量子力学习题解答 第2章
- 格式:doc
- 大小:1.45 MB
- 文档页数:26
第二章习题解答p.522.1.证明在定态中,几率流与时间无关。
证:对于定态,可令)]r ()r ()r ()r ([m 2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。
2.2 由下列定态波函数计算几率流密度:ikr ikr e re r -==1)2( 1)1(21ψψ从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。
解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0r mrk r mr k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。
表示向外传播的球面波。
rmrk r mr k r )]r 1ik r 1(r 1)r 1ik r 1(r 1[m 2i r )]e r 1(r e r 1)e r 1(r e r 1[m 2i )(m2i J )2(3020220ik r ik r ik r ik r *2*222-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。
表示向内(即向原点) 传播的球面波。
补充:设ikx e x =)(ψ,粒子的位置几率分布如何?这个波函数能否归一化?∞==⎰⎰∞∞dx dx ψψ*∴波函数不能按1)(2=⎰∞dx x ψ方式归一化。
其相对位置几率分布函数为 12==ψω表示粒子在空间各处出现的几率相同。
第二章 力学量算符2.1 证明空间反演算符ˆˆ(()())x x ψψ∏∏=-是厄米算符。
指出在什么条件下,ˆd p i dx =- 是厄米算符。
2.2 动量在径向方向的分量定义为1ˆˆˆ2r p r r ⎛⎫=⋅+⋅ ⎪⎝⎭r r p p ,求出ˆr p 在球坐标系中的表示式。
2.3 证明[][]ˆˆˆ,()();,()()ˆx x x x p f x i f x x f p i f p x p∂∂=-=∂∂ 2.4 设算符ˆA满足条件2ˆ1A =,证明ˆˆcos sin i A e i A ααα=+,其中α为实常数. 2.5 设算符ˆˆˆˆˆˆˆ,1KLM LM ML =-=,又设ϕ为ˆK 的本征矢,相应本征值为λ.求证ˆˆu L v M ϕϕ≡≡和也是ˆK 的本征矢,并求出相应的本征值.2.6 粒子作一维运动,2ˆˆ()2p H V x μ=+,定态波函数为n ,ˆ,1,2,3,n H n E n n == (1)证明ˆnm n pm a n x m =,并求出系数nm a . (2)利用(1)式推导求和公式()22222ˆn m nEE n x m m p m μ-=∑ (3)证明()222n m n EE n x m μ-=∑ 2.7 设ˆF为厄米算符,证明在能量表象中下式成立:()21ˆˆˆ,,2n m nk n E E F k F F H k ⎡⎤⎡⎤-=⎣⎦⎣⎦∑ 2.8 已知(,)lm Y θϕ是2ˆˆZL L 和的共同本征函数,本征值分别为2(1)l l m + 和。
令ˆˆˆx y L L L ±=±. (1)证明ˆ(,)lm L Y θϕ±仍是2ˆˆZ L L 和的共同本征函数,求出他们的本征值.(2)推导公式1ˆ(,)(,)lm lm L Y Y θϕθϕ±± 2.9 证明ˆˆ11ˆˆˆˆˆˆˆˆˆˆˆ,,,,,,2!3!A A e Be B A B A A B A A A B -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=++++⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦2.10 设算符ˆA 与ˆB 同它们的对易关系式ˆˆ,A B ⎡⎤⎣⎦都对易,证明1ˆˆˆˆˆ,,n n A B nB A B -⎡⎤⎡⎤=⎣⎦⎣⎦ 1122ˆˆˆˆˆˆ,,ˆˆˆˆˆˆA B A B A B A B A B A B e e e e e e e ⎡⎤⎡⎤-+++⎣⎦⎣⎦==或2.11 设ˆL 为轨道角动量算符。
第二章 波函数与Schrödinger 方程2.1设质量为m 的粒子在势场)(r V中运动。
