大学物理 第二章 薛定谔方程
- 格式:ppt
- 大小:1.42 MB
- 文档页数:19
薛定谔公式方程
薛定谔公式是量子力学中的一条重要方程,描述了微观粒子的波动性质。
它的形式如下:
iħ ∂Ψ/∂t = -ħ²/2m ∇²Ψ + VΨ
其中,ħ代表约化的普朗克常数,i代表虚数单位,∂Ψ/∂t表示波函数Ψ对时间的偏导数,∇²Ψ表示波函数Ψ的拉普拉斯算子,m代表粒子的质量,V表示势能。
这个方程的意义在于描述了微观粒子的量子态随时间的演化规律。
它由两部分组成:动能项-ħ²/2m ∇²Ψ和势能项VΨ。
动能项-ħ²/2m ∇²Ψ描述了微观粒子波函数Ψ的空间变化对其动能的影响。
负号表示了粒子的波函数Ψ在动能项中是负相干的,也就是说波函数Ψ在此区域传播的波动性质。
ħ²/2m表示了波动性和粒子质量之间的关系,质量越大,波动性越小。
势能项VΨ描述了微观粒子波函数Ψ在势场中的行为。
势能项的形式取决于具体的势场,比如自由空间中没有势能项,而在外部场中,势能项可以描述粒子对外部场的响应。
整个方程描述了量子粒子的波函数随时间演化的规律。
通过求解薛定谔方程,可以得到粒子在不同的时间点的波函数分布,从而描绘了粒子在空间中运动的概率分布。
当然,在具体的情况下,薛定谔公式还需要结合边界条件和初
值条件来解决。
这些条件可以通过实验数据或者物理假设来确定,从而得到粒子的具体运动规律。
总的来说,薛定谔公式是量子力学中描述微观粒子波动性质的重要方程。
它描绘了波函数随时间的演变规律,通过求解可以得到粒子在空间中的概率分布。
这对于研究微观粒子的行为有着重要的意义。
薛定谔方程名词解释
薛定谔方程是一个重要的理论模型,它使物理学家们能够更进一步地了解和解释量子力学中的现象。
它于1926年被提出,由荷兰物理学家薛定谔提出。
薛定谔方程描述了量子力学中描述双原子共振和双原子退相干特性时所需的方程,从而解释普朗克定律中自由粒子的行为。
薛定谔方程是一个基于能量的矩阵方程,它是由薛定谔推导出来的。
它的公式是:
HΨ = EΨ
其中,H是原子的能级矩阵,Ψ是量子态的矢量,E是能量的标量。
薛定谔方程有三个重要的功能:
首先,它可以用来描述量子力学中的双原子共振,它可以用来解释双原子间的能量级和轨道混合情况,从而解释量子力学中双原子结构的概念。
其次,它可以用来解释双原子退相干特性。
双原子退相干指的是,在两个原子相互作用时,他们的总能量会减少,这一特性由薛定谔方程可以解释。
最后,薛定谔方程还可以应用于电子结构性质的计算,用来计算杂化理论中的电子结构性质。
薛定谔方程对于量子力学的研究有重要意义,它为物理学家们提供了量子力学中最基本的模型,使他们能够更深入地了解和研究相关
现象。
薛定谔方程也为建立一个现实世界中可行的量子力学模型打下了基础,从而为量子力学的研究提供了一条新的发展道路。
总之,薛定谔方程是一个重要的理论模型,它可以用来描述量子力学中的双原子共振和双原子退相干特性,并且可以用来计算杂化理论中的电子结构性质。
它的出现,是量子力学研究的一个重大突破,也为量子力学的未来发展提供了指引。
薛定谔方程
奥地利著名物理学家埃尔温·薛定谔是著名的量子力学奠基者之一,前两年,他因为“薛定谔的猫”大火了一把。
但必须说明的是,首先薛定谔不姓薛,他是奥地利物理学家,其次“薛定谔的猫”说的也不是猫的事。
事实上,压根儿就没有这么一只“猫”,这里的猫是代指,指的是一个理论实验。
好了,下面我们来说说正题——薛定谔方程。
薛定谔方程是薛定谔于1926年提出的量子力学中的一个基本方程,也是量子力学的一个基本假定。
它是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动。
每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。
这样的解释同学们能接受吗?接受不了就先了解一下吧!总而言之,薛定谔方程是世界原子物理学文献中应用最广泛、影响最大的公式之一。
意义:薛定谔方程在量子力学中的意义与牛顿第二定律在经典力学中的意义一样,它揭示了微观物理世界物质运动的基本規律。
由于对量子力学做出了杰出贡献,薛定谔获得了1933年诺贝尔物理学奖。
知识点:什么是薛定谔的猫?
相比薛定谔和薛定谔方程,可能同学们更熟悉“薛定谔的猫”,可大家真的知道“薛定谔的猫”指的是什么吗?
“薛定谔的猫”的官方称呼应该是——薛定谔猫佯谬,是薛定谔为了反驳哥本哈根学派(一个科学流派)的一种科学理论而设计的一个理论实验。
也就是说,“薛定谔的猫”是理论上的,这个实验实际上没有完成,所以也不存在这只猫。