量子力学习题解答 第2章
- 格式:doc
- 大小:1.45 MB
- 文档页数:26
第二章习题解答p.522.1.证明在定态中,几率流与时间无关。
证:对于定态,可令)]r ()r ()r ()r ([m 2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。
2.2 由下列定态波函数计算几率流密度:ikr ikr e re r -==1)2( 1)1(21ψψ从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。
解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0r mrk r mr k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。
表示向外传播的球面波。
rmrk r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m2i J )2(3020220ik r ik r ik r ik r *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。
表示向内(即向原点) 传播的球面波。
补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰∞dx x ψ方式归一化。
其相对位置几率分布函数为 12==ψω表示粒子在空间各处出现的几率相同。
第二章 力学量算符2.1 证明空间反演算符ˆˆ(()())x x ψψ∏∏=-是厄米算符。
指出在什么条件下,ˆd p i dx =- 是厄米算符。
2.2 动量在径向方向的分量定义为1ˆˆˆ2r p r r ⎛⎫=⋅+⋅ ⎪⎝⎭r r p p ,求出ˆr p 在球坐标系中的表示式。
2.3 证明[][]ˆˆˆ,()();,()()ˆx x x x p f x i f x x f p i f p x p∂∂=-=∂∂ 2.4 设算符ˆA满足条件2ˆ1A =,证明ˆˆcos sin i A e i A ααα=+,其中α为实常数. 2.5 设算符ˆˆˆˆˆˆˆ,1KLM LM ML =-=,又设ϕ为ˆK 的本征矢,相应本征值为λ.求证ˆˆu L v M ϕϕ≡≡和也是ˆK 的本征矢,并求出相应的本征值.2.6 粒子作一维运动,2ˆˆ()2p H V x μ=+,定态波函数为n ,ˆ,1,2,3,n H n E n n == (1)证明ˆnm n pm a n x m =,并求出系数nm a . (2)利用(1)式推导求和公式()22222ˆn m nEE n x m m p m μ-=∑ (3)证明()222n m n EE n x m μ-=∑ 2.7 设ˆF为厄米算符,证明在能量表象中下式成立:()21ˆˆˆ,,2n m nk n E E F k F F H k ⎡⎤⎡⎤-=⎣⎦⎣⎦∑ 2.8 已知(,)lm Y θϕ是2ˆˆZL L 和的共同本征函数,本征值分别为2(1)l l m + 和。
令ˆˆˆx y L L L ±=±. (1)证明ˆ(,)lm L Y θϕ±仍是2ˆˆZ L L 和的共同本征函数,求出他们的本征值.(2)推导公式1ˆ(,)(,)lm lm L Y Y θϕθϕ±± 2.9 证明ˆˆ11ˆˆˆˆˆˆˆˆˆˆˆ,,,,,,2!3!A A e Be B A B A A B A A A B -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦2.10 设算符ˆA 与ˆB 同它们的对易关系式ˆˆ,A B ⎡⎤⎣⎦都对易,证明1ˆˆˆˆˆ,,n n A B nB A B -⎡⎤⎡⎤=⎣⎦⎣⎦ 1122ˆˆˆˆˆˆ,,ˆˆˆˆˆˆA B A B A B A B A B A B e e e e e e e ⎡⎤⎡⎤-+++⎣⎦⎣⎦==或2.11 设ˆL 为轨道角动量算符。
第二章 波函数与Schrödinger 方程2.1设质量为m 的粒子在势场)(r V中运动。
(a )证明粒子的能量平均值为 ω⋅=⎰r d E 3,ψψψψωV m**22+∇=(能量密度)(b )证明能量守恒公式 0=⋅∇+∂∂s tw⎪⎪⎭⎫⎝⎛∇∂∂+∇∂∂-=**22ψψψψt t m s (能流密度) 证:(a )粒子的能量平均值为(设ψ已归一化)V T r d V mE +=⎪⎪⎭⎫⎝⎛+∇-=⎰322*2ψψ (1) ⎰=ψψV r d V *3 (势能平均值) (2)()()()[]⎰⎰∇⋅∇-∇⋅∇-=⎪⎪⎭⎫ ⎝⎛∇-=ψψψψψψ**3222*32)(2动能平均值r d mm r d T其中T 的第一项可化为面积分,而在无穷远处归一化的波函数必然为0。
