垂径定理的讲义
- 格式:doc
- 大小:306.50 KB
- 文档页数:4
垂径定律1.定义垂径定理(Vertical Theorem)的通俗表达是:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
用数学语言表示,如果在一个圆中,直径DC垂直于弦AB于点E,则弦AB被点E平分(即AE=EB),且弦AB所对的两段弧AD和BD(包括优弧和劣弧)也被平分2.性质垂径定理包含多个重要的性质和推论,这些性质和推论在解决与圆相关的几何问题时非常有用。
1)基本性质:平分弦:垂直于弦的直径将弦平分为两段相等的部分。
平分弧:该直径还平分弦所对的两条弧,无论是优弧还是劣弧。
推论一:平分弦(非直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧。
这个推论是垂径定理的逆命题之一,它表明如果一条直径平分了一条非直径的弦,那么这条直径必然垂直于这条弦,并且平分弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧。
这个推论进一步强化了垂径定理与圆的中心性质之间的联系,指出弦的垂直平分线不仅平分弦,还经过圆心,并平分弦所对的弧。
推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧。
这个推论是垂径定理的另一种逆命题形式,它说明如果一条直径平分了弦所对的一条弧,那么这条直径也垂直平分这条弦,并平分弦所对的另一条弧。
推论四:在同圆或者等圆中,两条平行弦所夹的弧相等。
这个推论虽然不直接由垂径定理推导出来,但它与垂径定理共同构成了圆内线段和弧之间关系的重要框架。
平行弦的性质与垂径定理相结合,为解决复杂的圆内几何问题提供了有力工具。
3.数学证明垂径定理的证明通常依赖于圆的基本性质,如半径相等、等腰三角形的性质等。
以下是一个简化的证明过程:设⊙O为给定的圆,DC为⊙O的直径,AB为⊙O内的一条弦,且DC⊥AB于点E。
连接OA和OB。
由于OA和OB都是⊙O的半径,所以OA=OB。
△OAB是一个等腰三角形,因为两边相等(OA=OB)。
由于AB⊥DC,根据等腰三角形的性质,等腰三角形底边上的高、中线和顶角的角平分线重合。
第9讲垂径定理知识定位讲解用时:3分钟A、适用范围:人教版初三,基础偏上B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习垂径定理及其相关推论,着重理解垂径定理及其相关推论在实际问题以及几何图形中的应用,掌握关于垂径定理部分题型的常见辅助线的做法,能够结合勾股定理进行熟练计算。
本节课的难点是垂径定理及其推论在几何图形中的应用,涉及的知识点较多,考查的内容较广,具有一定的综合性。
希望同学们认真学习,为后面圆的其他内容理解奠定良好基础。
知识梳理讲解用时:15分钟垂径定理及其推论(1)垂径定理如果圆的一条直径垂直于一条弦,那么这条直径平分这条弦,并且平分这条弦所对的弧。
(2)相关推论①如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直于这条弦,并且平分这条弦所对的弧;①如果圆的直径平分弧,那么这条直径就垂直平分这条弧所对的弦;①如果一条直线是弦的垂直平分线,那么这条直线经过圆心,并且平分这条弦所对的弧;课堂精讲精练【例题1】下列说法正确的个数是()。
①垂直于弦的直线平分弦;①平分弦的直线垂直于弦;①圆的对称轴是直径;①圆的对称轴有无数条;①在同圆或等圆中,如果两条弦相等,那么这两条弦所对的优弧和劣弧分别相等。
A.1个B.2个C.3个D.4个【答案】B【解析】本题主要考查了垂径定理以及圆的基本性质,①垂直于弦的直径平分弦;故错误;①平分弦(不是直径)的直径垂直于弦;故错误;①圆的对称轴是直径所在的直线;故错误;①圆的对称轴有无数条;故正确;①在同圆或等圆中,如果两条弦相等,那么这两条弦所对的优弧和劣弧分别相等,故正确,故选:B.讲解用时:5分钟解题思路:根据垂径定理,轴对称图形的性质以及圆的性质分别判断得出答案即可。
教学建议:逐项排除。
难度:3 适应场景:当堂例题例题来源:香坊区校级月考年份:2016秋【练习1】如图,①O的半径OC与弦AB交于点D,连结OA,AC,CB,BO,则下列条件中,无法判断四边形OACB为菱形的是()。
