5-2量子-波函数和薛定谔方程 大学物理作业习题解答
- 格式:pdf
- 大小:173.86 KB
- 文档页数:10
量子力学习题及解答第一章 量子理论基础1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即m λ T=b (常量);并近似计算b 的数值,准确到二位有效数字。
解 根据普朗克的黑体辐射公式dv e chv d kThv v v 11833-⋅=πρ, (1)以及 c v =λ, (2)λρρd dv v v -=, (3)有,118)()(5-⋅=⋅=⎪⎭⎫ ⎝⎛-=-=kThc v v ehc cd c d d dv λλλπλλρλλλρλρρ这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。
本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。
但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下:01151186'=⎪⎪⎪⎭⎫⎝⎛-⋅+--⋅=-kT hc kThce kT hc ehcλλλλλπρ⇒ 0115=-⋅+--kThc ekThcλλ⇒ kThcekThc λλ=--)1(5 如果令x=kThcλ ,则上述方程为 x e x =--)1(5这是一个超越方程。
首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有xkhc T m =λ 把x 以及三个物理常量代入到上式便知K m T m ⋅⨯=-3109.2λ这便是维恩位移定律。
据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。
1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。
解 根据德布罗意波粒二象性的关系,可知E=hv ,λh P =如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么ep E μ22= 如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0⨯,因此利用非相对论性的电子的能量——动量关系式,这样,便有ph=λnmm m E c hc E h e e 71.01071.031051.021024.1229662=⨯=⨯⨯⨯⨯===--μμ在这里,利用了m eV hc ⋅⨯=-61024.1以及eV c e 621051.0⨯=μ最后,对Ec hc e 22μλ=作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动性极弱,显现出来的都是粒子性,这种波粒二象性,从某种子意义来说,只有在微观世界才能显现。
第二章 薛定谔方程 习题 (课本44页)2.1 证明在定态中,概率流密度与时间无关。
证明:当一个系统处于定态时,其波函数),(t rϕ可以写作,⎪⎭⎫ ⎝⎛-=Et ir t rexp )(),(φϕ 于是便有,⎪⎭⎫⎝⎛=Et ir t rexp )(),(**φϕ 根据概率流密度的定义式(2.4-4)有,⎥⎦⎤⎢⎣⎡∇⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-∇⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-∇⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∇⎪⎭⎫ ⎝⎛-=∇-∇≡ϕϕϕϕϕϕϕϕψψψψt iE t iE t iE t iE m i t iE t iE t iE t iE m i m i Jexp exp exp exp 2exp exp exp exp 2)(2******即有,)(2)(2****φφφφϕϕϕϕ∇-∇=∇-∇=mi m i J 显然,在定态中概率流密度与时间无关。
从某种意义上说明上述波函数称为定态波函数是名副其实的。
2.2 由下列两定态波函数计算概率流密度:⑴ )exp(11ikr r=ϕ,⑵ )exp(12ikr r-=ϕ。
从所得结果说明1ϕ表示向外传播的球面波,2ϕ表示向内(即向原点)传播的球面波。
