三阶行列式2.排列3.n阶行列式的定义4.行列式的性质5.行列式依行依列展开6.克莱姆法则7.拉普拉斯定理课堂训练方案师生集体讨论例题——学生独立思考课后习题——适当补充练习题—简要介绍本章内容的发展概况及应用.2课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关的题目.自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关的题目——找出本章内容与初等数学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步体会本课程的系统性——写出学习本章知识的心得.考试设计学完前四节进行一次开卷测验,学完后三节进行一次开卷测试,学完整章内容进行一次闭卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990;5.王品超,《高等代数新方法》,山东教育出版社,1989.课时安排共14学时,讲授12学时,习题课2学时.第三章向量代数(30学时)本章内容主要介绍几何空间的向量及运算性质,作为应用解决几何空间中有关平面、直线等几何问题.教学目的与要求透彻理解有关向量的一些基本概念,牢固掌握向量的各种运算性质和规律,能熟练地运用向量的坐标进行运算,掌握一些几何度量的向量、坐标表示,能熟练地求出平面、直线的方程,掌握点、直线、平面的位置关系与度量关系.教学重点向量的各种运算,几何度量,平面、直线方程,点、直线、平面间的关系.教学难点向量的分解与仿射坐标、向量积.新知识点仿射坐标(系)、正交投影教学方法与手段精讲、细读、自学相结合方法,加强课内外训练为手段.教学内容1.向量及线性运算2.仿射坐标系与直角坐标系3.向量的数量积4.向量的向量积6.混合积与复合积7.平面的方程8.直线的方程9.点、平面、直线的关系10.平面束3课堂训练方案充分调动学生的思维机器,以典型例题为突破,独立思考的问题加以诱导,加深内容掌握的深度.课外训练指导方案1.补充思考的问题;2.典型题目的课外作业;3.相关学习内容的学习指导书的参考.自学指导方案1.列出自学提纲;2.让学生提出自学中的问题.考试设计测试向量运算规律的应用,几何度量,平面、直线方程,及点、直线、平面的关系.参考书目1.吕林根编:《解析几何》,1982;2.南开大学:高等代数与解析几何,2000;3.陈志杰:《高等代数与解析几何》,2001.课时安排共32学时,讲授28学时,习题课 2学时,复习课2学时.第四章矩阵(14学时)教学目的与要求掌握矩阵的概念与运算,掌握可逆矩阵的概念、性质及判别方法,会用初等矩阵求可逆矩阵,并会用分块矩阵的方法求某些可塑矩阵的逆矩阵.教学重点可逆矩阵的概念及判别方法.教学难点可逆矩阵的概念及判别方法.新知识点矩阵的运算,可逆矩阵,矩阵和等价,初等矩阵,分块矩阵.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.矩阵的运算2.可逆矩阵矩阵的秩3.初等矩阵4.矩阵的分块课堂训练方案师生集体讨论例题——学生独立思考课后习题——适当补充练习题——简要介绍本章内容的发展概况及应用.课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关的题目.自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关题目——找出本章内容与初等教学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步体会本课程的系统性——写出学习本章知识的心得.4考试设计学完前三节进行一次开卷测验,学完整章内容进行一次闭卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.张禾瑞,郝炳新,《高等代数》,高等教育出版社,1983;5.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990.课时安排共14学时,讲授12学时,习题课 2学时.第五章线性方程组(10学时)教学目的与要求掌握矩阵秩的概念及线性方程有解的判别方法,会用矩阵的初等变换解线性方程组.教学重点矩阵秩的概念及线性方程组有解的判别方法.教学难点矩阵秩的概念及线性方程组有解的判别方法.新知识点线性方程组的初等变换,矩阵的秩,线性方程组有解的判别方法.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.