第二章 薛定谔方程
- 格式:doc
- 大小:3.51 MB
- 文档页数:19
第二章薛定谔方程(4学时)§2.1 薛定谔得出的波动方程§2.2 无限深方势阱中的粒子§2.3 势垒穿透§2.4 谐振子§2.1 薛定谔得出的波动方程在§1.5中我们已说明,微观粒子的状态用波函数ψ描述,波动性和粒子性的关系为:波的强度正比于粒子到达的概率.具体来说,若ψ(r,t)为波函数,d V为空间r点附近的体积元,则t时刻在此体积元内发现粒子的概率正比于|ψ(r,t)|2d V.|ψ(r,t)|2叫做相对概率密度.波函数一般是空间坐标和时间的复函数由于波函数ψ的概率解释,ψ可以相差一个任意常数因子,即ψ和Aψ代表相同的状态.其中A为任意复常数.这是因为将ψ换为Aψ,空间各点的相对概率没有变化.这一点与经典力学有本质区别,在经典力学中,代表波动的函数如果增大A倍,表示振幅增大了A倍,它代表的是另一个振动状态.正因为波函数可以相差一个任意常数,使ψ满足以下归一化条件:1ψd2=⎰V例如,如果ϕ是一个未归一化的波函数,则可令ψ=Aϕ,由归一化条件12222=ϕ=ϕ=ψ⎰⎰⎰dV A dV A dV得到:⎰ϕ=dVA 21, ψ=ϕϕ⎰dV21这样得到的波函数ψ已经满足归一化条件,我们就说ψ已归一,并用它代替ϕ来描述状态.设ψ(r,t )是归一化波函数,则|ψ(r,t )|2d V 的物理意义为t 时刻在r 点附近d V 体积元内发现粒子的概率.|ψ(r,t )|2称为概率密度.由于概率必须单值,有界,连续,所以要求ψ单值,有界,连续.这称为波函数的标准条件,它在决定波函数时起着重要作用. 在经典力学中,粒子的运动满足牛顿定律,它给出了粒子的运动状态随时间的变化规律.上节我们已说明,微观粒子的运动状态用波函数描述.波函数ψ是时间和空间的函数:ψ=ψ(x,y,z,t ).所谓微观粒子的运动规律,也就是描述状态的波函数ψ随时间的变化规律,即ψ所满足的方程,它在量子力学中的地位就相当于经典力学中牛顿方程的地位.这样的方程肯定不能从经典物理学导出,因为经典物理学根本没有涉及微观粒子的波粒二象性.波函数满足的方程由薛定谔首先找到,它的一般形式是包含时间和空间变量的微分方程.叫做薛定谔方程,在一维情形下,其一般形式为:),()],(2[),(222t x t x U xm t x t i ψ+∂∂-=ψ∂∂ 式中U (x ,t )为粒子的势函数。
量⼦物理第⼆章薛定谔⽅程第2章薛定谔⽅程·德布洛意关于物质波的概念传到苏黎世后,薛定谔作了⼀个关于物质波的报告,报告后,德拜(P.Debye)评论说:有了波,就应有⼀个波动⽅程。
⼏个⽉后,薛定谔果然提出了⼀个波⽅程,这就是后来在量⼦⼒学中著名的薛定谔⽅程。
·薛定谔⽅程是量⼦⼒学的动⼒学⽅程,象⽜顿⽅程⼀样,不能从更基本的⽅程推导出来;它是否正确,只能由实验检验。
§1 薛定谔⽅程的建⽴(⼀种⽅法)⼀、薛定谔⽅程 1.⼀维薛定谔⽅程 · ⼀维⾃由运动粒⼦⽆势场,不受⼒,动量不变。
· ⼀维⾃由运动粒⼦的波函数(前已讲)由此有· 再利⽤可得此即ψ ? x = ( )P ψi h2ψ ? x 2 P 2h 2= -( ) ψ P 22m E = ? t= i h ( ) ψ (x , t )h 22m - ( ) ψ (x , t ) ?x 22⼀维⾃由运动粒⼦(⽆势场)的薛定谔⽅程·推⼴到若粒⼦在势场U (x , t ) 中运动由有⼀维薛定谔⽅程式中ψ =ψ (x , t )是粒⼦在势场U = U (x , t ) 中运动的波函数·和经典关系相⽐较,只要把P 22mE = +U (x , t ) P 22m E = +U (x , t )再作⽤到波函数ψ(x, t)上,即可得到上述⽅程。