第12课垂径定理目标导航学习目标1.掌握垂径定理及其逆定理.2.会运用垂径定理及其逆定理解决些简单的几何问题.知识精讲知识点01 垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.2.定理的条件和结论.条件:①直径;②垂直于弦结论:①平分弦;②平分弧知识点02 垂径定理的逆定理逆定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.逆定理2:平分弧的直径垂直平分弧所对的弦.能力拓展考点01 垂径定理及其逆定理【典例1】如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.【即学即练1】如图,AB是⊙O的直径,BC是弦,OD⊥BC于点E,交圆于点D,连接AC、BD.(1)请写出五个不同类型的正确结论;(2)若BC=8,ED=2,求⊙O的半径.考点02 垂径定理及其逆定理的实际应用【典例2】《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),求该圆材的直径.【即学即练2】如图,一圆弧形桥拱的圆心为E,拱桥的水面跨度AB=80米,桥拱到水面的最大高度DF 为20米.求:(1)桥拱的半径;(2)现水面上涨后水面跨度为60米,求水面上涨的高度为米.分层提分题组A 基础过关练1.如图,点A是⊙O上一点,连接OA.弦BC⊥OA于点D.若OD=2,AD=1,则BC的长为()A.2B.4 C.2D.22.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若BE=CD=8,则⊙O的半径的长是()A.5 B.4 C.3 D.23.如图,⊙O的半径为2,弦AB=2,则圆心O到弦AB的距离为()A.1 B .C .D.24.如图,CD是⊙O的直径,AB是弦,CD⊥AB于E,DE=2,AB=8,则AC的长为()A.8 B.10 C.4D.45.往圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB=48cm,水的最大深度为16cm,则圆柱形容器的截面直径为()cm.A.10 B.14 C.26 D.526.往直径为26cm的圆柱形容器内装入一些水以后,截面如图所示.若水面宽AB=24cm,则水的最大深度为()A.4cm B.5cm C.8cm D.10cm7.如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为.8.如图,某圆弧形拱桥的跨度AB=20m,拱高CD=5m,则该拱桥的半径为m.9.如图,已知弧AB,试确定弧AB所在圆的圆心并补全这个圆.10.已知:如图,∠P AC=30°,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作⊙O交射线AP于E、F两点.(1)求圆心O到AP的距离;(2)求弦EF的长.11.如图,AB为圆O直径,F点在圆上,E点为AF中点,连接EO,作CO⊥EO交圆O于点C,作CD⊥AB于点D,已知直径为10,OE=4,求OD的长度.题组B 能力提升练12.已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若P A=4,PB=6,则OP=()A.B.4 C.D.513.已知AB是⊙O的弦,半径OC⊥AB于点D.若DO=DC,AB=12,则⊙O的半径为()A.4B.4C.6D.614.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为()A.3 B.2C.4D.415.已知⊙O的直径CD=10,AB是⊙O的弦,AB=8,且AB⊥CD,垂足为M,则AC的长为()A.2B.4C.2或4D.2或416.把一个球放在长方体收纳箱中,截面如图所示,若箱子高16cm,AB长16cm,则球的半径为()A.9 B.10 C.11 D.1217.如图,AB是⊙O的直径,弦CD交AB于点P,AP=4,BP=12,∠APC=30°,则CD的长为.18.如图所示,要把残破的轮片复制完整,已知弧上的三点A,B,C.(1)用尺规作图法找出所在圆的圆心;(保留作图痕迹,不写作法)(2)设△ABC是等腰三角形,底边BC=8cm,腰AB=5cm,求圆片的半径R.19.如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.20.如图,Rt△ABO,∠O=90°,AO=,BO=1,以O为圆心,OB为半径的圆交AB于点P,求PB 的长.题组C 培优拔尖练21.⊙O的半径为10cm,弦AB∥CD,且AB=12cm,CD=16cm,则AB和CD的距离为()A.2cm B.14cm C.2cm或14cm D.10cm或20cm22.如图,正方形ABCD和正方形BEFG的顶点分别在半圆O的直径和圆周上,若BG=4,则半圆O的半径是()A.4+B.9 C.4D.623.