量子力学-第二章-定态薛定谔方程详解
- 格式:ppt
- 大小:4.68 MB
- 文档页数:84
第二章1.波函数/平面波:(1)频率和波长都不随时间变化的波叫平面波。
(2)如果,粒子受到随时间或位置变化的力场作用,他的动量和能量不再是常量,这时的粒子就不能用平面波来描写。
在一般情况下,我们用一个复函数表示描写粒子的波,并称这个函数为波函数2.自由粒子/粒子的状态:不被位势束缚的粒子叫做自由粒子.3.波函数的几率解释/波恩解释: (1)粒子衍射试验中,如果入射电子流的强度很大,则照片上很快就会出现衍射图样;如果入射电子流强度很小,电子一个一个的从晶体表面上反射,开始它们看起来是毫无规则的散布着,随时间变化在照片上同样出现了衍射图样。
由此可见,实验所显示的电子的波动性是许多电子在同一实验的统计结果,或者是一个电子在许多次相同试验中的统计结果。
(2)波恩提出了统计解释,即:波函数在空间中某一点的强度(振幅绝对值的平方)和该点找到粒子的概率成比例,按照这种解释,描写粒子的波乃是概率波。
4.几率密度: 在t 时刻r 点,单位体积内找到粒子的几率是: ω(r,t) ={dW(r,t)/d τ}= C|Ψ(r,t)|25.平方可积: 由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即: C ∫∞|Ψ(r,t)|2d τ= 1 而得常数C 之值为: C = 1/∫∞|Ψ(r,t)|2d τ 若 ∫∞|Ψ(r , t)|2d τ→∞,则 C → 0, 这是没有意义的。
故要求描写粒子量子状态的波函数Ψ必须是绝对值平方可积的函数。
7.归一化: C ∫∞|Φ(x,y,z,t)|2d τ= 1 (波函数乘以一个常数以后,并不改变空间各点找到粒子的概率,不改变波函数的状态) C = 1/∫∞|Φ(x,y,z,t)|2d τ 现把上式所确定的C 开平方后乘以Φ,并以Ψ表示所得函数: Ψ(x,y,z,t)=C ½Φ(x,y,z,t) 在t 时刻 在(x,y,z )点附近单位体积内找到粒子的概率密度是: ω( x,y,z,t) = C|Φ(x,y,z,t)|2故把(1)式改写成 ∫∞|Ψ(r , t)|2d τ=1 把Φ换成Ψ的步骤称为归一化。
第二章薛定谔方程(4学时)§2.1 薛定谔得出的波动方程§2.2 无限深方势阱中的粒子§2.3 势垒穿透§2.4 谐振子§2.1 薛定谔得出的波动方程在§1.5中我们已说明,微观粒子的状态用波函数ψ描述,波动性和粒子性的关系为:波的强度正比于粒子到达的概率.具体来说,若ψ(r,t)为波函数,d V为空间r点附近的体积元,则t时刻在此体积元内发现粒子的概率正比于|ψ(r,t)|2d V.|ψ(r,t)|2叫做相对概率密度.波函数一般是空间坐标和时间的复函数由于波函数ψ的概率解释,ψ可以相差一个任意常数因子,即ψ和Aψ代表相同的状态.其中A为任意复常数.这是因为将ψ换为Aψ,空间各点的相对概率没有变化.这一点与经典力学有本质区别,在经典力学中,代表波动的函数如果增大A倍,表示振幅增大了A倍,它代表的是另一个振动状态.正因为波函数可以相差一个任意常数,使ψ满足以下归一化条件:1ψd2=⎰V例如,如果ϕ是一个未归一化的波函数,则可令ψ=Aϕ,由归一化条件12222=ϕ=ϕ=ψ⎰⎰⎰dV A dV A dV得到:⎰ϕ=dVA 21, ψ=ϕϕ⎰dV21这样得到的波函数ψ已经满足归一化条件,我们就说ψ已归一,并用它代替ϕ来描述状态.设ψ(r,t )是归一化波函数,则|ψ(r,t )|2d V 的物理意义为t 时刻在r 点附近d V 体积元内发现粒子的概率.