解:在解本题之前,首先给出一个函数f 的梯度在球坐标系下的表达式,即ϕθθϕθ∂∂+∂∂+∂∂=∇f r e f r e r f e f r sin 1ˆ1ˆˆ ⑴ 首先求解函数1ϕ的概率流密度r ikrikr r ikr ikrikr r ikr e mr k r ike re e r e r ike r e e r e m i r ikr r ikr r ikr r ikr m i m i J ˆˆˆ2)exp()exp()exp()exp(2)(22221*1*111 =⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛+--⎪⎪⎭⎫ ⎝⎛-+-=⎪⎭⎫⎝⎛∇---∇=∇-∇=---ϕϕϕϕ可见,概率流密度1J 与r同号,这便意味着1J 的指向是向外的,即1ϕ表示向外传播的球面波。
量子力学例题第二章一.求解一位定态薛定谔方程1.试求在不对称势井中的粒子能级和波函数[解] 薛定谔方程:当, 故有利用波函数在处的连续条件由处连续条件:由处连续条件:给定一个n 值,可解一个, 为分离能级.2.粒子在一维势井中的运动求粒子的束缚定态能级与相应的归一化定态波函数[解]体系的定态薛定谔方程为当时对束缚态解为在处连续性要求将代入得又相应归一化波函数为:归一化波函数为:3分子间的范得瓦耳斯力所产生的势能可近似地表示为求束缚态的能级所满足的方程[解]束缚态下粒子能量的取值范围为当时当时薛定谔方程为令解为当时令解为当时薛定谔方程为令薛定谔方程为解为由波函数满足的连续性要求,有要使有非零解不能同时为零则其系数组成的行列式必须为零计算行列式,得方程例题主要类型: 1.算符运算; 2.力学量的平均值; 3.力学量几率分布.一. 有关算符的运算1.证明如下对易关系(1)(2)(3)(4)(5)[证](1)(2)(3)一般地,若算符是任一标量算符,有(4)一般地,若算符是任一矢量算符,可证明有(5)=0同理:。
2.证明哈密顿算符为厄密算符[解]考虑一维情况为厄密算符, 为厄密算符,为实数为厄密算符为厄密算符3已知轨道角动量的两个算符和共同的正交归一化本征函数完备集为,取: 试证明: 也是和共同本征函数, 对应本征值分别为: 。
[证]。
是的对应本征值为的本征函数是的对应本征值为的本征函数又:可求出:二.有关力学量平均值与几率分布方面1.(1)证明是的一个本征函数并求出相应的本征值;(2)求x在态中的平均值[解]即是的本征函数。
本征值2.设粒子在宽度为a的一维无限深势阱中运动,如粒子的状态由波函数描写。
求粒子能量的可能值相应的概率及平均值【解】宽度为a的一维无限深势井的能量本征函数注意:是否归一化波函数能量本征值出现的几率 , 出现的几率能量平均值另一做法3 .一维谐振子在时的归一化波函数为所描写的态中式中,式中是谐振子的能量本征函数,求(1)的数值;2)在态中能量的可能值,相应的概率及平均值;(3)时系统的波函数;(4)时能量的可能值相应的概率及平均值[解](1) , 归一化,,,(2),,;,;,;(3)时,所以:时,能量的可能值、相应的概率、平均值同(2)。
第二章定态薛定谔方程本章主要内容概要:1. 定态薛定谔方程与定态的性质:在势能不显含时间的情况下,含时薛定谔方程可以通过分离变量法来求解。
首先求解定态薛定谔方程(能量本征值方程)222.2d V E m dxψψψ-+= 求解时需考虑波函数的标准条件(连续、有限、单值等)。
能量本征函数n ψ具有正交归一性(分立谱)*()()m n mn x x dx ψψδ∞-∞=⎰或δ函数正交归一性(连续谱)'*'()()()q qx x dx q q ψψδ∞-∞=-⎰ 由能量本征函数n ψ可以得到定态波函数/(,)()niE t n n x t x eψ-ψ=定态波函数满足含时薛定谔方程。
对分立谱,定态是物理上可实现的态,粒子处在定态时,能量具有确定值n E ,其它力学量(不显含时间)的期待值不随时间变化。
对连续谱,定态不是物理上可实现的态(不可归一化),但是它们可以叠加成物理上可实现的态。
含时薛定谔方程的一般解可由定态解叠加而成,在分离谱情况下为 (,)(,)n n nx t c x t ψ=ψ∑系数n c 由初始波函数确定(,0)()n n nx c x ψψ=∑ , *()(,0)n n c x x dx ψ∞-∞=ψ⎰由波函数(,)x t ψ的归一性,可以得到系数n c 的归一性21nnc=∑对(,)x t ψ态测量能量只能得到能量本征值,得到n E 的几率是2n c ,能量的期待值可由2n n nH c E =∑求出。
这种方法与用*ˆ(,)(,)H x t H x t dx∞-∞=ψψ⎰方法等价。
