文档:怎样利用垂径定理进行证明或计算
- 格式:docx
- 大小:34.41 KB
- 文档页数:2
垂径定理判定引言垂径定理是初中数学中的重要概念,用来判断两条线段是否垂直。
本文将详细探讨垂径定理的定义、证明方法以及应用场景。
垂径定理的定义垂径定理是指:如果一个线段作为另一个线段的垂径,那么这两条线段垂直。
垂径定理的证明方法证明方法一:利用斜率证明要证明两条线段垂直,可以检查它们的斜率是否互为倒数。
具体步骤如下: 1. 通过两个点来确定两条线段的斜率。
2. 计算这两条线段的斜率。
3. 判断两个斜率是否互为倒数,若互为倒数,则说明两条线段垂直。
证明方法二:利用向量证明要证明两条线段垂直,还可以利用向量的性质来证明。
具体步骤如下: 1. 通过两个点来确定两条线段的向量。
2. 计算这两条线段的向量。
3. 判断两个向量是否互为垂直向量,若互为垂直向量,则说明两条线段垂直。
垂径定理的应用场景垂径定理在几何学中有广泛的应用,以下是几个常见的应用场景:应用场景一:判断三角形的垂直条件可以利用垂径定理来判断三角形的垂直条件。
如果一个三角形的任意两条边的垂径相交于同一点,则该三角形是直角三角形。
应用场景二:证明平行四边形的对角线相互垂直利用垂径定理可以轻松证明平行四边形的对角线相互垂直。
因为平行四边形的对边互相平行,所以可以使用斜率法证明对角线的斜率互为倒数,从而证明对角线相互垂直。
应用场景三:判断直线与平面的垂直关系垂径定理也可以用于判断直线与平面的垂直关系。
如果一条直线的向量与平面的法向量互为垂直向量,那么这条直线与该平面垂直。
总结垂径定理是一个简单而有用的定理,在几何问题中经常用到。
本文通过详细的讨论和案例应用,阐述了垂径定理的定义、证明方法和应用场景。
掌握了垂径定理的概念和应用,有助于解决更复杂的几何问题。
垂径定理垂径定理是数学几何中的一个重要定理,它解决了直径垂直于弦的问题。
在几何形体中,直径和弦是常见的概念。
定义在一个圆中,如果某条直径与一条弦垂直相交,那么这条直径被称为垂径。
理论证明假设我们有一个圆,直径为AB,弦为CD,且垂直相交于E点。
我们需要证明AE与BE相等。
首先,连接AC和BD,并延长直线AC和BD,分别交于F和G点。
根据垂直与切线的性质,可以得出四个直角三角形:AEC、EDB、AFB和EGC。
我们需要利用这四个直角三角形的性质来推导出AE与BE相等。
首先考虑直角三角形AEC和EDB,这两个三角形共有一边AE,因此我们可以利用直角三角形的边长关系依次得到以下两个等式:AE^2 + CE^2 = AC^2 (1)BE^2 + DE^2 = BD^2 (2)接下来考虑直角三角形AFB和EGC,这两个三角形也共有一边AE,而它们还有两边分别是FA、AG和GE、EB。
由于直角三角形的边长关系,我们可以得到以下两个等式:FA^2 + AE^2 = AF^2 (3)AG^2 + AE^2 = AG^2 (4)根据圆的性质,直径的两个端点到圆心的距离相等,即AC = BD。
由于AC = BD,我们可以将等式(1)和(2)进行简化:AE^2 + CE^2 = BD^2 (5)BE^2 + DE^2 = BD^2 (6)由于等式(5)和(6)左侧都包含AE,我们将它们相减,可以得到:AE^2 + CE^2 - (BE^2 + DE^2) = 0再根据等式(3)和(4)可以得到:FA^2 + AE^2 - (AG^2 + AE^2) = 0整理等式得到:FA^2 - AG^2 + CE^2 - DE^2 = 0化简得到:(FA^2 - AG^2) + (CE^2 - DE^2) = 0根据差的平方公式,我们可以进一步得到:(FA + AG)(FA - AG) + (CE + DE)(CE - DE) = 0将FA + AG替换为FG,CE + DE替换为CD,可以得到:FG * CD + FG * CD = 0进一步整理得到:2 * FG * CD = 0由于FG和CD都是正值,所以只能有FG = 0。
垂径定理。
垂径定理(也称勾股定理)是数学中非常重要的一条定理。
它被广泛地应用于三角学和其他分支领域。
本文将介绍垂径定理的定义、证明和应用。
一、定义垂径定理是指在一个直角三角形中,斜边平方等于直角邻边上的两条线段长度的平方和。
即:斜边²=直角边²+直角边²。
二、证明垂径定理的证明不止一种方法,以下将介绍其中的一种方法。
