色谱基本理论a塔板理论
- 格式:pptx
- 大小:1.94 MB
- 文档页数:43
第二章 气相色谱分析gas chromatographic analysis,GC第二节 色谱理论基础fundamental of chromatograph theory色谱理论需要解决的问题:色谱分离过程的热力学和动力学问题。
影响分离及柱效的因素与提高柱效的途径,柱效与分离度的评价指标及其关系。
组分保留时间为何不同色谱峰为何变宽组分保留时间:色谱过程的热力学因素控制;(组分和固定液的结构和性质)色谱峰变宽:色谱过程的动力学因素控制;(两相中的运动阻力,扩散)两种色谱理论:塔板理论和速率理论;一、塔板理论-柱分离效能指标1.塔板理论(plate theory )半经验理论;将色谱分离过程比拟作蒸馏过程,将连续的色谱分离过程分割成多次的平衡过程的重复 (类似于蒸馏塔塔板上的平衡过程);塔板理论的假设:(1) 在每一个平衡过程间隔内,平衡可以迅速达到;(2) 将载气看作成脉动(间歇)过程;(3) 试样沿色谱柱方向的扩散可忽略;(4) 每次分配的分配系数相同。
色谱柱长:L ,虚拟的塔板间距离:H ,色谱柱的理论塔板数:n ,则三者的关系为:n = L / H 理论塔板数与色谱参数之间的关系为: 保留时间包含死时间,在死时间内不参与分配!2.有效塔板数和有效塔板高度•单位柱长的塔板数越多,表明柱效越高。
•用不同物质计算可得到不同的理论塔板数。
222116545)()(./bR R W t Y t n ==•组分在t M 时间内不参与柱内分配。
需引入有效塔板数和有效塔板高度:3.塔板理论的特点和不足(1)当色谱柱长度一定时,塔板数 n 越大(塔板高度 H 越小),被测组分在柱内被分配的次数越多,柱效能则越高,所得色谱峰越窄。
(2)不同物质在同一色谱柱上的分配系数不同,用有效塔板数和有效塔板高度作为衡量柱效能的指标时,应指明测定物质。
(3)柱效不能表示被分离组分的实际分离效果,当两组分的分配系数K 相同时,无论该色谱柱的塔板数多大,都无法分离。
1、简述色谱基础理论中得塔板理论与速率理论(10分)塔板理论就是由以下四个假设构成得:1、在柱内一小段长度H 内,组分可以在两相间迅速达到平衡。
这一小段柱长称为理论塔板高度H 。
2、流动相(如载气)进入色谱柱不就是连续进行得,而就是脉动式,每次进气为一个塔板体积(ΔVm )。
3、所有组分开始时存在于第0号塔板上,而且试样沿轴(纵)向扩散可忽略。
4、分配系数在所有塔板上就是常数,与组分在某一塔板上得量无关。
(3分)速率理论:就是由荷兰学者范弟姆特等提出得。
结合塔板理论得概念,把影响塔板高度得动力学因素结合进去,导出得塔板高度H 与载气线速度u 得关系:Cu u B A H ++=其中:A 称为涡流扩散项,B 为分子扩散项, C 为传质阻力项涡流扩散项 A 气体碰到填充物颗粒时,不断地改变流动方向,使试样组分在气相中形成类似“涡流”得流动,因而引起色谱得扩张。
由于 A=2λd p ,表明 A 与填充物得平均颗粒直径 dp 得大小与填充得不均匀性 λ 有关,而与载气性质、线速度与组分无关,因此使用适当细粒度与颗粒均匀得担体,并尽量填充均匀,就是减少涡流扩散,提高柱效得有效途径。
分子扩散项 B/u 由于试样组分被载气带入色谱柱后,就是以“塞子”得形式存在于柱得很小一段空间中,在“塞子”得前后 ( 纵向 ) 存在着浓差而形成浓度梯度,因此使运动着得分子产生纵向扩散。
而 B=2rD g r 就是因载体填充在柱内而引起气体扩散路径弯曲得因数 ( 弯曲因子 ) , D g 为组分在气相中得扩散系数。
分子扩散项与 D g 得大小成正比,而 D g 与组分及载气得性质有关:相对分子质量大得组分,其 D g 小 , 反比于载气密度得平方根或载气相对分子质量得平方根,所以采用相对分子质量较大得载气 ( 如氮气 ) ,可使 B 项降低, D g 随柱温增高而增加,但反比于柱压。
弯曲因子 r 为与填充物有关得因素。
传质项系数 Cu C 包括气相传质阻力系数 C g 与液相传质阻力系数 C 1 两项。