消元法;2.矩阵的初等变换;3.矩阵的秩线性方程组有解的判别方法;4.齐次线性方程组.课堂训练方案师生集体讨论例题——学生独立思考课后习题——适当补充练习题——简要介绍本章内容的发展概况及应用.课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关题目.自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关的题目——找出本章内容与初等数学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步会体本课程的系统性——写出学习本章知识的心得.考试设计学完整内容进行一次开卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.张禾瑞,郝炳新,《高等代数》,高等教育出版社,1983;5.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990;6.王品超,《高等代数新方法》,山东教育出版社,1989.5课时安排共8学时,讲授6学时,习题课2学时.第六章多项式(24学时)教学目的与要求掌握多项式的整除、最大公因式及根的概念,熟练掌握求两个多项式的最大公因式的方法,掌握有理系数不可约式项式的方法.教学重点多项式的整除及最大公因式,有理系数多项式的根的求法及有理系数不可约多项式的判定.教学难点多项式的最大公因式,有理系数多项式的根的求法及有理系数不可约多项式的判定.新知识点多项式的整除性,多项式的最大公因式、重因式,多项式的根,不可约多项式,因式分解.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.一元多项式的定义和运算2.多项式的整除性3.多项式的最大公因式4.多项式的因式分解5.多项式的重因式6.多项式函数与多项式的根7.复数域与实数域的上的多项式8.有理数域上的多项式9.多元多项式课堂训练方案师生集体讨论题——学生独立思考课后习题——适当补充练习题——简要介绍本章内容的发展概况及应用课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关题目自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关的题目——找出本章内容与初等数学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步体会本课程的系统性——写出学习本章知识的心得.考试设计学完前三节进行一次开卷测验,学完后六节进行一次开卷测试,学完整章内容进行一次闭卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.张禾瑞,郝炳新,《高等代数》,高等教育出版社,1983;65.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990;6.王品超,《高等代数新方法》,山东教育出版社,1989.课时安排共30学时,26学时,习题课2学时, 复习课2学时.第七章向量空间(20学时)教学目的与要求掌握线性空间的概念、向量的线性相关性及线性空间的基、维数与坐标的概念,会求齐次线性方程组的解空间.教学重点向量的线性相关性及线性空间的基、维数与坐标.教学难点向量的线性相关性.新知识点向量的线性相关性及线性空间的基、维数与坐标,子空间的和,齐次线性方程组的解空间.教学方法与手段教师讲解与师生集体讨论相结合.教学内容1.线性空间的定义2.向量的线性相关性3.基维数坐标4.子空间5.子空间的直和6.线性空间的同构7.齐次线性方程组的解空间课堂训练方案师生集体讨论例题——学生独立思考课后习题——适当补充练习题——简要介绍本章内容的发展概况及应用课外训练指导方案复习学过的知识——独立完成课后作业——思考指定参考书中有关题目自学指导方案列出本部分的知识点——新知识点——重点——难点——处理课后习题与复习题——学习指定参考书中有关的内容,找出其区别与联系——思考指定参考书中有关的题目——找出本章内容与初等数学的联系与区别——找出新学知识与前面所学知识的联系与区别,进一步体会本课程的系统性——写出学习本章知识的心得.考试设计学完前三节进行一次开卷测验,学完后四节进行一次开卷测试,学完整章内容进行一次闭卷测验.参考书目1.北京大学数学系几何与代数教研室代数小组,《高等代数》(第二版),高等教育出版社,2001;2.