|ψ(r,t )|2称为概率密度.由于概率必须单值,有界,连续,所以要求ψ单值,有界,连续.这称为波函数的标准条件,它在决定波函数时起着重要作用. 在经典力学中,粒子的运动满足牛顿定律,它给出了粒子的运动状态随时间的变化规律.上节我们已说明,微观粒子的运动状态用波函数描述.波函数ψ是时间和空间的函数:ψ=ψ(x,y,z,t ).所谓微观粒子的运动规律,也就是描述状态的波函数ψ随时间的变化规律,即ψ所满足的方程,它在量子力学中的地位就相当于经典力学中牛顿方程的地位.这样的方程肯定不能从经典物理学导出,因为经典物理学根本没有涉及微观粒子的波粒二象性.波函数满足的方程由薛定谔首先找到,它的一般形式是包含时间和空间变量的微分方程.叫做薛定谔方程,在一维情形下,其一般形式为:),()],(2[),(222t x t x U xm t x t i ψ+∂∂-=ψ∂∂ 式中U (x ,t )为粒子的势函数。
一、概述薛定谔方程是量子力学的基本方程之一,描述了微观粒子的运动规律。
在量子力学中,薛定谔方程有两种常见形式,即定态薛定谔方程和不含时薛定谔方程。
本文将对这两种方程进行详细介绍和比较。
二、定态薛定谔方程1. 定态薛定谔方程的概念定态薛定谔方程是描述粒子在给定势场中的稳定状态下的运动规律的方程。
它是一个经典的波动方程,通过求解定态薛定谔方程,可以得到粒子在不同能级下的波函数和能量。
2. 定态薛定谔方程的数学形式定态薛定谔方程的数学形式为一维情况下的定态薛定谔方程为\[-\dfrac{ℏ^2}{2m} \dfrac{d^2ψ(x)}{dx^2} + V(x) ψ(x) = E ψ(x)\] 其中ℏ是普朗克常数,m 是粒子的质量,V(x) 是势能函数,E 是粒子的能量。
3. 定态薛定谔方程的物理意义定态薛定谔方程的解是波函数ψ(x),它描述了粒子在给定势场中的稳定状态。
波函数的模长平方|ψ(x)|^2 表示了粒子出现在空间中不同位置的概率分布,能量 E 则是粒子的可能能级。
三、不含时薛定谔方程1. 不含时薛定谔方程的概念不含时薛定谔方程描述了粒子在外势场作用下的运动规律,它包含了时间变量 t。
通过求解不含时薛定谔方程,可以得到粒子在给定势场下的时间演化规律。
2. 不含时薛定谔方程的数学形式不含时薛定谔方程的一维形式为\[iℏ \dfrac{dψ(x,t)}{dt} = -\dfrac{ℏ^2}{2m}\dfrac{d^2ψ(x,t)}{dx^2} + V(x) ψ(x,t)\]其中 i 是虚数单位,ψ(x,t) 是描述粒子状态的波函数,V(x) 是势能函数。
3. 不含时薛定谔方程的物理意义不含时薛定谔方程的解是随时间演化的波函数ψ(x,t),它描述了粒子在外势场中的运动规律。
通过求解不含时薛定谔方程,可以得到粒子在不同时间下的波函数演化,从而揭示了粒子在外势场中的时间行为。
四、定态薛定谔方程与不含时薛定谔方程的比较1. 数学形式定态薛定谔方程和不含时薛定谔方程在数学形式上有所不同。
第27章薛定谔方程·德布洛意关于物质波的概念传到苏黎世后,薛定谔作了一个关于物质波的报告,报告后,德拜(P.Debye)评论说:有了波,就应有一个波动方程。
几个月后,薛定谔果然提出了一个波方程,这就是后来在量子力学中著名的薛定谔方程。
·薛定谔方程是量子力学的动力学方程,象牛顿方程一样,不能从更基本的方程推导出来;它是否正确,只能由实验检验。
§1 薛定谔方程的建立(一种方法)一.薛定谔方程1.一维薛定谔方程·一维自由运动粒子无势场,不受力,动量不变。