如图,在⊙O中,AB,AC为弦,CD为直径,AB⊥CD于E,BF⊥AC于F,BF与CD相交于G.(1)求证:ED=EG;(2)若AB=8,OG=1,求⊙O的半径.24.如图,在半径为2的扇形OAB中,∠AOB=90°,点C是上的一个动点(不与点A,B重合),OD⊥BC,OE⊥AC,垂足分别为D,E.(1)当BC=2时,求线段OD的长和∠BOD的度数;(2)在△DOE中,是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.(3)在△DOE中,是否存在度数保持不变的角?如果存在,请指出并求其度数;如果不存在,请说明理由.。
第07讲垂径定理(核心考点讲与练)【知识梳理】一.垂径定理(1)垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)垂径定理的推论推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.推论2:弦的垂直平分线经过圆心,并且平分弦所对的两条弧.推论3:平分弦所对一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.二.垂径定理的应用垂径定理的应用很广泛,常见的有:(1)得到推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(2)垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.这类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.【核心考点精讲】一.垂径定理(共5小题)1.(2022•拱墅区一模)已知AB是⊙O的弦,半径OC⊥AB于点D.若DO=DC,AB=12,则⊙O的半径为()A.4B.4C.6D.62.(2016秋•北仑区期末)⊙O的直径AB和弦CD相交于点E,已知AE=6,EB=2,∠CEA=30°,则弦CD的长为()A.8B.4C.2D.23.(2022春•长兴县月考)如图,AB是⊙O的直径,CD⊥AB于点E,连结CO并延长,交弦AD于点F.若AB=10,BE=2,则OF的长度是()A.B.3C.D.4.(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B(0,4),与x轴交于C,D,则点D的坐标为()A.B.C.D.5.(2021秋•北仑区校级期中)如图,⊙•O的直径AB=5,弦AC=3,点D是劣弧BC上的动点,CE⊥DC交AD于点E,则OE的最小值是()A.B.C.2﹣D.﹣1二.垂径定理的应用(共4小题)6.(2021秋•鹿城区校级期中)如图是一个小圆同学设计的一个鱼缸截面图,弓形ACB是由优弧AB与弦AB组成,AC是鱼缸的玻璃隔断,弓形AC部分不注水,已知CD⊥AB,且圆心O在CD上,AB=CD=80cm.注水时,当水面恰好经过圆心时,则水面宽EF为cm;注水过程中,求水面宽度EF的最大值为cm.7.(2022•旌阳区二模)筒车是我国古代发明的一种水利灌溉工具,如图1,筒车盛水桶的运行轨道是以轴心O为圆心的圆,如图2,已知圆心O在水面上方,且⊙O被水面截得弦AB长为4米,⊙O半径长为3米.若点C为运行轨道的最低点,则点C到弦AB所在直线的距离是()A.1米B.2米C.米D.米8.(2021秋•温岭市期末)把一个球放入长方体纸盒,球的一部分露出盒外,球与纸盒内壁都刚好相切,其截面如图所示,若露出部分的高度为6cm,AF=DE=3cm,则这个球的半径是cm.9.(2021秋•诸暨市期末)一根排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=12,如果再注入一些水,当水面AB的宽变为16时,则水面AB上升的高度为.【过关检测】一.选择题(共7小题)1.(2022春•市中区校级月考)如图,在⊙O中,OC⊥AB于点C,若⊙O的半径为10,OC=5,则弦AB的长为()A.5B.10C.5D.102.(2021秋•温州期末)如图,在⊙O中,半径OC⊥AB于点D.已知OC=5,OD=4,则弦AB的长为()A.3B.4C.5D.63.(2021秋•嘉兴期末)如图,⊙O的直径AB=12,弦CD垂直AB于点P.若BP=2,则CD的长为()A.2B.4C.4D.84.(2021秋•嵊州市期末)如图,CD是⊙O的弦,直径AB⊥CD,垂足为M,连结AD.若CD=8,BM=2,则AD的长为()A.10B.5C.4D.35.