廖家藩,《高等代数》,电子科技大学出版社,1995;3.叶伯成,《高等代数》,青岛海洋大学出版社,1989;4.张禾瑞,郝炳新,《高等代数》,高等教育出版社,1983;5.孙宗明,《高等代数的内容与方法》,兰州大学出版社,1990;76.王品超,《高等代数新方法》,山东教育出版社,1989.课时安排共20学时,讲授16学时,习题课 4学时.第八章线性变换(18学时)线性变换是线性代数的主要研究对象,主要研究向量空间中间量的内在联系.教学目的和要求理解线性变换的定义和运算;掌握线性变换的矩阵表示法;会求矩阵的特征根和特征向量;能熟练的将一个可以对角化的矩阵化成对角形;会求矩阵的最小多项式.教学重点线性变换和矩阵的对应关系;特征根和特征向量;矩阵的对角化.教学难点特征子空间;矩阵可以对角化的判别.新知识点矩阵的最小多项式;求特征子空间的新方法.教学方法和手段采用“细读——精细——习作”这一新的教学方法.教学内容1.定义和性质2.线性变换的运算3.线性变换和矩阵4.不变子空间5.特征值和特征向量6.可以对角化矩阵7.最小多项式课堂训练方案1.针对得出的定义,给出着干思考题,目的主要是巩固定义,加课对概念和理解;2.针对引出或证明的结论,给出若干应用题,目的在于理论联系实际,便抽象的理论具体化.课外训练方案1.针对课堂内容,给出适量的课外练习题;2.分成若干课外学习小组,以5人为一组,选出组长一人;3.由组长组织课外讨论,教师定期指导.自学指导方案1.选定内容并提出问题,让同学带着问题读书本章以第一节和第二节为自学内容;2.及时指导,并侧重点和难点和分析讲解.考试设计1.考试分为单元考试,期中考试和期末考试,期末考试多引入外校试题;2.考试分为开卷和闭卷,平时考试以开卷为主,期末考试以闭卷为主.参考书目1.北京大学编,《高等代数》,高教出版社;2.北师大编,《高等代数》,高教出版社.8共14学时讲授12学时,复习2学时.第九章若当(Jordan)标准形(12学时)研究λ-矩阵,可进一步解决矩阵的化简问题可以给出矩阵的各种标准形,建立完备的理论.教学目的与要求理解λ-矩阵的概念;会用初等变换将λ-矩阵化成标准形,会求不变因子和初等因子;会求若当形.教学重点1.λ-矩阵的标准形;2.不变因子和初等因子以及若当形.教学难点若当标准形的理论推导新知识点1.求标准形的初等变换法;2.理论推导的新方法.教学方法与手段采用新的教学方法,即“细读——精讲——习作”,此方法的目的是培养能力.教学内容1.λ-矩阵的概念2.标准形3.不变因子4.矩阵相似的判定5.初等因子6.矩阵的若当标准形课堂训练方案1.对每一个新的定义,增加一定量的思考题,以巩固定义,指出定义的实质内容.2.对于每一个结论,分析其应用,并给切实的应用题,以达到理论与实际相结合之目的.课外训练方案1.对每一个知识点,补充相应的课外练习题;2.根据各自的志趣,组成相对独立的课外研究小组,各抒己见,以达到问题解决之目的.自学指导方案本章以第三节和第四节为自学内容,其指导方案为:1.教师先提出有代表性的问题;2.让学生为解决这些问题而读书.3.选部分同学讲个别问题,以提高演讲能力,将来成为一名优秀教师.考试设计本章的考试,以λ-矩阵的标准形为主线,达到能准确的求出不变因子和初等因子,进而求出任意λ-矩阵的标准形.91.北京大学编,《高等代数》,高教出版社;2.北师大编,《高等代数》,高教出版社.课时安排共10学时,讲授8学时,习题课2学时.第十章欧氏空间(12学时)欧氏空间是实数域上定义了内积的向量空间,是几何空间的推广,是线性代数的主要内容之一.教学目的和要求理解内积和欧氏空间的定义;能由线性无关组求出标准正交组;理解正交换变换的定义;会证明有关正交换和正交矩阵的等价命题;理解对称变换的定义;会证明有关对称变换和对称矩阵的等价命题;能将实对称矩阵化成对角形.教学重点1. 标准正交基和构造;2. 正交变换和正交矩阵;3. 对称变换和对称矩阵;4. 度量矩阵和性质.教学难点正交变换和对称变换的系列命题的证明.新知识点度量矩阵的性质和应用教学方法与手段加强新知识点的教学和讨论,对旧的知识点进行革命化清理,但要顾及考研的要求,充分体现由“现代教学方法研究”提出的新观点,使“细读——精讲——习作”这一改革方案得以更好的施行.教学内容1.欧氏空间的定义2.标准正交基3.正交变换与正交矩阵4.对称变换与对称矩阵课堂训练方案1.在定义之后,给出2—3个思考题,借以巩固定义,找出定义的核心内容;2.做到理论与实际相联系,即引出重要结论之后,随即给出其应用,主要解决有一定难度的习题.自学指导方案本章以第一节为自学内容,指导方案为:1.