第3节 塔板理论
- 格式:ppt
- 大小:1.50 MB
- 文档页数:17
第二章 气相色谱分析gas chromatographic analysis,GC第二节 色谱理论基础fundamental of chromatograph theory色谱理论需要解决的问题:色谱分离过程的热力学和动力学问题。
影响分离及柱效的因素与提高柱效的途径,柱效与分离度的评价指标及其关系。
组分保留时间为何不同色谱峰为何变宽组分保留时间:色谱过程的热力学因素控制;(组分和固定液的结构和性质)色谱峰变宽:色谱过程的动力学因素控制;(两相中的运动阻力,扩散)两种色谱理论:塔板理论和速率理论;一、塔板理论-柱分离效能指标1.塔板理论(plate theory )半经验理论;将色谱分离过程比拟作蒸馏过程,将连续的色谱分离过程分割成多次的平衡过程的重复 (类似于蒸馏塔塔板上的平衡过程);塔板理论的假设:(1) 在每一个平衡过程间隔内,平衡可以迅速达到;(2) 将载气看作成脉动(间歇)过程;(3) 试样沿色谱柱方向的扩散可忽略;(4) 每次分配的分配系数相同。
色谱柱长:L ,虚拟的塔板间距离:H ,色谱柱的理论塔板数:n ,则三者的关系为:n = L / H 理论塔板数与色谱参数之间的关系为: 保留时间包含死时间,在死时间内不参与分配!2.有效塔板数和有效塔板高度•单位柱长的塔板数越多,表明柱效越高。
•用不同物质计算可得到不同的理论塔板数。
222116545)()(./bR R W t Y t n ==•组分在t M 时间内不参与柱内分配。
需引入有效塔板数和有效塔板高度:3.塔板理论的特点和不足(1)当色谱柱长度一定时,塔板数 n 越大(塔板高度 H 越小),被测组分在柱内被分配的次数越多,柱效能则越高,所得色谱峰越窄。
(2)不同物质在同一色谱柱上的分配系数不同,用有效塔板数和有效塔板高度作为衡量柱效能的指标时,应指明测定物质。
(3)柱效不能表示被分离组分的实际分离效果,当两组分的分配系数K 相同时,无论该色谱柱的塔板数多大,都无法分离。
二、塔板理论1.塔板理论的基本假设塔板理论是Martin和Synger首先提出的色谱热力学平衡理论。
它把色谱柱看作分馏塔,把组分在色谱柱内的分离过程看成在分馏塔中的分馏过程,即组分在塔板间隔内的分配平衡过程。
塔板理论的基本假设为:1)色谱柱内存在许多塔板,组分在塔板间隔(即塔板高度)内完全服从分配定律,并很快达到分配平衡。
2)样品加在第0号塔板上,样品沿色谱柱轴方向的扩散可以忽略。
3)流动相在色谱柱内间歇式流动,每次进入一个塔板体积。
4)在所有塔板上分配系数相等,与组分的量无关。
虽然以上假设与实际色谱过程不符,如色谱过程是一个动态过程,很难达到分配平衡;组分沿色谱柱轴方向的扩散是不可避免的。
但是塔板理论导出了色谱流出曲线方程,成功地解释了流出曲线的形状、浓度极大点的位置,能够评价色谱柱柱效。
2.色谱流出曲线方程及定量参数(峰高h和峰面积A)由色谱流出曲线方程可知:当t=tR时,浓度C有极大值。
Cmax就是色谱峰的峰高。
因此:①当实验条件一定时(即σ一定),峰高h与组分的量C0(进样量)成正比,所以正常峰的峰高可用于定量分析。
②当进样量一定时,σ越小(柱效越高),峰高越高,因此提高柱效能提高HPLC分析的灵敏度。
由流出曲线方程对V(0~∞)求积分,即得出色谱峰面积A。
可见A相当于组分进样量C0,因此是常用的定量参数。
把Cmax=h和Wh/2=2.355σ代入上式,即得A=1.064×Wh/2×h,此为正常峰的峰面积计算公式。
三、速率理论(又称随机模型理论)1.液相色谱速率方程1956年荷兰学者Van Deemter等人吸收了塔板理论的概念,并把影响塔板高度的动力学因素结合起来,提出了色谱过程的动力学理论--速率理论。
它把色谱过程看作一个动态非平衡过程,研究过程中的动力学因素对峰展宽(即柱效)的影响。
后来Giddings和Snyder等人在Van Deemter方程(后称气相色谱速率方程)的基础上,根据液体与气体的性质差异,提出了液相色谱速率方程(即Giddings方程).2.影响柱效的因素1)涡流扩散(eddy diffusion)。
色谱基本理论第一节色谱图及基本参数一、谱图:色谱柱流出物通过检测器时所产生的响应信号对时间的曲线图,其纵标为信号强度(mv),横坐标为保留时间(min)。
二、关术语:色谱峰(Peak):色谱柱流出组分通过检测器时产生的响应信号的微分曲线。
峰底(Peak Base):峰的起点与终点之间连接的直线。
峰高h(Peak Height):峰最大值到峰底的距离。
峰(底)宽W(Peak Width):峰两侧拐点处所作切线与峰底相交两点之间的距离.就是从色谱峰两侧的转折点(拐点)作切线,在基线上的截距叫峰底宽;简称峰宽;峰高一半处色谱峰的宽度叫半峰宽。
由于色谱峰顶呈圆孤形,色谱峰的半峰宽并不等于峰底宽的一半半(高)峰宽W1/2(Peak Width at Half Height):通过峰高的中点作平行于峰的直线,其与峰两侧相交两点之间的距离。
峰面积(Peak Area):峰与峰底之间的面积,又称响应值。
标准偏差(σ)(Standard Error):峰高的0.607倍处所对应峰宽的一半。
拖尾峰(Tailing Peak):后沿较前沿平缓的不对称峰。
前伸峰(Leading Peak):前沿较后沿平缓的不对称峰。
鬼峰(Ghost Peak):不是试样所产生的峰,亦称假峰。
基线(Baseline):在正常操作条件下,仅由流动相所产生的响应信号的曲线。
基线飘移(Baseline Drift):基线随时间定向的缓慢变化。
基线噪声(N) (Baseline Noise);由各种因素所引起的基线波动。
谱带扩展(Band Broadening):由于纵向扩散,传质阻力等因素的影响,使组分在色谱柱内移动过程中谱带宽度增加的现象。
三、保留值的基本参数保留时间(t R)(Retention time):组分从进样到出现峰最大值所需的时间。
死时间(t M)(Dead time):不被固定相滞留的组分从进样到出现峰最大值所需的时间调整保留时间(t’R ):t R’= t R-t M,即扣除了死时间的保留时间。