在图形中,我们将设直角边a和b,斜边c为假设成立。
因此,我们需要证明平方等式a²+b²=c²成立。
1. 我们可以通过相似三角形证明这一定理。
首先,我们在直角三角形ABC中,构造一条高线AD和一条BD垂直于CD。
这样就可以得到两个小三角形ACD和BCD。
2. 由于角D是直角,因此小三角形ACD和BCD是相似的。
3. 角A和角B是共同的直角的对边角,因此它们相等。
4. 角ACD和角BCD是垂直的,因此它们是互补的。
5. 根据相似三角形定理,我们可以将长度AC和BD表示为CD的比例。
具体来说,我们有:AC/CD = CD/BD6. 上述等式可以整理为:AC² = CD² × (BCD/BCD+ACD)BD² = CD² × (ACD/BCD+ACD)7. 将上述两式相加,得到:AC² + BD² = CD²8. 根据勾股定理,这是一个正确的等式。
因此,我们得到了垂径定理的证明。
三、应用垂径定理被广泛地应用于三角学和其他分支领域。
以下是一些应用:1. 在数学中,垂径定理是解决三角形中任意一个角度和边长的重要工具。
例如,你可以使用该定理来确定三角形中的角度或确定其他边长等。
2. 如果你经常涉及到图形设计或从事建筑或工程设计,那么垂径定理也将是重要的工具。
例如,您可能需要使用该定理来更好地计算墙体或其他结构的角度、长度或高度。
3. 垂径定理还可以帮助您计算跨越河流或其他障碍物的桥梁或电线杆的高度。
CDABOE C ADOOABM 垂径定理的应用一、圆是轴对称(有无数条对称轴,过圆心的任一条直线都是对称轴);又是中心对称,对称中心是圆心. 二、垂径定理垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.符号语言:∵CD 为⊙O 的直径,AB 为⊙O 的弦,且CD ⊥AB ,垂足为E ,∴ AE =BE,推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.∵CD 为⊙O 的直径,AB 为⊙O 的弦(不是直径),且AE =BE.弦心距:圆心到弦的距离(垂线段OE ) 考点分析:垂径定理及推论的应用,证明. 典型例题分析类型1. 垂径定理及推论概念1.下面四个命题中正确的一个是( )A .平分一条直径的弦必垂直于这条直径B .平分一条弧的直线垂直于这条弧所对的弦C .弦的垂线必过这条弦所在圆的圆心D .在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2. 如图1-2,如果AB 为⊙O 直径,弦AB CD ⊥,垂足为E ,那么下列结论中错误的是……( )A .DE CE =B .C .BAD BAC ∠=∠D .AD AC >3. 如图1-3在⊙O 中,弦CD 垂直平分半径OA ,且CD =6cm , 则半径OA 的长为………( )A. cm 34B. cm 54C. cm 32D. cm 8图1-2 图1-3 图1-4 图2-14. 如图1-4,⊙O 的直径CD 与弦AB 交于点M ,添加条件:_____________(写出一个即可),就可得到M 是AB 的中点.类型2. 垂径定理的运用在垂径定理的运用中,通常的是要利用定理构建直角三角形,利用勾股定理进行运算.5.过⊙O 内一点M 的最长的弦长为cm 10,最短的弦长为cm 8,那么⊙O 的半径等于___cm ,OM 的长为___cm类型2. 垂径定理分类讨论1. 如图2-1,⊙O 的直径为10,弦AB 的长为8,M 是弦AB 上的动点,则OM 的长的取值范围是( ) A. 5OM 3≤≤ B. 5OM 4≤≤ C. 5OM 3<< D. 5OM 4<<2.已知:AB 、CD 为⊙O 的两条弦,且AB ∥CD ,⊙O 的半径为5cm ,AB =8cm ,CD =6cm ,求AB 、CD 之间的距离.3. 已知:△ABC 内接于⊙O ,AB =AC ,半径OB =5cm ,圆心O 到BC 的距离为3cm ,求AB 的长.类型3. 利用垂径定理求线段长度,角度ACBDABD C E.O1.如图3-1,在圆O中,直径AB垂直于弦CD,并且交CD于E,直径MN交CD于F,且OEFDFO2==,求COD∠.2.如图3-2,AB为⊙O的直径,且AB⊥弦CD于E,CD=16,AE=4,求OE的长.图3-23.如图3-3,在ABCRt∆中,∠C=900,AC=5cm,BC=12cm,以C为圆心、AC为半径的圆交斜边于D,求AD的长.