以“内积”为主线,把握住内积为实数,知道整个欧氏空间就是由此展开讨论的;2.抓住柯——布不等式证明的关键,即向量α,β的线性相关性;3 柯——布不等式在具体欧氏空间中的应用.考试设计本章的考试,以正交变换和对称变换的相关问题进行命题.10参考书目1.北京大学编,《高等代数》,高教出版社;2.北师大编,《高等代数》,高教出版社.课时安排共12学时,讲授 10学时,习题课 2学时.第十一章二次型(12学时)二次型的理论是线性代数的主要研究对象,同时也是中学教学内容的深入与提高.教学目的与要求理解二次型和对称矩阵的对应关系;掌握矩阵的合同关系;会将二次型化为标准形;掌握实二次型和复二次型标准形的唯一性;掌握正定二次型的判别.教学重点1.标准形和规范形;2.二次型的正定性.教学难点1.惯性定律的证明;2.有关正定性绪论的证明.新知识点正定二次型判别条件的新证明方法.教学方法与手段坚持“细读——精讲——习作”的现代教学教学方法,这是一种灵活的教学手段.教学内容1.二次型的定义及其矩阵表示2.二次型的标准形3.复数域和实数域上的二次型4.正定二次型课堂训练方案1.由定义绘出思考题,如:由二次型写出矩阵,由对称矩阵写二次型;2.理论的应用,坚持理论与实际相结合,如:正定二次型的判别条件,给出带有文字的练习题进行巩固.3.以化二次型形和习题作为课外练习题;以学习小组为单位,采用集体讨论或解决重点而有代表性的习题.自学指导方案本章主要以复数域和实数域上的二次型作为自学内容,具体方案:1.给出自学提纲;2.重点要解决的问题;3.检查对主要问题的掌握情况如何.考试设计1.方法方向主要测试化二次型为标准形的方法;112.理论方向涉及惯性定律和二次型正定的问题.参考书目1.北京大学编,《高等代数》,高教出版社;2.北师大编,《高等代数》,高教出版社.课时安排共12学时,讲授10学时,习题课 2学时.第十二章常见曲面(20学时)本章学习的常见曲面在数学、物理和工程中都有广泛应用,它也是空间解析几何的基本内容,首先导出柱面、锥面、旋转曲面的方程,然后根据二次曲面的标准方程研究它们的性质、形状、直纹性,最后给出利用正交变换给出化简一般二次面面的方法.教学目的与要求1.掌握几种常见曲面的形成规律,并很好地由已知条件导出曲面的方程;2.能根据都有球面、双曲面、抛物面的标准方程利用平行截线法来研究其形状与性质;3.熟练掌握求直母线的方法,应用直母线的性质计算证明直母线的有关问题;4.会利用正交变换化简二次曲面方程.教学重点1.柱面、锥面、旋转曲面方程求法;2.利用平行截线法来研究椭球面、双曲面、抛物面的形状与性质;3.直纹面直母线的求法.教学难点1.柱面、锥面、旋转曲面的形成;2.直母线的性质;3.正交变换化简二次曲面方程;4.注意方程在仿射坐标系下,还是在直解坐标系下.新知识点正交变换在二次曲面方程化简中的应用.教学方法与手段1.从曲面的显著几何特点来求方程,从标准方程的研究图形的性质;2.从局部研究整体的方法;3.借助教具加深对平行截线法的理解和增强直观性,加强多媒体的应用;4.通过精讲、深入、自学相结合完成此章内容.教学内容1.曲面、曲线方程2.柱面3.锥面4.旋转曲面125.椭球面6.双曲面7.抛物面(包括正交变换在二次曲面方程化简中的应用)8.二次曲面的直纹性课堂训练方案充分利用静与动的关系加强曲面的形成及平行截线法的教学,提出思考的问题,通过典型例题加深问题的理解.课外训练指导方案加强所学内容的练习与复习,补充深入理解的内容,增加大难度习题及讨论,提高问题的解决方案,增加参考文献,充分理解与练习平面截曲面问题.自学指导方案1.出示自学提纲,带着问题去自学;2.提出学习中的问题;3.平面截曲面的截线问题的方法(参阅有关文献).考试设计抓住曲面方程求法和曲面的性质,平面截曲面问题来设计考试题.参考书目1.《新编解析几何教学辅导》,石油大学出版社,1994;2.陈志杰,《高等代数与解析几何》,高等教育出版社,2001.课时安排共20学时, 讲授16学时,习题课 2学时,复习2学时.四、实践性教学要求本课程是数学专业的基础课,与中学数学联系很大,本课程上课时制作部分模型,教学过程利用模型,使学生能直接观察,觉察出图形的各种特征,帮助思考,讲授是可以根据具体情况对内容作适当的调整,讲授要循序渐进,由浅入深,使学生真正体会到数学的奥妙.指导性的列出自学提纲与自学部分内容,成立课外学习小组,练习巩固所学内容,完成课下作业,了解问题的发展与延拓.13。
高等代数与解析几何教学大纲课程介绍:高等代数与解析几何是数学学科中的两门重要课程,其理论与应用均十分广泛。