因此ψψ∇⋅∇=⎰*322r d mT(3)结合式(1)、(2)和(3),可知能量密度,2**2ψψψψωV m+∇⋅∇=(4)且能量平均值 ⎰⋅=ωr dE 3。
(b )由(4)式,得...2**.....2*22**..2222*2222V Vt m t t t tV V m t t t t t t s V V t mt m s E ωψψψψψψψψψψψψψψψψψψψψψψψψ⎡⎤∂∂*∂∂*∂⎢⎥=∇⋅∇+∇⋅∇++∂⎢∂∂⎥∂∂⎣⎦⎡⎤⎛⎫⎛⎫∂*∂∂*∂∂*∂⎢⎥ ⎪ ⎪=∇⋅∇+∇-∇+∇++⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫∂*∂=-∇⋅+-∇++-∇+ ⎪ ⎪∂∂⎝⎭⎝⎭=-∇⋅+..*t t ψψψψ⎛⎫∂*∂ ⎪+ ⎪∂∂⎝⎭ρt E s ∂∂+⋅-∇=(ρ :几率密度)s⋅-∇= (定态波函数,几率密度ρ不随时间改变)所以0=⋅∇+∂∂s tw。
2.2考虑单粒子的Schrödinger 方程()()()()[]()t r r iV r V t r mt r t i ,,2,2122ψψψ++∇-=∂∂(1) 1V 与2V 为实函数。
第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b bTm3109.2 ,×´==-l 。
证明:由普朗克黑体辐射公式:由普朗克黑体辐射公式:n n p nr n nd ec hd kTh 11833-=, 及ln c=、l ln d c d 2-=得1185-=kThcehc l l l p r ,令kT hc x l =,再由0=l r l d d ,得l .所满足的超越方程为所满足的超越方程为15-=x x e xe用图解法求得97.4=x ,即得97.4=kT hc m l ,将数据代入求得C m 109.2 ,03×´==-b b T ml 1.2.在0K 附近,钠的价电子能量约为3eV ,求de Broglie 波长. 解:010A 7.09m 1009.72=´»==-mEh p h l # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。
波长。
解:010A 63.12m 1063.1232=´»===-mkT h mE h p h l其中kg 1066.1003.427-´´=m ,123K J 1038.1--×´=k # 1.4利用玻尔—索末菲量子化条件,求:利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。
)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
)在均匀磁场中作圆周运动的电子的轨道半径。
已知外磁场T 10=B ,玻尔磁子123T J 10923.0--×´=B m ,求动能的量子化间隔E D ,并与K 4=T 及K 100=T 的热运动能量相比较。
的热运动能量相比较。
解:(1)方法1:谐振子的能量222212q p E mw m +=可以化为()12222222=÷÷øöççèæ+mw m E q Ep的平面运动,轨道为椭圆,两半轴分别为22,2mw m Eb E a ==,相空间面积为,相空间面积为,2,1,0,2=====òn nh EE ab pdq nw pp 所以,能量 ,2,1,0,==n nh E n方法2:一维谐振子的运动方程为02=+¢¢q q w ,其解为,其解为()j w +=t A q sin速度为速度为 ()j w w +=¢t A q c o s ,动量为()j w mw m +=¢=t A q p cos ,则相积分为,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=òòò2)cos 1(2cos 220220222mw j w mw j w mw , ,2,1,0=n nmw nh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。