2.三维薛定谔⽅程式由⼀维⽅程推⼴可得三维薛定谔⽅程式·拉普拉斯算符·当 U (r , t ) = 0时,⽅程的解,即三维⾃由运动粒⼦的波函数· 波函数的叠加原理薛定谔⽅程是ψ的线性微分⽅程;若ψ1、ψ2是⽅程的解,则 c 1ψ1 + c 2ψ2也是⽅程的解。
(c 1 、c 2是常数)★ E.Schrodinger & P.A.M.Dirac荣获1933年Nobel Prize (for the discovery of new productive forms of atomic theory)2 x 2 2y 22≡ + + ?2z 2⼆、定态薛定谔⽅程 1.⼀维定态薛定谔⽅程若粒⼦在恒定势场U = U (x ) 中运动(含常数势场U = U 0 )薛定谔⽅程式可⽤分离变量法求解。
第二章薛定谔方程本章介绍:本章将系统介绍波动力学。
波函数统计解释和态叠加原理是量子力学的两个基本假设。
薛定谔方程是波动力学的核心。
在一定的边界条件和初始条件下求解薛定谔方程,可以给出许多能与实验直接比较的结果。
§2.1 波函数的统计解释§2.1.1 波动—粒子两重性矛盾的分析按照德布罗意的观点,和每个粒子相联系的都有一个波。
怎样理解粒子性和波动性之间的联系,这是量子力学首先遇到的根本问题。
2.1.1 波动—粒子两重性矛盾的分析能否认为波是由粒子组成?粒子的单缝和双缝实验表明,如减小入射粒子强度,让粒子近似的一个一个从粒子源射出,实验发现,虽然开始时底片上的感光点是无规则的,但只要时间足够长,感光点足够多,底片上仍然会出现衍射条纹。
如果波是由粒子做成,那末,波的干涉、衍射必然依赖于粒子间的相互作用。
这和上述实验结果相矛盾,实际上,单个粒子也具有波动性的。
能否认为粒子是由波组成?比如说,电子是三维空间的物质波包,波包的大小即电子的大小,波包的速度即电子的速度,但物质波包是色散的,即使原来的物质波包很小,但经过一段时间后,也会扩散到很大的空间去,或者形象地说,随着时间的推移,粒子将越来越“胖”,这与实验相矛盾经典物理对自然界所形成的基本物理图像中有两类物理体系:◆一类是实物粒子◆另一类是相互作用场(波)经典粒子是以同时确定的坐标和动量来描述其运动状态,粒子的运动遵从经典力学规律,在运动过程中具有确定严格的轨道。
粒子的能量,动量在粒子限度的空间小区域集中;当其与其它物理体系作用时,只与粒子所在处附近的粒子相互作用,并遵从能量、动量的单个交换传递过程,其经典物理过程是粒子的碰撞;“定域”是粒子运动的特征。
经典波动则是以场量(振幅、相位等)来描述其运动状态,遵从经典波动方程,波的能量和动量周期性分布于波所传播的空间而不是集中在空间一点,即波的能量、动量是空间广延的。
波与其他物质体系相互作用时,可同时与波所在广延空间内的所有物理体系相互作用,其能量可连续变化,波满足叠加原理,“非定域”是波动性运动的特性。
◆◆在经典物理中,粒子和波各为一类宏观体系的呈现,反映着两类对象,两种物质形态,其运动特点是不相容的,即具有粒子性运动的物质不会具有波动性;反之具有波动性运动的物质不会具有粒子性。
综上所述,微观粒子既不是经典的粒子又不是经典的波,或者说它既是量子概念的粒子又是量子概念的波。
其量子概念中的粒子性表示他们是具有一定的能量、动量和质量等粒子的属性,但不具有确定的运动轨道,运动规律不遵从牛顿定律;其量子概念中的波动性并不是指某个实在物理量在空间的波动,而是指用波函数的模的平方表示在空间某处粒子被发现的概率。
◆现在被物理学家们普遍接受的波函数解释是玻恩提出的统计解释。
他认为,粒子在衍射或干涉实验中所揭示的波动性质,既可以看成是大量粒子在同一实验中的统计结果,也可以认为是单个粒子在多次相同实验中显示的统计结果。