本课程旨在通过讲授和练习,帮助学生掌握高等代数与解析几何中的部分重要基础知识,为后续学习与研究打下坚实的基础。
教学目标:通过本课程的学习,学生可以:1.掌握向量代数、矩阵代数等基础知识;2.理解线性方程组、行列式、矩阵的行列式、矩阵秩等概念;3.熟练掌握向量、标量的内积、外积等相关概念及其应用;4.掌握解析几何中的相关知识,如向量、直线、平面等的坐标表示、距离公式等;5.理解空间直线、平面的方程、平面与直线的位置关系等;6.培养数学思维、逻辑思维和解决实际问题的能力。
教学内容:第一章:线性方程组1.1 引入矩阵、向量的概念,简述线性方程组的基础知识; 1.2 讲解GCDS算法、消元法等解线性方程组的方法; 1.3 介绍常系数齐次、非齐次线性方程组的解法; 1.4 探讨线性方程组解的唯一性及其相关概念。
第二章:行列式2.1 讲解行列式的基本概念、性质及其应用; 2.2 探讨行列式的计算方法,包括按行/列进行展开、性质法、递推法等; 2.3 引入矩阵的概念,讨论其与行列式等的关系;第三章:矩阵秩3.1 熟悉矩阵的基本概念及其运算法则; 3.2 介绍行列式的几何意义及其相关概念; 3.3 探讨矩阵秩的定义、计算方法及其相关性质; 3.4 引入矩阵的等价关系概念,探讨其应用。
第四章:向量、内积、外积4.1 掌握向量、标量概念及其运算法则; 4.2 熟悉向量的基本性质和几何意义; 4.3 理解向量、标量乘法的运算法则,掌握向量投影的相关知识; 4.4 掌握向量的内积、外积的概念及其运算,探讨其相关性质和应用。
第五章:解析几何基础5.1 引入解析几何的概念,熟悉直线、平面、点的坐标表示; 5.2 探讨直线、平面的基本性质及其方程表示; 5.3 讲解平面与直线的位置关系及其相关概念; 5.4 探讨空间元素的向量表示方式,在向量坐标系中进行相关问题的求解。
《高等代数与解析几何》教学大纲说明高等代数与解析几何是数学的主要基础课. 通过本课程的教学将逐步培养学生运用几何与代数相结合的方法分析问题和解决问题的能力. 因此在教学中应注意讲清代数概念的几何背景, 培养学生的空间想象力.本课程如按每学期每周4节正课2节习题课安排, 在一学年内应能讲授完本大纲的内容。
至于教科书《高等代数与解析几何》中的打星号的选学内容可以作为第三学期的选修课内容。
第一章第一章向量代数(22课时)第二章第二章行列式(12课时)第三章第三章线性方程组与线性子空间(20课时)第四章第四章矩阵的秩与矩阵的运算(14课时)第五章第五章线性空间与欧几里得空间(16课时)第六章第六章几何空间的常见曲面(14课时)第七章第七章线性变换(6课时)第八章第八章线性空间上的函数(10课时)第九章第九章坐标变换与点变换(12课时)第十章第十章一元多项式与整数的因式分解(14课时)第十一章第十一章多元多项式(12课时)第十二章第十二章多项式矩阵与若尔当典范形(10课时)以下计划中所列参考课时数均不包括习题课课时.第一章向量代数(22课时)内容包括向量的线性运算,向量的共线与共面,用坐标表示向量,线性相关性与线性方程组,n维向量空间,几何空间向量的内积、外积与混合积,平面曲线的方程等。
本章的教学目的是使学生对向量及其运算以及线性相关性有一个较直观的认识,为以后抽象向量的学习打下基础。
第二章行列式(12课时)本章从讲解映射与变换以及置换的奇偶性入手,通过体积的计算引入行列式的定义,同时也给出行列式的常用定义,然后引入矩阵的概念,以帮助理解行列式的性质,再讲解行列式按一行(一列)展开以及用行列式解线性方程组的克拉默法则,最后证明拉普拉斯定理。
本章的教学目的是使学生对行列式的意义及其计算有所了解。
并会应用克拉默法则解线性方程组。
对行列式计算的技巧不能太强调。
第三章线性方程组与线性子空间(20课时)用消元法解线性方程组是与初等数学相衔接的,在此基础上讨论线性方程组的解的情况,然后引出向量组的线性相关性的有关性质,再学习线性子空间及线性子空间的基与维数,以帮助理解齐次线性方程组的解的结构。
教学目标:1. 知识与技能:(1)掌握线性空间的基本概念、性质及运算;(2)了解线性变换的定义、性质及运算;(3)学会利用线性空间与线性变换解决实际问题。
2. 过程与方法:(1)通过实例分析,引导学生理解线性空间与线性变换的概念;(2)通过小组讨论,培养学生的合作探究能力;(3)通过实际问题解决,提高学生的应用能力。
3. 情感态度与价值观:(1)培养学生严谨、求实的科学态度;(2)激发学生对数学学科的兴趣,提高学习积极性;(3)培养学生的创新意识和团队协作精神。
教学重点:1. 线性空间与线性变换的基本概念、性质及运算;2. 利用线性空间与线性变换解决实际问题。