(a )证明粒子的能量平均值为 ω⋅=⎰r d E 3,ψψψψωV m**22+∇=(能量密度)(b )证明能量守恒公式 0=⋅∇+∂∂s tw⎪⎪⎭⎫⎝⎛∇∂∂+∇∂∂-=**22ψψψψt t m s (能流密度) 证:(a )粒子的能量平均值为(设ψ已归一化)V T r d V mE +=⎪⎪⎭⎫⎝⎛+∇-=⎰322*2ψψ (1) ⎰=ψψV r d V *3 (势能平均值) (2)()()()[]⎰⎰∇⋅∇-∇⋅∇-=⎪⎪⎭⎫ ⎝⎛∇-=ψψψψψψ**3222*32)(2动能平均值r d mm r d T其中T 的第一项可化为面积分,而在无穷远处归一化的波函数必然为0。
因此ψψ∇⋅∇=⎰*322r d mT(3)结合式(1)、(2)和(3),可知能量密度,2**2ψψψψωV m+∇⋅∇=(4)且能量平均值 ⎰⋅=ωr dE 3。
(b )由(4)式,得...2**.....2*22**..2222*2222V Vt m t t t tV V m t t t t t t s V V t mt m s E ωψψψψψψψψψψψψψψψψψψψψψψψψ⎡⎤∂∂*∂∂*∂⎢⎥=∇⋅∇+∇⋅∇++∂⎢∂∂⎥∂∂⎣⎦⎡⎤⎛⎫⎛⎫∂*∂∂*∂∂*∂⎢⎥ ⎪ ⎪=∇⋅∇+∇-∇+∇++⎢⎥ ⎪ ⎪∂∂∂∂∂∂⎝⎭⎝⎭⎣⎦⎛⎫⎛⎫∂*∂=-∇⋅+-∇++-∇+ ⎪ ⎪∂∂⎝⎭⎝⎭=-∇⋅+..*t t ψψψψ⎛⎫∂*∂ ⎪+ ⎪∂∂⎝⎭ρt E s ∂∂+⋅-∇=(ρ :几率密度)s⋅-∇= (定态波函数,几率密度ρ不随时间改变)所以0=⋅∇+∂∂s tw。
2.2考虑单粒子的Schrödinger 方程()()()()[]()t r r iV r V t r mt r t i ,,2,2122ψψψ++∇-=∂∂(1) 1V 与2V 为实函数。
第一章 绪论1.1.由黑体辐射公式导出维恩位移定律:C m b bTm3109.2 ,×´==-l 。
证明:由普朗克黑体辐射公式:由普朗克黑体辐射公式:n n p nr n nd ec hd kTh 11833-=, 及ln c=、l ln d c d 2-=得1185-=kThcehc l l l p r ,令kT hc x l =,再由0=l r l d d ,得l .所满足的超越方程为所满足的超越方程为15-=x x e xe用图解法求得97.4=x ,即得97.4=kT hc m l ,将数据代入求得C m 109.2 ,03×´==-b b T ml 1.2.在0K 附近,钠的价电子能量约为3eV ,求de Broglie 波长. 解:010A 7.09m 1009.72=´»==-mEh p h l # 1.3. 氦原子的动能为kT E 23=,求K T 1=时氦原子的de Broglie 波长。
波长。
解:010A 63.12m 1063.1232=´»===-mkT h mE h p h l其中kg 1066.1003.427-´´=m ,123K J 1038.1--×´=k # 1.4利用玻尔—索末菲量子化条件,求:利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。
)一维谐振子的能量。
(2)在均匀磁场中作圆周运动的电子的轨道半径。
)在均匀磁场中作圆周运动的电子的轨道半径。
已知外磁场T 10=B ,玻尔磁子123T J 10923.0--×´=B m ,求动能的量子化间隔E D ,并与K 4=T 及K 100=T 的热运动能量相比较。
的热运动能量相比较。
解:(1)方法1:谐振子的能量222212q p E mw m +=可以化为()12222222=÷÷øöççèæ+mw m E q Ep的平面运动,轨道为椭圆,两半轴分别为22,2mw m Eb E a ==,相空间面积为,相空间面积为,2,1,0,2=====òn nh EE ab pdq nw pp 所以,能量 ,2,1,0,==n nh E n方法2:一维谐振子的运动方程为02=+¢¢q q w ,其解为,其解为()j w +=t A q sin速度为速度为 ()j w w +=¢t A q c o s ,动量为()j w mw m +=¢=t A q p cos ,则相积分为,则相积分为 ()()nh T A dt t A dt t A pdq T T ==++=+=òòò2)cos 1(2cos 220220222mw j w mw j w mw , ,2,1,0=n nmw nh T nh A E ===222, ,2,1,0=n (2)设磁场垂直于电子运动方向,受洛仑兹力作用作匀速圆周运动。