(2021秋•东阳市期末)在圆柱形油槽内装有一些油,截面如图所示,已知截面⊙O半径为5cm,油面宽AB为6cm,如果再注入一些油后,油面宽变为8cm,则油面AB上升了()cm.A.1B.3C.3或4D.1或7 6.(2021秋•宁波期末)把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=6cm,则球的半径为()A.3cm B.cm C.cm D.cm 7.(2021秋•拱墅区期中)如图,在⊙O中,直径AB=10,弦DE⊥AB于点C,若OC:OA=4:5,则DE的长为()A.6B.7C.8D.9二.填空题(共8小题)8.(2021秋•余姚市期末)如图1,水车又称孔明车,是我国最古老的农业灌溉工具,是珍贵的历史文化遗产.如图2,圆心O在水面上方,且⊙O被水面截得的弦AB长为8米,半径为5米,则圆心O到水面AB的距离为米.9.(2021秋•瑞安市期末)如图,AB为⊙O的直径,弦CD⊥AB于点E,CD=10,BE=3,则AE长为.10.(2021秋•拱墅区期末)如图,一个底部呈球形的烧瓶,球的半径为5cm,瓶内原有液体的最大深度CD=4cm.部分液体蒸发后,瓶内液体的最大深度下降为2cm,则截面圆中弦AB的长减少了cm(结果保留根号).11.(2021秋•温州校级月考)如图是郑州圆形“戒指桥”,其数学模型为如图所示.已知桥面跨径AB=20米,D为圆上一点,DC⊥AB于点C,且CD=BC=14米,则该圆的半径长为米.12.(2022•瑞安市开学)如图,矩形ABCD中,E,F分别是边AB,BC上的两个动点,将△BEF沿着直线EF作轴对称变换,得到△B′EF,点B′恰好在边AD上,过点D,F,B′作⊙O,连结OF.若OF⊥BC,AB′=CF=3时,则AE=.13.(2021秋•镇海区期末)⊙O的弦AB的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为cm.14.(2020•金华模拟)如图,依据九上教材中的丁字尺,小明开始自制丁字尺:F、A、D、E在同一直线上,AF⊥AB,AB∥CD,AF=4cm,AD=DE=2cm.(1)现有一圆经过F、E,弧EF为劣弧,且与AB交于G,如果测得AG的长为10cm,那么圆的半径为;(2)小明在DC上制作单位刻度时不小心把尺子割断了,只余DM=1cm,此时只运用这把残破的丁字尺的已知数据(一条线段不能分段测量且不能作延长线),能计算或测量(不计误差)得到的最大半径是.15.(2022•海曙区一模)如图,圆O的半径为4,点P是直径AB上定点,AP=1,过P 的直线与圆O交于C,D两点,则△COD面积的最大值为;作弦DE∥AB,CH ⊥DE于H,则CH的最大值为.三.解答题(共5小题)16.(2021秋•西湖区校级月考)如图,CD为⊙O的直径,CD⊥AB于E,CE=8,DE=2,求AB的长.17.(2021•柯桥区模拟)如图,在⊙O中,过半径OD的中点C作AB⊥OD交⊙O于A、B两点,且AB=2.(1)求OD的长;(2)计算阴影部分的周长.18.(2021秋•玄武区校级月考)如图,AB是⊙O直径,弦CD⊥AB于点E,过点C作DB 的垂线,交AB的延长线于点G,垂足为点F,连结AC.(1)求证:AC=CG;(2)若CD=EG=8,求⊙O的半径.19.(2021秋•下城区校级月考)如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM 为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有2m,即PN=2m时,试求:(1)拱桥所在的圆的半径;(2)通过计算说明是否需要采取紧急措施.20.(2020秋•永嘉县校级期末)如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD 交AC于点E,AD=CD.(1)求证:OD∥BC;(2)若AC=10,DE=4,求BC的长.。
1对3辅导讲义学员姓名:学科教师:年级:辅导科目:授课日期时间主题垂径定理—知识讲解(基础)教学内容【知识梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【例题精讲】例1.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB =6 cm ,OD =4 cm ,则DC 的长为( )A .5 cmB .2.5 cmC .2 cmD .1 cm【思路点拨】欲求CD 的长,只要求出⊙O 的半径r 即可,可以连结OA ,在Rt △AOD 中,由勾股定理求出OA.【答案】D ;【解析】连OA ,由垂径定理知, 所以在Rt △AOD 中,(cm ).所以DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。