教学难点:1. 线性空间与线性变换的运算;2. 线性空间与线性变换的应用。
教学准备:1. 教师准备:多媒体课件、教学案例、课堂练习;2. 学生准备:复习相关知识点,预习新课内容。
教学过程:一、导入1. 复习线性方程组解的结构,引导学生思考线性方程组的解与线性空间之间的关系;2. 提出问题:如何将线性方程组的解法推广到更一般的情况?二、新课讲解1. 介绍线性空间的基本概念,包括向量空间、线性子空间、基、维数等;2. 讲解线性空间的性质,如加法封闭性、数乘封闭性、线性组合、零向量、单位向量等;3. 介绍线性变换的定义、性质及运算,如线性变换的加法、数乘、逆变换等;4. 分析线性变换与线性空间之间的关系,如线性变换的矩阵表示、线性变换的核与像等。
三、实例分析1. 通过实例分析,引导学生理解线性空间与线性变换的概念;2. 结合实例,讲解线性空间与线性变换的运算。
四、小组讨论1. 将学生分成小组,针对以下问题进行讨论:(1)线性空间与线性变换有什么区别?(2)如何判断一个集合是否为线性空间?(3)线性变换的核与像有什么关系?2. 各小组汇报讨论成果,教师点评并总结。
五、实际问题解决1. 提供实际问题,如线性方程组的求解、线性规划等;2. 引导学生利用线性空间与线性变换的知识解决实际问题;3. 学生展示解题过程,教师点评并总结。
高等代数全套教案教案标题:高等代数全套教案教案目标:1. 确保学生掌握高等代数的基本概念和技巧。
2. 培养学生在高等代数领域的问题解决能力和逻辑思维能力。
3. 培养学生的数学推理和证明能力。
4. 培养学生的团队合作和沟通能力。
教案一:引入高等代数教学目标:1. 确保学生了解高等代数的定义和意义。
2. 引导学生认识高等代数在现实生活中的应用。
3. 激发学生对高等代数学习的兴趣。
教学步骤:1. 介绍高等代数的定义和基本概念。
2. 分享高等代数在科学、工程和经济等领域的应用案例。
3. 进行小组讨论,让学生思考高等代数对他们个人生活的影响。
4. 提出问题,引导学生思考高等代数的重要性和学习动力。
教案二:线性代数教学目标:1. 确保学生理解线性代数的基本概念和技巧。
2. 培养学生在线性代数领域的问题解决能力。
3. 培养学生的矩阵运算和线性方程组求解能力。
教学步骤:1. 介绍线性代数的基本概念,如向量、矩阵和线性变换等。
2. 讲解矩阵的基本运算和性质,如矩阵加法、矩阵乘法和矩阵转置等。
3. 教授线性方程组的求解方法,包括高斯消元法和矩阵求逆法。
4. 给予学生练习题和实际问题,培养他们的线性代数应用能力。
教案三:群论教学目标:1. 确保学生理解群论的基本概念和性质。
2. 培养学生在群论领域的问题解决能力。
3. 培养学生的抽象思维和证明能力。
教学步骤:1. 介绍群论的基本概念,如群的定义、群运算和群的性质等。
2. 讲解群的子群、同态映射和同构等重要概念。
3. 引导学生进行群的证明和推理练习,培养他们的抽象思维和证明能力。
4. 提供一些实际问题,让学生应用群论解决问题。
教案四:域论教学目标:1. 确保学生理解域论的基本概念和性质。
2. 培养学生在域论领域的问题解决能力。
3. 培养学生的逻辑思维和推理能力。
教学步骤:1. 介绍域论的基本概念,如域的定义、域运算和域的性质等。
2. 讲解域的子域、扩域和域的同构等重要概念。
高等几何教案(高职高专)一、教学目标:1. 了解高等几何的基本概念和理论;2. 掌握高等几何的基本运算方法和技巧;3. 能够应用高等几何解决实际问题。
二、教学内容:1. 高等几何的基本概念和性质;2. 高等几何的基本运算方法;3. 高等几何在实际问题中的应用。
三、教学步骤:1. 导入:引导学生回顾基本几何概念;2. 讲解:详细讲解高等几何的基本概念和性质;3. 实例演练:通过实例演示高等几何的基本运算方法;4. 练:布置练题,让学生巩固运算技巧;5. 应用拓展:引导学生思考高等几何在实际问题中的应用;6. 深化理解:通过讨论和交流,帮助学生进一步理解高等几何的概念和理论;四、教学资源:1. 课本:《高等几何教材》;2. 讲义:提供详细的课堂讲义;3. 实例:准备一些实际问题的例子供学生练。
五、教学评估:1. 布置作业:要求学生完成一定数量的练题;2. 小测验:进行小规模的测验,检查学生对基本概念和运算方法的掌握情况;3. 课堂表现:观察学生在课堂上的参与和互动,评估他们的研究情况。
六、教学反思:根据学生的反馈和表现,及时调整教学策略,帮助他们更好地理解和掌握高等几何的知识。
七、教学特点:1. 系统性:按照一定的顺序和步骤进行教学;2. 实用性:注重高等几何在实际问题中的应用;3. 互动性:鼓励学生参与讨论和交流,增强研究效果。