◆玻恩的统计解释:波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波 §2.1.2 波函数统计解释波函数的的特点:1.由于 2|),(|t rψ给出在 t 时刻,粒子在 r处出现的几率密度,因此原则上可由统计平均公式:⎰⎰>=<r d rd r f r fψψψψ*)(*)(求出力学量 )(r f 的平均值><)(r f 。
在这种意义下,波函数),(t rψ描述了微观粒子的运动状态,微观粒子的运动状态叫量子态。
波函数),(t r ψ应该是r的单值、有界、连续函数。
3.不确定性:a.常数因子的不确定性:若C 为常数,则 C ),(t r ψ和),(t rψ描述同一个物理状态。
b.相角的不确定性:由于 ),(t r ψ与 αψi et r ),(的模相同,因此α不定。
4.可归一化:1|),(|2=⎰r d t rψ5、容易将波函数统计解释推广到多粒子体系。
1|),,(|21221=⎰n n r d r d r d t r r rψ 6.描述粒子微观运动的波函数与可以用其他量(如动量)为自变量。
1|),(|2=⎰p d t p C , r d e t r t p C r p i⎰⋅-=),()2(1),(2/3ψπ 薛定谔 薛定谔(S c h r o d i n g ,1897-1961)奥地利人,因发现原子理论的有效的新形式一波动力学与狄拉克(D i r a c ,1902-1984)因创立相对论性的波动方程一狄拉克方程,共同分享了1933年度诺贝尔物理学奖玻恩M.玻恩,(Max Born 1882~1970)德国理论物理学家,量子力学的奠基人之一。
主要成就是创立矩阵力学和对波函数作出统计解释。
1954年因波函数的统计解释荣获诺贝尔物理学奖。
§2.2态叠加原理态叠加原理是量子力学中一个很重要的原理,这一节先作一些初步介绍,随着学习量子力学内容的不断深入,会不断加深对态叠加原理的理解。
态叠加原理:如果 ,,21n ψψψ 是体系可能的状态,则它们的线性叠加所得出的波函数∑==+++=ni i i n n c c c c 12211ψψψψψ也是体系的一个可能状态;当体系处于ψ 态时,出现 i ψ的概率是∑=ni ii cc 122||||,n 可以是有限的,也可以是无限的。
几点讨论:I .测量力学量A 得出的是一些可能值 n a a ,,1 但这些可能值的相对概率,或者说每个可能态的相对权重,是完全确定的。
I I .态叠加原理中所谓的叠加,是波函数的叠加,或者说是概率幅的叠加,而不是概率的叠加。
因而它必然会出现干涉、衍射等现象。
I I I .在量子力学中,对于概率波而言,波的干涉是描述粒子运动状态的概率波本身的干涉,而不是粒子之间的干涉。
I V .一般来说, ψ依赖于时间,是t 的函数,因此态叠加原理不仅对某一时刻成立,而且随时间的变化,态叠加原理仍然成立。
§2.3薛定谔方程➢经典力学中,体系运动状态随时间的变化遵循牛顿力学。
和经典力学类似,我们也应建立一个决定波函数随时间变化规律的方程式。
从物理上,这个方程式必须满足下述条件: I .由于波函数满足态叠加原理,而态叠加原理对任何时间都成立,因此描述波函数随时间变化的方程应该是线性方程。
I I .方程的系数仅含有质量、电荷等内禀量,不应含有和个别粒子运动状态特定性质有关的量,如动量。
I I I .因为波函数的自变量是坐标和时间,因此它必然是关于坐标和时间的偏微分方程。
I V .由于经典力学是量子力学的极限情况,因此这个方程必须满足对应原理,当 取经典极限时,它能过渡到牛顿方程。
V .对于自由粒子,这个方程的解应该是单色平面波的波函数。