· 一维自由运动粒子的波函数(前已讲)由此有· 再利用 可得此即 一维自由运动粒子(无势场)的薛定谔方程·推广到若粒子在势场U (x , t ) 中运动由 有 ∂ψ∂ x = ( )P ψi h∂2ψ ∂ x 2 P 2h 2= -( ) ψ P 22m E = P 22m E = +U (x , t )∂ t= i h ( ) ψ (x , t )h 22m - ( ) ψ (x , t ) ∂x 2∂ ∂2一维薛定谔方程 式中 ψ =ψ (x , t )是粒子在势场U = U (x , t ) 中运动的波函数·和经典关系相比较,只要把再作用到波函数 ψ (x , t ) 上,即可得到 上述方程。
P 22m E = +U (x , t )2.三维薛定谔方程式由一维方程推广可得三维薛定谔方程式· 拉普拉斯算符(三维薛定谔方程式在球坐标下的形式请见 教材B 版p332)·当 U (r , t) = 0时,方程的解, 即三维自由运动粒子的波函数∂2 ∂x 2 ∂2 ∂y 2 ∇2≡ + + ∂2 ∂z 2·波函数的叠加原理薛定谔方程是ψ的线性微分方程;若ψ1、ψ2是方程的解,则c1ψ1 + c2ψ2也是方程的解。
(c1、c2是常数)★E.Schrodinger & P.A.M.Dirac 荣获1933年Nobel Prize (for the discovery of new productive forms of atomic theory)薛定谔(1887-1961)奥地利人创立量子力学二.定态薛定谔方程 1.一维定态薛定谔方程 若粒子在恒定势场U = U (x ) 中运动(含常数势场U = U 0 )薛定谔方程式可用分离变量法求解。
第二章 薛定谔方程本章介绍:本章将系统介绍波动力学。
波函数统计解释和态叠加原理是量子力学的两个基本假设。
薛定谔方程是波动力学的核心。
在一定的边界条件和初始条件下求解薛定谔方程,可以给出许多能与实验直接比较的结果。
§2.1 波函数的统计解释§2.1.1 波动—粒子两重性矛盾的分析按照德布罗意的观点,和每个粒子相联系的都有一个波。
怎样理解粒子性和波动性之间的联系,这是量子力学首先遇到的根本问题。
2.1.1 波动—粒子两重性矛盾的分析能否认为波是由粒子组成? 粒子的单缝和双缝实验表明,如减小入射粒子强度,让粒子近似的一个一个从粒子源射出,实验发现,虽然开始时底片上的感光点是无规则的,但只要时间足够长,感光点足够多,底片上仍然会出现衍射条纹。
如果波是由粒子做成,那末,波的干涉、衍射必然依赖于粒子间的相互作用。
这和上述实验结果相矛盾,实际上,单个粒子也具有波动性的。
能否认为粒子是由波组成? 比如说,电子是三维空间的物质波包,波包的大小即电子的大小,波包的速度即电子的速度,但物质波包是色散的,即使原来的物质波包很小,但经过一段时间后,也会扩散到很大的空间去,或者形象地说,随着时间的推移,粒子将越来越“胖”,这与实验相矛盾 经典物理对自然界所形成的基本物理图像中有两类物理体系: 一类是实物粒子另一类是相互作用场(波)经典粒子是以同时确定的坐标和动量来描述其运动状态,粒子的运动遵从经典力学规律,在运动过程中具有确定严格的轨道。
粒子的能量,动量在粒子限度的空间小区域集中;当其与其它物理体系作用时,只与粒子所在处附近的粒子相互作用,并遵从能量、动量的单个交换传递过程,其经典物理过程是粒子的碰撞;“定域”是粒子运动的特征。
经典波动则是以场量(振幅、相位等)来描述其运动状态,遵从经典波动方程,波的能量和动量周期性分布于波所传播的空间而不是集中在空间一点,即波的能量、动量是空间广延的。
波与其他物质体系相互作用时,可同时与波所在广延空间内的所有物理体系相互作用,其能量可连续变化,波满足叠加原理,“非定域”是波动性运动的特性。