八、教学方法:1. 讲授法:结合教材内容进行讲解;2. 演示法:通过实例演示高等几何的运算方法;3. 练法:布置练题,让学生进行实践和巩固;4. 探究法:引导学生自主思考和发现高等几何的性质。
九、教学时间安排:本教案为总共6课时,每课时为50分钟。
十、参考资料:1. 罗素·A·基地著,《高等几何教材》;2. 朱江等编著,《高等几何教学参考资料》。
十一、备注:本教案适用于高职高专高等几何课程教学,可根据实际情况进行调整和变化。
高等数学基础线性代数与解析几何教学设计一、教学目标和要求本课程旨在通过系统学习基础的线性代数和解析几何知识,帮助学生建立较为完整的高数知识体系和思维模式,培养学生综合运用数学思路与方法解决实际问题的能力。
教学要求:学习坚实基础,运用熟练自如;思维开阔,理解深刻透彻;综合运用,举一反三提高。
二、教学内容1.线性代数部分(1)向量的定义、线性运算、线性相关性、线性无关性、基底和维数。
(2)矩阵的定义、矩阵的乘法、矩阵的逆和行列式。
(3)方程组的解法,包括高斯消元法、矩阵的初等变换和矩阵求逆法。
(4)向量空间的基本概念和性质,线性子空间,基变换和同构。
(5)线性变换和基变换矩阵,公共概念和性质。
(6)特征值和特征向量,所属空间和相似矩阵。
2.解析几何部分(1)空间直线、平面、曲线、曲面的一般方程和参数方程。
(2)二次曲面的标准式和一般式,并讨论规范正交系、曲率以及求曲面上切平面和法线。
(3)空间内积和内积空间的定义,标准正交基和正交变换。
(4)分离变量的正弦级数解法,一般边值问题,简谐振动。
三、教学方法和手段1.教学方法(1)以问题为导向,激发学生兴趣,提高学习积极性。
(2)采取理论导入和实例演示相结合的教学方式。
通过理论和实例的比较,强化学生对知识点的理解。
(3)采用讲授、板块式讲解、体验式教学、案例分析等多种教学方法,营造轻松愉悦的课堂氛围。
2.教学手段(1)教材和课件。
选取权威的教材和辅助教材,采用多媒体教学手段,通过课件、视频、PPT等多种形式,呈现生动的教学内容。
(2)班级讨论和课外任务。
通过班级讨论和课外任务,激励学生积极思考和探讨,增强协作能力。
(3)实验和模拟练习。
通过积极组织实验和模拟练习,帮助学生深入了解并掌握相关的理论和方法。
四、考核方式和标准(1)测试和考试。
通过课堂测试和期末考试,考核学生对理论和方法的掌握程度。
(2)作业和报告。
通过作业和报告的形式,检验学生对相关知识的理解和综合应用能力。
高等代数与解析几何(Higher Algebra and Analytic Geometry)课程教学大纲一、课程编号:040504,040505二、课程类别:必修课课程学时:160学时适用专业:信息与计算科学先修课程:初等代数、初等几何三、课程的性质与任务《高等代数与解析几何》是数学、通信、计算机、信息等专业学生的重要的基础课程,是现代信息科学中不可缺少的数学工具。
主要目的是掌握本门课程的基本理论和基本方法。
四、教学主要内容及学时分配(一)向量代数(20学时)(二)行列式(14学时)(三)线性方程组与线性子空间(24学时)(四)矩阵(20学时)(五)线性空间与欧几里德空间(20学时)(六)几何空间的常见曲面(12学时)(七)线性变换(16学时)(八)线性空间上的函数(10学时)(九)坐标变换与二次曲线方程的化简(4学时)(十)一元多项式理论(16学时)(十一)多项式矩阵与若当典范形(4学时)五、教学基本要求(一)理解向量的概念,掌握向量的线性运算、内积、外积、混合积运算;熟悉向量间垂直、共线、共面的条件;会用坐标进行向量的运算。
(二)理解n阶行列式的概念及性质,掌握常见类型的行列式的计算;熟悉克兰姆法则。
理解矩阵及初等变换的概念。
(三)理解n维向量的概念、线性相关与线性无关的定义,了解几个相关结论。
理解线性方程组解的结构,熟练掌握求解方法;会用线性方程组理论判别n维向量组的线性相关性;掌握求直线、平面方程的方法;理解线性子空间、基、维数、坐标的概念,了解简单性质。
(四)理解向量组及矩阵的秩,掌握求逆矩阵、秩的方法;熟悉线性方程组有解判别条件;理解线性映射与矩阵的对应关系。
(五)理解线性空间、欧氏空间、同构、和、直和的概念,了解其性质;掌握施密特正交化方法;了解最小二乘法;会求直线或平面的夹角、点到平面的距离;了解正交矩阵的性质。
(六)了解常见二次曲面的方程及形状,会求简单的旋转曲面、柱面、锥面的方程。
高等代数教案教案标题:高等代数教案教案目标:1. 了解高等代数的基本概念和原理。