➢方程的建立对平面波式/)()(),(Et r p i wt r k i Ae Ae t r -⋅-⋅==ψ分别对坐标和时间求微商后得:ψψE ti =∂∂,ψψ222p =∇-由上两式可以看出能量与动量作用在波函数上的结果与算符 ti ∂∂及∇ i 作用在波函数上的结果相同,即存在对应关系:,ti E ∂∂-→∇→ i p ⏹1926年,薛定谔推广上述规则到一般情况,建立了描述波函数演化规律的薛定谔方程,得到薛定谔方程:),()),(2(),(ˆ),(22t r t r U mt r H t r t i ψψψ+∇-==∂∂ 薛定谔方程式量子力学的基本假设之一,但必须指出,我们并未建立薛定谔方程,因为只知道微分方程的解是不足以建立微分方程的。
B .以上对应关系式(2.3.3)式,只是在直角坐标系中的对应关系,在其他坐标系中不一定成立。
下面我们讨论一下定态情况:若势能),(t r U不显含时间t ,则薛定谔方程可用分离变量法求解,此时可令 :)()(),(t f r t r ϕψ=将上式代入薛定谔方程并用)()(),(t f r t rϕψ=遍除等式两边,可得: i Ef dtdf=, )()()()(222r E r r U r m ϕϕϕ=+∇- 此即定态薛定谔方程。
方程(2.3.5)的解可直接给出为 Et icet f -=)(代入(2.3.4)并将c 吸收入)(rϕ中去,并有归一化条件来确定,有Etie r t r -=)(),(ϕψ,按照德布罗意关系,E 就是体系出于这个波函数所描写的状态时的能量。
由此可见,体系出于上述波函数所描述的状态时,能量具有确定值,这种状态称为定态。
波函数称为定态波函数。
以n E 表示体系的能量算符的第n 个本征值,n ψ是与n E 相应的波函数,则体系的第n 个定态波函数是 t iEnn n er t r-=)(),(ϕψ含时的薛定谔方程的一般解,可以写成这些定态波函数的线性叠加:t iEn n nn ner t r t r-∑∑==)(),(),(ϕψψ§2.4概率流密度与概率流守恒定律⏹本节我们将进一步讨论粒子在一定区域内出现的几率将怎样随时间变化。
⏹设描述粒子状态的波函数是),(t r ψ,在t 时刻、在r点周围单位体积内粒子出现的几率是),(),(*),(t r t r t r wψψ=⏹几率密度随时间的变化率为ψψψψtt t w ∂∂+∂∂=∂∂**由薛定谔方程及其共轭:ψψψU i m i t 122+∇=∂∂, *1*2*2ψψψU i m i t -∇-=∂∂可得:*)*(2*)*(222ψψψψψψψψ∇-∇∇=∇-∇=∂∂m i m i t w 令:*)*(2ψψψψ∇-∇-=mi J称为概率流密度,由(2.4.1)式得:0=⋅∇+∂∂J tw(2.4.2)式就是概率流守恒定律对上式两边同时对任意空间体积V 积分dS J wdV dt ds⎰⎰⎰⎰⎰-=这是概率流守恒定律的积分表示。
此式表明,在空间某体积V 内发现粒子的概率在单位时间内的增量,必定等于在同一时间内通过V 的边界S 流入体积V 的概率。
若以粒子的质量m 乘w 和J ,则有:2|),(|t r m mw w m ψ==是在t 时刻在点r 的质量密度。
-==J m J m *)*(2ψψψψ∇-∇i 是质量流密度,满足:0=⋅∇+∂∂m m J t w 即量子力学中的质量守恒定律。
B.同样,以粒子电荷e 乘w 和J后,得到ew w e =是电荷密度,J e J e =是电流密度,方程0=⋅∇+∂∂e eJ tw 是量子力学中的电荷守恒定律。
§2.5一维方势阱本节将以一维定态为例,求解已知势场的定态薛定谔方程。
了解怎样确定定态的能量E ,从而看出能量量子化是薛定谔方程的自然结果。
§2.5.1一维无限深方势阱已知粒子所处的势场为:{ax a x x U <≥∞=||||0)( 粒子在势阱势能为零,在阱外势能为无穷大,在阱壁上受极大的斥力。