【试一试】如图,⊙O 中,弦AB ⊥弦CD 于E ,且AE=3cm ,BE=5cm ,求圆心O 到弦CD 距离。
【答案】.例2.如图所示,直线与两个同心圆分别交于图示的各点,则正确的是( )A .MP 与RN 的大小关系不定B .MP =RNC .MP <RND .MP >RN【答案】B ;【解析】比较线段MP 与RN 的大小关系,首先可通过测量猜测MP 与RN 相等,而证明两条线段相等通常利用全等三角形,即证△OMP ≌△ONR ,如果联想到垂径定理,可过O 作OE ⊥MN 于E ,则ME =NE ,PE =RE ,∴ ME -PE =NE -RE ,即MP =RN .13cm 2AD AB ==2222435AO OD AD =+=+=1cm【点评】在圆中,解有关弦的问题时,常常需要作“垂直于弦的直径”.已知:如图,割线AC 与圆O 交于点B 、C ,割线AD 过圆心O. 若圆O 的半径是5,且,AD=13. 求弦BC 的长.【答案】6.类型二、垂径定理的综合应用3.如图1,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24m ,拱的半径为13m ,则拱高为( )A .5mB .8mC .7mD .m【思路点拨】解决此题的关键是将这样的实际问题转化为数学问题,即能够把题目中的已知条件和要求的问题转化为数学问题中的已知条件和问题.【答案】B ;【解析】如图2,表示桥拱,弦AB 的长表示桥的跨度,C 为的中点,CD ⊥AB 于D ,CD 表示拱高,O 为的圆心,根据垂径定理的推论可知,C 、D 、O 三点共线,且OC 平分AB .在Rt △AOD 中,OA =13,AD =12,则OD 2=OA 2-AD 2=132-122=25.∴ OD =5,∴ CD =OC -OD =13-5=8,即拱高为8m .【点评】在解答有关弓形问题时,首先应找弓形的弧所在圆的圆心,然后构造直角三角形,运用垂径定理(推论)及勾股定理求解.4.如图,一条公路的转弯处是一段圆弧(即图中,点O 是的圆心,•其中CD=600m ,E 为上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径.30DAC ︒∠=53»AB »AB »AB【答案与解析】如图,连接OC ,设弯路的半径为R ,则OF=(R-90)m ,∵OE ⊥CD ,∴CF=CD=×600=300(m), 根据勾股定理,得:OC 2=CF 2+OF 2即R 2=3002+(R-90)2 ,解得R=545,∴这段弯路的半径为545m .【点评】构造直角三角形,利用垂径定理、勾股定理,解题过程中使用了列方程的方法,这种用代数方法解决几何问题的数学方法一定要掌握.举一反三:【变式】有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60m ,水面到拱顶距离CD=18m ,当洪水泛滥时,水面距拱顶不超过3m 时拱桥就有危险,现在水面宽MN=32m 时是否需要采取紧急措施?请说明理由.【答案】不需要采取紧急措施 设OA=R ,在Rt △AOC 中,AC=30,OC=OD-CD=R-18,R 2=302+(R-18)2, R 2=900+R 2-36R+324,解得R=34(m).连接OM ,设DE=x ,在Rt △MOE 中,ME=16,342=162+(34-x)2,x 2-68x+256=0,解得x 1=4,x 2=64(不合题意,舍),∴DE=4m >3m ,∴不需采取紧急措施.1212一、选择题1.下列结论正确的是( )A .经过圆心的直线是圆的对称轴B .直径是圆的对称轴C .与圆相交的直线是圆的对称轴D .与直径相交的直线是圆的对称轴2.下列命题中错误的有( ).(1)弦的垂直平分线经过圆心 (2)平分弦的直径垂直于弦(3)梯形的对角线互相平分 (4)圆的对称轴是直径A .1个B .2个C .3个D .4个3.如图所示,AB 是⊙O 的直径,CD 是⊙O 的弦,AB ⊥CD 于E ,则图中不大于半圆的相等弧有( ).A .l 对B .2对C .3对D .4对第3题 第5题4.AB 为⊙O 的弦,OC ⊥AB ,C 为垂足,若OA =2,OC =l ,则AB 的长为( ).A .B .C .D .5.如图所示,矩形ABCD 与⊙O 相交于M 、N 、F 、E ,若AM=2,DE=1,EF=8,•则MN 的长为( )A .2B .4C .6D .86.已知⊙O 的直径AB=12cm ,P 为OB 中点,过P 作弦CD 与AB 相交成30°角,则弦CD 的长为( ).A .B .C .D .