教材P50 ~ 52:2、3、5、6、7、13 2.解:一维无限深势阱中粒子的本征波函数为⎪⎭⎫ ⎝⎛=ψa x n a x n πsin 2)(,a x <<0 0)(=x n ψ,a x x ><,0计算平均值22cos 1212sin 2)()(0200*a dx a x n x a dx a x n x a dxx x x x aaan n =⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛==⎰⎰⎰ππψψ222220202*223sin 2)()(ππψψn a a dx a x n x a dxx x x x aan n -=⎪⎭⎫ ⎝⎛==⎰⎰(查积分表)因此126112)(2222222a n a x x x x n →∞→⎪⎭⎫ ⎝⎛-=-=-π 在经典力学中,粒子处于dx x x +~的概率为a dx ,而2a x =,则有()1222202a a dx a x x x a=⎪⎭⎫ ⎝⎛-=-⎰因此当∞→n 时,量子力学结果→经典力学结果。
3.解:用p34(12)式⎪⎪⎩⎪⎪⎨⎧≥<⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=ψ2,02,exp exp 221cos 2)(1a x ax a x i a x i a a x a x πππ其Fourier 逆变换为dx px i x p a a ⎪⎭⎫⎝⎛-=⎰-exp )(21)(21ψπΦ ⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=22222cos 2 p a a a pa πππ此即粒子动量表象波函数,因此粒子动量分布的概率密度为2)()(p p W Φ=。
5.解:在0=t 时刻22212m a Eπ=,⎪⎩⎪⎨⎧><<<⎪⎭⎫⎝⎛=ψax x a x a x a x ,0,00,sin 2)0,(π 阱宽为a 2时粒子Hamilton 量的本征问题的解为,3,2,1,82222==n n man πε⎪⎩⎪⎨⎧><<<⎪⎭⎫⎝⎛=Φax x a x a x n a x n 2,0,020,2s i n 1)(π因波函数的定义域不同,所以)0,(x ψ已不是这时的本征态。
陈鄂生《量子力学教程》习题答案第二章_力学量算符陈鄂生《量子力学教程》习题答案第二章_力学量算符含答案第一节算符理论基础1.量子力学中的基本假设包括哪些?它们各自的物理意义是什么?答:量子力学中的基本假设包括:(1) 波函数假设:用波函数Ψ(x)描述微观粒子的运动状态,波函数的模的平方表示找到粒子在空间中某一点的概率。
(2) 物理量算符假设:每个物理量都对应一个算符,而对应的测量值是算符的本征值。
(3) 波函数演化假设:波函数随时间的演化遵循薛定谔方程。
(4) 基态能量假设:系统的最低能量对应于基态,且能量是量子化的。
这些基本假设反映了量子力学的基本原理和规律。
2.什么是算符的本征值和本征函数?答:算符的本征值是指对应于某个物理量的算符的一个特征值,它代表了该物理量的一个可能的测量结果。
本征函数是对应于某个物理量的算符的一个特征函数,它表示的是该物理量的一个可能的状态。
3.什么是算符的厄米性?答:算符的厄米性是指一个算符与其共轭转置算符相等。
对于一个算符A,如果满足A†=A,则称该算符是厄米算符。
4.什么是算符的厄米共轭?答:算符的厄米共轭是指将算符的每一项的系数取复共轭得到的新算符。
对于一个算符A,它的厄米共轭算符A†可以通过将A的每一项的系数取复共轭得到。
5.什么是算符的共同本征函数?答:算符的共同本征函数是指对于两个或多个算符A和B,存在一组波函数Ψ(x)使得同时满足AΨ(x)=aΨ(x)和BΨ(x)=bΨ(x)。
其中a和b分别是A和B的本征值。
6.什么是算符的对易性?答:算符的对易性是指两个算符之间的交换顺序不改变它们的结果。
如果两个算符A和B满足[A,B]=AB-BA=0,则称它们对易。
第二节动量算符1.什么是动量算符?它的本征值和本征函数分别是什么?答:动量算符是描述粒子动量的算符,用符号p表示。
动量算符的本征值是粒子的可能动量值,本征函数则是对应于这些可能动量的波函数。
动量算符的本征函数是平面波函数,即Ψp(x)=Nexp(ipx/ħ),其中N是归一化常数,p是动量的本征值。