图3-34.如图3-4,已知:AB是⊙O的直径,弦CD交AB于E点,BE=1,AE=5,∠AEC=300,求CD的长.5. 如图3-5,O 是两个同心圆的圆心,大圆的弦AB 交小圆于C 、D 两点,OE ⊥CD 于E ,若AB =2CD =4OE 求:大圆半径R 与小圆半径r 之比.类型4. 垂径定理相关证明1.如图4-1,BF ,CE 是⊙O 的直径,.求证:OCM OBN ∠=∠.图4-12.如图4-2,F 是以O 为圆心,BC 为直径的半圆上任一点,A 是的中点,AD ⊥BC 于D.求证:.21BF AD =图4-23.已知:如图4-3,⊙O 的弦AB ,CD 相交于点P ,PO 是APC ∠的平分线,点M ,N 分别是,的中点,MN 分别交AB ,CD 于点E ,F .求证:PO MN ⊥.图4-3类型5. 垂径定理的综合应用 1. 一水平放置的圆柱型水管的横截面如图5-1所示,如果水管横截面的半径是13cm ,水面宽24=AB cm ,则水管中水深是_______cm. 图5-1 2. 如图5-2,某地有一座圆弧形拱桥,桥下水面宽度为2.7米,拱顶高出水面4.2米,现有一艘宽3米,船仓顶部为方形并高出水面2米的货船要经过这里.问货船能否顺利通过这座拱桥?图5-2 3. 如图5-3,在某养殖场A 处发现高致病性禽流感,为防止禽流感蔓延,政府规定离疫点3千米范围内为捕杀区;离疫点3至5千米范围内为免疫区.现有一条笔直的公路EB 通疫区,若在捕杀区内CD =4千米,问这条公路在改免疫区内多少千米?图5-3【拓展提升】1. 如图6-1,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,CD OF ⊥ 于F .(1)求证:OEHF 是正方形.(2)若3=CH ,9=DH ,求圆心O 到弦图6-12.如图6-2,AB 是⊙O 的直径,P 是AB 上一动点,C 、D 是⊙O 的两点,有∠CPB =∠DPB.求证:PC =PD.COABE F D3. 已知:如图6-3,A,是半圆O 上的两点,CD 是⊙O 的直径,∠AOD =800,B 是中点.(1)在CD 上求作一点P ,使得AP+PB 最短;(2)若CD =4cm ,求AP+PB 的最小值.图6-34. 如图6-4,AB 是⊙O 的直径,CD 是弦,AE ⊥CD 于E ,BF ⊥CD 于F .求证: CE =DF ;OE =OF.图6-4 变式1. 如图6-5,⊙O 的直径AB 和弦CD 相交于点M ,CD AE ⊥,CD BF ⊥,垂足分别是E ,F .(1)求证:DF CE =.(2)若26=AB ,24=CD ,求BF AE -的值.图6-52:如果弦CD 是动弦,与直径AB 不相交,AE ⊥CD 于E ,BF ⊥CD 于F ,此时是否有: CE =DF ;OE =OF.如果有请证明,如果不成立,请说明.。
“垂径定理”与解题思路分析垂径定理及其推论是“圆”一章最先出现的重要定理,它是证明圆内线段、弧、角相等关系及直线垂直关系的重要依据,也是学好本章的基础,在学习中要注意以下几点:一.圆的辆对称是垂径定理的理论基础同学们在小学就已经知道了把圆沿着它的任意一条直径对折,直径两边的两个半圆就会重合在一起。
因此,课本首先通过一张圆形纸片沿着一条直径对折,直径两侧的两个半圆能重合这一事实,指出圆是轴对称图形,经过圆心的每一条直线都是它的对称轴,然后利用这一性质给出了垂径定理,并利用圆的对称性证明。
所以,圆的轴对称性是垂径定理的理论基础。
二.垂径定理及其推论的题设与结论之间的内在联系在垂径定理(推论)中,一是隐含着一条直线;二是该直线具有以下性质:(1)经过圆心,(2)垂直于弦,(3)平分这条弦,(4)平分这条弦所对的劣弧,(5)平分这条弦所对的优弧。
垂径定理可以简记为:由于垂径定理本身的结论有多个,因此在构造逆命题时也会有多个,这就需要掌握构造逆命题的技巧。
例如:以(1)、(3)为条件的逆命题为:如果过圆心的一条直线平分该圆内的一条弦(不是直径),那么这条直线垂直于弦,且平分弦所对的弧。
类似地,同学们一定会分别写出以(1)和(4)、(1)和(5)、(2)和(3)、(2)和(4)、(2)和(5)、(3)和(4)、(3)和(5)、(4)和(5)为条件的逆命题。
由于一条直线如果具备上述五条性质中的任何两条时,这条直线唯一确定,所以,上述九个逆命题都是真命题,它们都是垂径定理的推论。