二、填空题7.垂直于弦的直径的性质定理是____________________________________________.8.平分__ ______的直径________于弦,并且平分__________________________.9.圆的半径为5cm ,圆心到弦AB 的距离为4cm ,则AB =______cm .525323315cm 310cm 35cm 33cm10.如图,CD为⊙O的直径,AB⊥CD于E,DE=8cm,CE=2cm,则AB=______cm.10题图 11题图 12题图11.如图,⊙O的半径OC为6cm,弦AB垂直平分OC,则AB=______cm,∠AOB=______°.12.如图,AB为⊙O的弦,∠AOB=90°,AB=a,则OA=______,O点到AB的距离=______.三、解答题13.如图,有一座拱桥是圆弧形,它的跨度为60米,拱高18米,当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PN=4米时是否要采取紧急措施?14. 如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,求⊙O半径.15.如图所示,⊙O的直径AB和弦CD交于E,已知AE=6cm,EB=2cm,∠CEA=30°,求CD的长.【答案与解析】一、选择题1.【答案】A ;【解析】图形的对称轴是直线,圆的对称轴是过圆心的直线,或直径所在的直线.2.【答案】C ;【解析】(1)正确;(2)“平分弦(该弦不是直径)的直径垂直于弦”才是正确的,所以(2)不正确;(3)对角线互相平分就是平行四边形,而不是梯形了,所以(3)不正确;(4)圆的对称轴是直径所在的直线,所以(4)不正确.故选C.3.【答案】C ;【解析】;;. 4.【答案】D ;【解析】先求AC=.再求AB=2AC=.5.【答案】C ;【解析】过O 作OH ⊥CD 并延长,交AB 于P ,易得DH=5,而AM=2,∴MP=3,MN=2MP=2×3=6.6.【答案】A ;【解析】作OH ⊥CD 于H ,连接OD,则OH=, OD=6,可求DH=,CD=2DH=. 二、填空题7.【答案】垂直于弦的直径平分弦,并且平分弦所对的两条弧.8.【答案】弦(不是直径),垂直于,弦所对的两条弧.9.【答案】6;10.【答案】8;11.【答案】;12.【答案】, ; 三、解答题13.【答案与解析】设圆弧所在圆的半径为R ,则R 2-(R-18)2=302, ∴R=34»»AB AB =»»AC AD =»»BC BD =22213-=23323152315o 63,120a 22a 21当拱顶高水面4米时,有, ∴不用采取紧急措施.14.【答案与解析】连结OC .设AP =k ,PB =5k ,∵ AB 为⊙O 直径,∴ 半径. 且OP =OA -PA =3k -k =2k .∵ AB ⊥CD 于P ,∴ CP ==5. 在Rt △COP 中用勾股定理,有,∴ .即,∴ (取正根),∴ 半径(cm).15.【答案与解析】作OF ⊥CD 于F,连结OC ,如图,∵AE=6cm ,EB=2cm ,∴AB=8cm ,∴OC=OB=4cm ,则 OE=2cm ,又∵∠CEA =30°∴ OF=1cm ,在Rt △COF 中,由勾股定理得cm ,∴ cm 。
1、圆是轴对称图形,经过圆心的每一条都是它的对称轴。
(因为直径是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”或说成:“圆的对称轴是经过圆心的每一条直线”。
)2、垂径定理:垂直于弦的直径这条弦,并且弦所对的弧。
(这里的垂径可以是直径、半径或过圆心的直线或线段,其本质是过“圆心”。
)推论:(1)平分弦(不是直径)的直径,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径,弦且平分弦所对的另一条弧归纳:对于一个圆和一条直线,如果具备三个条件中任意两个可以得到第三个①过圆心②垂直于弦③平分弦(非直径)拓展:对于一个圆和一条直线,如果具备三个条件中任意两个可以得到另外三个①过圆心②垂直于弦③平分弦(非直径)④平分弦所对的劣弧⑤平分弦所对的优弧——简记为“知二推三”垂径定理一.选择题★1.如图1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,那么弦AB的长是()A.4 B.6 C.7 D.8★★2.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的一个动点,则线段OM长的最小值为()A.2 B.3 C.4 D.5★★3.