2. 掌握高等代数中的常见运算规则和技巧。
3. 能够应用高等代数解决实际问题。
4. 培养学生的逻辑思维和数学推理能力。
教学内容:1. 高等代数的基本概念:包括矩阵、行列式、向量、线性方程组等。
2. 高等代数的运算规则:包括矩阵的加法、减法、乘法,行列式的性质,向量的线性组合等。
3. 高等代数的应用:包括线性方程组的解法、矩阵的应用、向量的几何意义等。
教学步骤:第一步:导入1. 引入高等代数的概念和重要性,激发学生对高等代数的兴趣。
2. 通过实例引导学生思考高等代数在实际问题中的应用。
第二步:讲解基本概念和原理1. 介绍矩阵的定义、性质和基本运算规则。
2. 解释行列式的概念、性质和计算方法。
3. 讲解向量的定义、线性组合和线性相关性。
4. 介绍线性方程组的基本概念和解法。
第三步:演示运算规则和技巧1. 通过示例演示矩阵的加法、减法和乘法运算。
2. 指导学生掌握行列式的展开法和性质运用。
3. 演示向量的线性组合和线性相关性的计算方法。
第四步:应用实例1. 提供一些实际问题,引导学生运用高等代数的知识解决问题。
2. 鼓励学生进行讨论和思考,培养他们的逻辑思维和数学推理能力。
第五步:总结和评价1. 总结本节课的重点内容和学习要点。
2. 针对学生的学习情况进行评价,鼓励他们继续努力。
教学资源:1. 教材:高等代数教材。
2. 多媒体设备:投影仪、计算机等。
3. 实例题目和解答。
教学评估:1. 课堂练习:通过课堂练习检验学生对高等代数知识的掌握情况。
2. 作业布置:布置相关的练习题,巩固学生的学习成果。
3. 个别辅导:针对学生的学习困难,进行个别辅导和指导。
教学延伸:1. 拓展应用:引导学生进一步应用高等代数知识解决更复杂的实际问题。
2. 知识拓展:介绍高等代数在其他学科中的应用,拓宽学生的知识视野。
以上是一份高等代数教案的基本框架,具体的教案内容和步骤可以根据教学实际情况进行调整和完善。
大学高等代数与几何教案
教案:大学高等代数与几何
一、教学目标
本课程旨在帮助学生掌握大学高等代数与几何的基本理论和方法,培养学生的数学思维能力和理论分析能力。
具体包括以下几点:
1. 掌握线性代数的基本概念和方法,包括向量、矩阵、矩阵运算、矩阵的行列式和逆等。
2. 理解线性代数应用于几何的基本思想,掌握平面和空间向量的运算、夹角、点积、叉积等知识。
3. 熟悉线性代数的几何应用,理解矩阵变换的概念和方法,并学习矩阵变换对几何形体的作用和影响。
二、教学内容
1. 线性代数的基本概念和方法
(1) 向量和向量的线性运算
(2) 矩阵的定义及其运算,如矩阵乘法、矩阵的逆、矩阵的转置等。
(3) 行列式的定义与性质,包括计算、求逆公式,行列式的性质及其应用。
2. 向量的应用
(1)向量的点积、叉积及其应用,平面向量的叉积求面积。
(2)空间向量的点积、叉积及其应用,空间向量的叉积求体积。
3. 矩阵变换与几何应用
(1)线性变换
(2)变换矩阵的计算
(3)基变换
(4)特征值与特征向量
三、教学方法
本课程旨在培养学生的数学思维能力,因此教学方式以理论和实践相结合的方式进行。
理论部分主要是由教师进行讲解,而实践部分则是以课堂练习、习题课、实验课等形
式展开。
在实践环节中,学生将通过具体的练习和实验,深入理解理论知识,提高数
学思维能力。
四、教学评估
教学评估主要分为两个方面:课堂表现和考试成绩。
其中,课堂表现包括参与度、作
业完成情况、习题课发言质量等因素。
考试成绩则是评估学生对本课程理论知识掌握
的最终成果。
五、教学资源与参考文献
教学资源:多媒体教室,计算机、投影仪等。
参考文献:
1. 高等代数(上册) / 朱启鑫等著.
2. 线性代数应用 / 吕建民编著.
3. 数学分析与线性代数(上册) / 王熙凤等著.
4. 高等代数(第2版)/ 梅立泉著.
六、教学进度
本课程分为15周,每周2学时,教学安排如下:
第一周:向量及其基本运算
第二周:向量线性运算
第三周:矩阵与矩阵运算
第四周:矩阵的逆
第五周:矩阵行列式
第六周:矩阵转置
第七周:线性方程组
第八周:行列式计算
第九周:空间向量
第十周:向量点积
第十一周:向量叉积
第十二周:矢量函数(略)
第十三周:特征值与特征向量
第十四周:矩阵变换
第十五周:复习与总结
七、教学要点
1. 注重理论知识的讲解:本课程的理论知识是极为重要的,因此教师应重点讲解并及时解答学生的疑问。
2. 加强实践环节:理论知识的实践环节非常关键,可以通过多样化的实践课程来加强学生的数学思维能力。
3. 留出适当时间用于学生自主学习和课外练习,例如完成习题和参加讨论等。