垂径定理连同推论在内共十条定理。
对于这十条定理,同学们切不可死记硬背,关键要抓住它们的特点,即一条直线具有上面所说的五条性质中的任何两性质,就有其余三条性质(具有性质(1)、(3)时,所说的弦不是直径,这是因为如果这里的弦是直径的话,两条直径总是互相平分的,但它们未必垂直)。
三.灵活应用垂径定理及其推论解题垂径定理及其推论,主要应用于研究直径与同圆中的弦、弧之间的垂直平分关系,其内容虽然简单,但要能灵活应用却非易事。
专题02 垂径定理及其应用圆的对称性圆的轴对称性:过圆心的任一条直线(直径所在的直线)都是它的对称轴。
垂径定理⎩⎨⎧平分弦所对的两条弧。
)的直径垂直于弦,且推论:平分弦(非直径对的两条弧;平分弦,并且平分弦所定理:垂直于弦的直径垂径定理包含两个条件和三个结论,即条件⇒⎩⎨⎧)直线和弦垂直,()直线过圆心,(21结论⎪⎩⎪⎨⎧弧。
)直线平分弦所对的优(弧,)直线平分弦所对的劣()直线平分弦,(543符号语言:⎩⎨⎧⊥AB CD O ,O ,的弦,为圆的直径是圆AB CD ⎪⎩⎪⎨⎧===⇒BD AD BC AC BE AE 推论1:在(1)、(2)、(3)、(4)、(5)中,任意两个成立,都可以推出另外三个都成立。
推论2:平行的两弦之间所夹的两弧相等。
相关概念:弦心距:圆心到弦的距离(垂线段OE )。
应用链接:垂径定理常和勾股定理联系在一起综合应用解题(利用弦心距、半径、半弦构造Rt △OAE )。
圆的对称性以及垂径定理例题讲解一、概念考察【例1】下面四个命题中正确的一个是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心【答案】D【解析】平分弦(不是直径)的直径,垂直于弦,A说法错误过圆心且平分一条弧的直线垂直于这条弧所对的弦,B错误弦的垂直平分线必经过这条弦所在圆的圆心,C错误【例2】下列命题中,正确的是( ). A.过弦的中点的直线平分弦所对的弧 B.过弦的中点的直线必过圆心 C.弦所对的两条弧的中点连线垂直平分弦,且过圆心 D.弦的垂线平分弦所对的弧【答案】C【解析】A、B都未指出这条直线应该为垂线,所以AB都错误D未说明过弦的中点,所以错误【例3】如图,AB是⊙O的直径,弦CD⊥AB于点E,那么以下结论正确的选项是〔 〕A、AE=BEB、=C、△BOC是等边三角形D、四边形ODBC是菱形【答案】B【解析】∵AB⊥CD,AB过O,∴DE=CE,=,(垂径定理)不能推出DE=BE,△BOC是等边三角形,四边形ODBC是菱形.【例4】如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是( )A.AD=BD B.OC=2CD C.∠CAD=∠CBD D.∠OCA=∠OCB【答案】B【解析】OC=2CD.理由如下:∵在⊙O中,AB是弦,半径OC⊥AB,∴AD=DB,∵OC=2CD,∴AD=BD,DO=CD,AB⊥CO,∴四边形OACB为菱形.【例5】下列命题:(1)垂直于弦的直线平分弦;(2)平分弦的直径必垂直于弦,并且平分弦所对的两条弧;(3)平分弦的直线必过圆心;(4)弦所对的两条弧的中点连线垂直平分弦。
圆部分知识点总结垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为: 过圆心 垂直于弦直径平分弦知二推三 平分弦所对的优弧 平分弦所对的劣弧弧、弦、弦心距、圆心角之间的关系定理1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。
2:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
点和圆的位置关系设⊙O 的半径是r ,点P 到圆心O 的距离为d ,则有:d<r ⇔点P 在⊙O 内;d=r ⇔点P 在⊙O 上; d>r ⇔点P 在⊙O 外。
过三点的圆1、不在同一直线上的三个点确定一个圆。
2、经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; (2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, (3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O 的半径为r ,圆心O 到直线L 的距离为d,那么:直线L 与⊙O 相交⇔d<r ;直线L 与⊙O 相切⇔d=r ; 直线L 与⊙O 相离⇔d>r ;圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