过⊙O内一点M的最长弦为10 cm,最短弦长为8cm,则OM的长为()41A.9cm B.6cm C.3cm D.cm★★4.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位 B.10个单位 C.1个单位 D.15个单位⊙的直径AB垂直弦CD于P,且P是半径OB的中点,★★5.如图,OCD ,则直径AB的长是()6cmA.23cm B.32cm C.42cm D.43cm★★6.下列命题中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对的弦的直线必经过这个圆的圆心★★★7.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .53米★★★8.⊙O 的半径为5cm ,弦AB//CD ,且AB=8cm,CD=6cm,则AB 与CD 之间的距离为( ) A . 1 cm B . 7cm C . 3 cm 或4 cm D . 1cm 或7cm★★★9.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,那么BC 边上的高为( )A .2B .8C .2或8D .3 二.填空题★1.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm ★2.在直径为10cm 的圆中,弦AB 的长为8cm ,则它的弦心距为 cm ★3.在半径为10的圆中有一条长为16的弦,那么这条弦的弦心距等于 ★★4.已知AB 是⊙O 的弦,AB =8cm ,OC ⊥AB 与C ,OC=3cm ,则⊙O 的半径为 cm★★5.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E ,若∠COD=120°,OE =3厘米,则CD = 厘米★★6.过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm ★★7.已知AB 是⊙O 的直径,弦CD ⊥AB ,E 为垂足,CD=8,OE=1,则AB=____________★★8.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是★★9.某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB =16m ,半径OA =10m ,则中间柱CD 的高度为 m★★10.如图,在直角坐标系中,以点P 为圆心的圆弧与轴交于A 、B两点,已知P(4,2)和A(2,0),则点B 的坐标是★★11.如图,AB 是⊙O 的直径,OD ⊥AC 于点D ,BC=6cm ,则OD= cm★★12.如图,矩形ABCD 与圆心在AB 上的圆O 交于点G 、B 、F 、E ,GB=10,EF=8,那么AD=BA POyxO图4E DCB A★★13.如图,⊙O 的半径是5cm ,P 是⊙O 外一点,PO=8cm ,∠P=30º,则AB= cm★★★14.⊙O 的半径为13 cm ,弦AB ∥CD ,AB =24cm ,CD =10cm ,那么AB 和CD 的距离是 Cm★★★15.一个圆弧形门拱的拱高为1米,跨度为4米,那么这个门拱的半径为 米 ★★★16.在直径为10厘米的圆中,两条分别为6厘米和8厘米的平行弦之间的距离是 厘米★★★17.如图,是一个隧道的截面,如果路面AB 宽为8米,净高CD 为8米,那么这个 隧道所在圆的半径OA 是___________米★★★18.如图,AB 为半圆直径,O 为圆心,C 为半圆上一点,E 是弧AC 的中点,OE 交弦AC 于点D 。
2、内容提要:圆得轴对称性:过圆心得任一条直线(直径所在得直线)都就是它得对称轴、 垂径定理⎩⎨⎧平分弦所对的两条弧。
)的直径垂直于弦,且推论:平分弦(非直径对的两条弧;平分弦,并且平分弦所定理:垂直于弦的直径推论:平行得两弦之间所夹得两弧相等。
相关概念:弦心距:圆心到弦得距离(垂线段OE)。
应用链接:垂径定理常与勾股定理联系在一起综合应用解题(利用弦心距、半径、半弦构造R t△OAE)。
3、垂径定理常见得五种基本图形4、垂径定理得两种变形图基本题型 一、求半径例1.高速公路得隧道与桥梁最多、图1就是一个隧道得横截面,若它得形状就是以O 为圆心得圆得一部分,路面=10米,净高=7米,则此圆得半径=( )(A)5 (B)7 (C) (D)练习1、已知:在⊙中,弦,点到得距离等于得一半,求圆得半径.练习2、如图,在⊙中,就是弦,为得中点,若,到得距离为1、求⊙得半径.练习3、如图,一个圆弧形桥拱,其跨度为10米,拱高为1米。