2. 一维典型例子:(a)一维无限深势阱(分立谱,束缚态)0, 0(),x aV x<<⎧=⎨∞⎩其它地方能量本征函数和能量本征值为2222(), 0;1,2,3,...2nnn xx x a nanEmaπψπ⎛⎫=<<=⎪⎝⎭=若0,(),a x aV x-<<⎧=⎨∞⎩其它地方则能量本征函数和能量本征值为2222()(), ;1,2,3,...22(2)nnnx x a a x a nanEm aπψπ⎛⎫=+-<<=⎪⎝⎭=1n=是基态(能量最低),2n=是第一激发态。
量子力学波函数练习题详解在量子力学中,波函数是描述微观粒子行为的数学工具。
通过解波函数方程,我们可以了解粒子的能量、位置以及其他一系列重要的物理性质。
为了更好地理解波函数的应用,下面将详细解答几个关于波函数的练习题。
题目一:给定一个波函数ψ(x) = Aexp(ikx),求其归一化常数A和归一化因子。
解答:归一化常数A表示波函数的幅度,而归一化因子用于保证波函数的总概率为1。
首先,我们需要将波函数ψ(x)归一化以得到概率密度函数。
概率密度函数是波函数的模的平方,即|ψ(x)|^2。
对于给定的波函数ψ(x) = Aexp(ikx),我们可以计算模的平方:|ψ(x)|^2 = |Aexp(ikx)|^2= A* A* exp(ikx) * exp(-ikx)= |A|^2我们可以发现,模的平方与A的平方成正比。
为了保证概率密度函数积分为1,我们需要要求 |A|^2 = 1。
因此,归一化常数A的值为A = 1。
归一化因子为整个波函数的积分常数,我们可以通过积分来计算归一化因子:∫|ψ(x)|^2 dx = ∫|A|^2 dx= ∫ dx= ∫ 1 dx= x + C其中C为积分常数。
由于波函数描述的是连续的空间,我们取积分区间为负无穷到正无穷,因此积分结果为无穷大。
为了保证积分结果为1,我们需要引入归一化因子N来调整积分结果:∫|ψ(x)|^2 dx = N ∫ dx= N(x + C)由于积分结果为1,我们可以得到归一化因子N的值为N = 1/√(2π)。
综上所述,给定的波函数ψ(x) = exp(ikx)的归一化常数A为1,归一化因子N为1/√(2π)。
题目二:给定一个波函数ψ(x) = A(x + 2),求其归一化常数A和归一化因子。
解答:同样地,我们需要将给定的波函数ψ(x)归一化。
首先,计算波函数的模的平方:|ψ(x)|^2 = |A(x + 2)|^2= A*(x + 2)*(x + 2)= A^2*(x^2 + 4x + 4)为了保证概率密度函数积分为1,我们对模的平方进行积分并求出归一化因子N:∫|ψ(x)|^2 dx = ∫ A^2*(x^2 + 4x + 4) dx= A^2 ∫ (x^2 + 4x + 4) dx= A^2 * (1/3 * x^3 + 2 * x^2 + 4 * x) + C其中C为积分常数。
量子物理参考答案大全量子物理参考答案大全量子物理是一门研究微观世界的学科,它揭示了微观粒子的行为和性质,以及这些行为和性质如何影响宏观世界。
在量子物理中,有许多重要的概念和理论,这些概念和理论对于理解和解释微观世界的现象至关重要。
在本文中,我们将为您提供一份量子物理参考答案大全,希望能够帮助您更好地理解这个复杂而神奇的学科。
1. 什么是量子?量子是指物质和能量的最小单位。
在经典物理中,物质和能量可以连续地分割,而在量子物理中,它们只能以离散的方式存在。
量子的离散性质导致了一系列奇特的现象,如量子叠加和量子纠缠。
2. 什么是量子叠加?量子叠加是指量子系统可以同时处于多个状态的现象。
换句话说,一个粒子可以同时处于不同的位置、动量或能量状态。
这与我们在日常生活中观察到的经典物体的行为截然不同。
量子叠加是量子计算和量子通信等领域的基础。
3. 什么是量子纠缠?量子纠缠是指两个或更多个量子系统之间存在一种特殊的关联关系。
当两个量子系统纠缠在一起时,它们的状态是相互依赖的,即使它们之间的距离很远。
这种关联关系在量子通信和量子隐形传态等领域有着重要的应用。
4. 什么是波粒二象性?波粒二象性是指微观粒子既可以表现出粒子的特性,如位置和动量,又可以表现出波的特性,如干涉和衍射。
这一概念是量子物理的基石,它揭示了微观粒子行为的奇特性质。
5. 什么是量子力学?量子力学是研究量子系统行为的理论框架。
它提供了描述和计算量子系统的数学工具和规则。
量子力学包括波函数、薛定谔方程和量子力学算符等概念。
通过量子力学,我们可以预测和解释微观粒子的行为。
6. 什么是薛定谔方程?薛定谔方程是描述量子系统演化的基本方程。
它通过一个波函数来描述系统的状态,并通过一个算符来描述系统的物理量。
薛定谔方程可以用来计算系统的能量和波函数的演化。
7. 什么是量子力学算符?量子力学算符是描述量子系统物理量的数学对象。
它们对应于可观测量,如位置、动量和能量。