怎样利用垂径定理进行证明或计算?垂径定理及其推论中的三要素是:垂直、平分、过圆心(直径).它们在圆内常常构成角相等、等分线段、直角三角形等.从而可应用勾股定理或解直角三角形的方法进行其证明或计算.下面举例说明.例1已知:图1的⊙O中弦AB=12,OM垂直AB于M,OM=6.求:(1)∠AOB的度数;(2)⊙O的半径.解:连结OA、OB,因为OM垂直AB于M,所以因为 OM=6,所以∠AOM=∠OAM=45°.同理∠OBM=∠BOM=45°,所以∠AOB的度数为90°.利用直角三角形的边角关系得出结论.例2已知:图2中,AB是⊙O的直径,弦CD在AB同一侧,CE⊥CD于E,DF⊥CD于F.求证:AE=BF.分析:此题是圆和直角梯形,并且点O是AB的中点,由此联想梯形的中位线,作OG 垂直CD于G,有垂径平分弦CG=DG,利用平行线等分线段可得OE=OF,因此 AE=BF.证明略.例3如图3,半径为10厘米的⊙O中,弦AB⊥CD于 E,AB=CD=16厘米,求OE的长.分析:要把OE纳入三角形或特殊四边形才利于计算.作OF⊥AB于F,OG⊥CD于G,容易证明四边形EGOF为正方形,且AF=BF=CG=GD=8厘米,那么OF利用垂径垂直弦,构造直角三角形或特殊四边形,再进行推证和计算是本例的特点.例4如图4所示,已知⊙O的半径为5厘米,A为⊙O外一点,ACB交⊙O于C和B,若AO=8厘米,∠OAB=30°.求 AC、BC的长.分析:利用垂径是经过圆心的直径,构造直角三角形.作OD⊥BC于D,连结OB得直角三角形AOD和直角三角形BOD.在直角三角形AOD中,∠OAB=30°,将垂径定理与勾股定理结合起来,容易得到圆中半径R、弓形高h、弦长d(图5)之间的关系:根据此公式,R、h、d这三个量中,知道任何两个量就可以求出第三个量.。
怎样利用垂径定理进行证明或计算?
垂径定理及其推论中的三要素是:垂直、平分、过圆心(直径)•它们在圆内常常构成角相等、等分线段、直角三角形等.从而可应用勾股定理或解直角三角形的方法进行其证明或计算•下面举例说明.
例1已知:图1的中弦AB=12 0M垂直AB于M,OM=6求:(1)/ AOB的度数;⑵ O 0的半径.
團1
解:连结OA 0B因为0M垂直AB于M所以
AM — BM —丄 AB = 6.
2
因为0M=6 所以/ A0MM0AM=4° .
同理 / 0BM/ B0M=4° ,
所以/ A0B的度数为90°.
在直角△血OM孔OA = + OM3 = 6忑・由此可以求岀OEK血厘米.
答:ZAOB = 90fl f5)0的半径为6庞.
利用直角三角形的边角关系得出结论.
例2已知:图2中,AB是。
0的直径,弦CD在AB同一侧,CEL CD于E, DF丄CD于F.求
分析:此题是圆和直角梯形,并且点0是AB的中点,由此联想梯形的中位线,作0G 垂直CD于G有垂径平分弦CG=D,利用平行线等分线段可得0E=0F因此AE=BF.
证明略.
例3如图3,半径为10厘米的O 0中,弦AB丄CD于E,AB=CD=1厘米,求0E的长.
图3
分析:要把0E纳入三角形或特殊四边形才利于计算•作0吐AB于F, OGLCD于G
容易证明四边形EGO为正方形,且AF=BF=CG=GD厘8米,那么OF
利用垂径垂直弦,构造直角三角形或特殊四边形,再进行推证和计算是本例的特点.
例4如图4所示,已知。
0的半径为5厘米,A为。
0外一点,ACB交O 0于C和B,若
A0=8厘米,/ OAB=30 .求AC、BC的长.
分析:利用垂径是经过圆心的直径,构造直角三角形•作ODL BC于D,连结0B得直角三
厘氷贝IJOD = 4厘氷,AD=473ffiX;在直角三角形BOD中,OB = 5JE^, OD=4厘氷贝厘胳又KD = DC = 3厘氷故%C = “-3厘氷,BC = 6厘氷角形AODffi直角三角形BOD 在直角三角形AOD中, / OAB=30 ,
将垂径定理与勾股定理结合起来,容易得到圆中半径R、弓形高h、弦长d(图5)之间
的关系:
1C
h
U 5
根据此公式,R、h、d这三个量中,知道任何两个量就可以求出第三个量.。