求桥拱得半径.二、求弦长例2.工程上常用钢珠来测量零件上小孔得直径,假设钢珠得直径就是10mm,测得钢珠顶端离三个元素:弧、弦与直径两种关系:垂直 平分两类应用:计算 证明CDABO E OBAD D O BAEC OA BO BAC图1ODABC零件表面得距离为8mm,如图2所示,则这个小孔得直径 mm 、练习2、在直径为52cm 得圆柱形油槽内装入一些油后,截面如图所示,如果油得最大深度为16cm,那么油面宽度AB 就是 c m。
三、求弦心距例3、如图,已知在⊙中,弦,且,垂足为,于,于、(1)求证:四边形就是正方形、(2)若,,求圆心到弦与得距离、练习3。
如图4,得半径为5,弦,于,则得长等于 .四、求拱高例4.兴隆蔬菜基地建圆弧形蔬菜大棚得剖面如图5所示,已知AB =16m,半径 OA =10m,高度CD 为_____m 。
五、求角度例5.如图6,在⊙O中,A B为⊙O 得直径,CD AB AOC ,则∠B= 。
2、内容提要:
圆的轴对称性:过圆心的任一条直线(直径所在的直线)都是它的对称轴。
垂径定理
⎩
⎨
⎧
平分弦所对的两条弧。
)的直径垂直于弦,且
推论:平分弦(非直径
对的两条弧;
平分弦,并且平分弦所
定理:垂直于弦的直径
推论:平行的两弦之间所夹的两弧相等。
相关概念:弦心距:圆心到弦的距离(垂线段OE)。
应用链接:垂径定理常和勾股定理联系在一起综合应用解题
(利用弦心距、半径、半弦构造Rt△OAE)。
3、垂径定理常见的五种基本图形
4、垂径定理的两种变形图
基本题型
一、求半径
例1.高速公路的隧道和桥梁最多.图1是一个隧道的横截面,若它的形状是以O为圆心的圆的一部分,路面AB=10米,净高CD=7米,则此圆的半径OA=(
(A)5 (B)7 (C)
37
5
(D)
37
7
图1
练习1、已知:在⊙O 中,弦cm 12=AB ,O 点到AB 的距离等于AB 的一半,求圆的半径.
练习2、如图,在⊙O 中,AB 是弦,C 为的中点,若32=BC ,O 到AB 的距离为1.
求⊙O 的半径.
练习3、如图,一个圆弧形桥拱,其跨度AB 为10米,拱高CD 为1米.求桥拱的半径.
二、求弦长
例2.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图2所示,则这个小孔的直径AB mm .
练习2、在直径为52cm 的圆柱形油槽内装入一些油后,截面
如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是 cm.
D
C
O A
B
图3
B
A
8mm
图2
三、求弦心距
例 3.如图,已知在⊙O 中,弦CD AB =,且CD AB ⊥,垂足为H ,AB OE ⊥于E ,
CD OF ⊥于F .
(1)求证:四边形OEHF 是正方形. (2)若3=CH ,9=DH ,求圆心O 到弦AB 和CD 的距离.
练习3.如图4,O 的半径为5,弦8AB =,OC AB ⊥于C ,则OC 的长等于 .
四、求拱高
例4.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如图5所示,已知AB =16m ,半径 OA =10m ,高度CD 为_____m .
五、求角度
例5.如图6,在⊙O 中,AB 为⊙O 的直径,弦CD ⊥AB ,∠AOC =60º,则∠B = .
六、探究线段的最小值
例6.如图7,⊙O 的半径OA =10cm ,弦AB =16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距离为 cm .
七、其他题型
例7、如图,已知⊙O 的直径AB 和弦CD 相交于点E ,AE=6cm ,EB=2cm ,∠BED=30°,求CD 的长.
B
D
C
E O
图4
C
O
A
B
D C
A
O
图5
C
O
D
A B
图6
C O
A
B
P
图7
例8、在直径为50cm 的⊙O 中,弦AB=40cm ,弦CD=48cm ,且AB ∥CD ,求:AB 与CD 之间的距离.
例9、如图所示,P 为弦AB 上一点,CP ⊥OP 交⊙O 于点C ,AB =8,AP:PB =1:3,求PC 的长。
例10、如图所示,在Rt △ABC 中,∠C =900,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于点D 、E ,求AB 和AD 的长。
例11、如图,F 是以O 为圆心,BC 为直径的半圆上任意一点,A 是的中点,AD ⊥BC
于D ,求证:AD=2
1BF.
C
A
D E
O
A
E
F。