(射系T (的势83B计.解: 其中22所以由边界条件1(2ik 或12t k =+处的反射有'()2((]k x b x e ϕ--+ ,02(x ϕ由'2ϕ1T t =2T (ii) Tlα'0ik r i tik r i tωω⋅-⋅-在1(,)x y ϕ=在2222mϕ∇=2)E V +在2'2(0,)(0,(0,)(0,y y ϕϕ=='sin yik y θ由上述二式得00c o s s i n xxk k R k k θθ-=+ 反射回来的概率2200c o s s i n x xk k P R k k θθ-==+ 222022()s i n x m E V k k θ+=- 2022mE k =(ii )在x<0时,波函数与(1)中相同,在0<x<t 时Schrodinger 方程为2202mϕ-∇=若取iky kx e ϕ+=,则有:'220k k -+=即 'k k =± 所以0<x<t 的波函数为 '''2(,)()k x k xi k yx y a e b eeϕ-=+综上所述 1(,)()y xxik yik x ik x x y e re eϕ=+ ,0x <''2(,)()y ik yk x k x x y ae be eϕ-=+ ,0x t <<3(,)x i k xx y c e ϕ= ,x t >x k θ='s i n k θi n y k θ=利用边界条件121200(0)(0)()()x x x x d x d x x dx dx ϕϕϕϕ=====⎧⎪⎨=⎪⎩2322()()()()x t x t x t x t d x d x dx dx ϕϕϕϕ=====⎧⎪⎨=⎪⎩得 ''''1(1)'()''x x xik t k t k tik t k t k t xr a bik r k a b ce ae be ik ce k ae k be --+=+⎧⎪-=-⎪⎨=+⎪⎪=-⎩ 解得:2'22'11k t k te r e β-=- ''k i k xk i k x β-=+ 2'2'222'2'22cos 4k t k t k t k t e e R r e e θ--+-==+-14QM-2.33求一维薛定谔方程在势场()2/V x Ze x =-下的能级和波函数,并与势场()()()2/,0,0Ze x x V x x ⎧->⎪=⎨∞≤⎪⎩的结果相比较. 解:根据维里定律()()221122x E V x Ze dx xψ∞-∞==-⎰如果当0x →时,()x ψ不趋于零,上述积分会发散,E 会趋近于负无穷大.这是不可能的,所以我们得到()00ψ=.这样我们就可以用Laplace 变换来解决这个问题. 势能为()V x 一维薛定谔方程为()()()22222d x Ze x E x m dx xψψψ--= ()1 进行变量代换0xζγ==>则()1式变为()()2210d d ψζγψζζζ⎛⎫+-= ⎪⎝⎭()2 对上式使用Laplace 变换,在0ζ>的区域,有()()()()211010sd ss s ds d ψφγφζ+∞''-+-=⎰, ()3其中()()10s s ed ζφψζζ∞-=⎰()()()000lim d d ζψψζψζζ++∆→+∆-=∆解(3)式得:()/212111B s s s s γφ-⎛⎫= ⎪-+⎝⎭/211s s γ-⎛⎫ ⎪+⎝⎭是一个多值函数,但是()1s φ必须是单值的,所以我们有2n γ= 1,2,3,n =则有()12111nB s s s s φ-⎛⎫= ⎪-+⎝⎭其中()0d B d ψζ+=.则()()()()1111Re 1,2;21n s n s s B e B e F n s ζζψζζζ--+=-⎡⎤-==-⎢⎥+⎢⎥⎣⎦ ()0ζ> ()1,2;2F n ζ-是合流超比函数.对0ζ<的区域,引入变换0t ζ=->则()2式变为()()2210d t t dt t ψγψ⎛⎫+--= ⎪⎝⎭ ()4 解为()22111nC s s s s φ+⎛⎫= ⎪--⎝⎭则有()()()()()()111212!1!n k tk n n n k t Ce t t k k ψ-=⎡⎤---=+⎢⎥+⎣⎦∑我们看到(),,t s t ψ→∞→-∞→∞自然边界条件要求()t ψ→∞有限,则必须有0C =.于是在0ζ<区域中0ψ=. 所以题目中的两种势函数都有相同的解()()1,2;2,00,0B e F n ζζζζψζζ-⎧->⎪=⎨≤⎪⎩由2n γ= 1,2,3,n =以及γ=可得2422,1,2,3,2n mZ e E n n=-=。