色谱分析方法基本理论一、保留时光理论保留时光是样品从进入色谱柱到流精彩谱柱所需要的时光,不同的物质在不同的色谱柱上以不同的流淌相洗脱会有不同的保留时光,因此保留时光是色谱分析法比较重要的参数之一。
保留时光由物质在色谱中的分配系数打算: tR=t0(1+KVs/Vm)式中:tR —某物质的保留时光; t0—色谱系统的死时光,即流淌相进入色谱柱到流精彩谱柱的时光,这个时光由色谱柱的孔隙、流淌相的流速等因素打算; K-分配系数; Vs,Vm—固定相和流淌相的体积。
这个公式又叫做色谱过程方程,是色谱学最基本的公式之一。
在薄层色谱中没有样品进入和流出固定相的过程,因此人们用比移值标示物质的色谱行为。
比移值是一个与保留时光相对应的概念,它是样品点在色谱过程中移动的距离与流淌相前沿移动距离的比值。
与保留时光一样,比移值也由物质在色谱中的分配系数打算: Rf=Vm/(Vm+KVs) 式中:Rf—比移值;K一色谱分配系数; Vs,Vm—固定相和流淌相的体积。
二、塔板理论塔板理论是色谱学的基础理论。
塔板理论将色谱柱看作一个分馏塔,待分别组分在分馏塔的塔板间移动,在每一个塔板内组分分子在固定相和流淌相之间形成平衡,随着流淌相的流淌,组分分子不断从一个塔板移动到下一个塔板并不断形成新的平衡。
色谱柱的塔板数越多,其分别效果越好。
按照塔板理论,待分别组分流精彩谱柱时的浓度随时光展现二项式分布,当色谱柱的塔板数很高时,二项式分布趋于正态分布。
流出曲线上组分浓度与时光的关系可以表示如下:式中:Ct—t时刻的组分浓度; C0—组分总浓度,即峰面积;σ—半峰宽,即正态分布的标准差; tR—组分的保留时光。
该方程称作流出曲线方程。
按照流出曲线方程,色谱柱的理论塔板高度被定义为单位柱长度的色谱峰方差: H=σ2/T 理论塔板高度越低,在单位长度色谱柱中的塔板数越多,分别效果越好。
打算理论塔板高度的因素有固定相的材质、色谱柱的匀称程度、流淌相的理化性质以及流淌相的流速等。
气相色谱基本理论知识气相色谱理论可分为热力学和动力学理论两方面。
热力学理论是从相平衡观点来研究分离过程,以塔片理论为代表。
动力学理论是从动力学观点来研究各种动力学因素对柱效的影响,以Van Deemter 方程式为代表。
在叙述这两个理论前先介绍有关基本概念。
一、基本概念l.色谱峰(流出峰) 由电信号强度对时间作图所绘制的曲线称为色谱流出曲线。
流出曲线(图2-2)上的突起部分称为色谱峰。
正常色谱峰为对称形正态分布曲线,曲线有最高点,以此点的横坐标为中心,曲线对称地向两侧快速、单调下降。
不正常色谱峰有两种:拖尾峰及前延峰。
前沿陡峭,后沿拖尾的不对称色谱峰称为拖尾峰(tailing peak),前沿平缓,后沿陡峭的不对称色峰与不正常色谱峰可用对称因子f s(symmetryfactor)或叫拖尾因子来衡量(图20-3)。
对称因子在0.95~1.05之间为对称峰,小于0.95为前延峰,大于1.05为拖尾峰。
f s = W0.05h/2A = (A+B)/2A (2.1)一个组分的色谱峰可用三项参数即峰高或峰面积(用于定量)、峰位(用保留值表示、用于定性)及峰宽(用于衡量柱效)说明。
2.基线在操作条件下,没有组分流出时的流出曲线称为基线。
稳定的基线应是一条平行于横轴的直线。
基线反映仪器(主要是检测器)的噪音随时间的变化。
3.保留值(滞留值) 是色谱定性参数。
(1)保留时间(t R):从进样开始到某个组分的色谱峰顶点的时间间隔称为该组分的保留时间(retention time),即从进样到柱后某组分出现浓度极大时的时间间隔。
图2-2中t R1及t R2分别为组分l及组分2的保留时间。
(2)死时间(t 0):分配系数为零的组分的保留时间称为死时间(dead time)。
通常把空气或甲烷视为此种组分,用来测定死时间。
(3)调整保留时间(R t '):某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间称为调整保留时间(adjusted retention time),又称为校正保留时间。