燃烧热-盖斯定律-2018.9.4
- 格式:ppt
- 大小:362.00 KB
- 文档页数:20
第二节燃烧热能源盖斯定律一、燃烧热1.燃烧热定义:,叫做该物质的燃烧热。
注意(1)在101 kPa时,生成稳定的氧化物。
如C完全燃烧应生成,H2燃烧生成,S燃烧生成。
(2)燃烧热通常是由测得的。
(3)可燃物以作为标准进行测量。
(4)计算燃烧热时,热化学方程式常以分数表示。
H2(g)十1/2O2(g)=H2O(l);△H=-285.8kJ/mol已知:热化学方程式:C(s)+O2(g)=CO2(g) △H=-393.5kJ/mol燃烧热与中和热的区别与联系二、能源1.能源是指提供能量的自然资源,它包括化石能源(煤、石油、天然气)、阳光、风力、流水、潮汐以及柴草等。
我国目前使用的能源主要是化石燃料。
2.一级能源指在自然界中以现成形式提供的能源称为一级能源,需依靠其他能源的能量间接制取的能源称为二级能源。
如化石能源、流水、潮汐等为一级能源,而氢气、电能等则为二级能源。
重点提醒(1)在选择燃料时我们可从:物质的燃烧热、燃料的储量、开采、运输、储存的条件、价格、对生态环境的影响等各方面综合考虑。
(2)煤作为燃料在开采时造成地面塌陷,煤的燃烧产生有毒气体和烟尘对环境造成严重污染,同时化石能源不可再生,储量也极其有限。
(3)提高煤的燃烧效率,减少污染的方法:可以将煤气化或液化。
如煤和水蒸气反应生成CO和H2(水煤气),也可以把煤经过处理变成甲醇、乙醇等液体燃烧,从而提高煤的燃烧效率。
(4)未来的新能源主要有:太阳能、燃料电池、风能、氢能、生物能、地热能、海洋能等,新能源的特点是:资源丰富、可以再生、对环境污染少或没有污染等。
三、盖斯定律:1.1840年,盖斯(G.H.Hess,俄国化学家)从大量的实验事实中总结出一条规律:化学反应不管是一步完成还是分几步完成,其是相同的。
也就是说,化学反应的只与反应的和有关,而与具体反应进行的无关。
如果一个反应可以分几步进行,则各分步反应的反应热之和与该反应一步完成时的反应热是的,这就是盖斯定律。
【学案】燃烧热 中和热 盖斯定律考点三 两类重要反应热——燃烧热、中和热1.燃烧热(1)概念:在101 kPa 时,1 mol 纯物质完全燃烧生成稳定的氧化物时所放出的热量,叫做该物质的燃烧热。
燃烧热的单位一般用kJ·mol -1表示。
燃烧热的限定词有恒压(101 kPa 时)、可燃物的物质的量(1 mol)、完全燃烧、稳定的氧化物等,其中的“完全燃烧”,是指物质中下列元素完全转变成对应的氧化物:C→CO 2(g),H→H 2O(l),S→SO 2(g)等。
(2)表示的意义:例如C 的燃烧热为393.5 kJ·mol -1,表示在101 kPa 时,1 mol C 完全燃烧放出393.5 kJ 的热量。
(3)书写热化学方程式:燃烧热是以1 mol 物质完全燃烧所放出的热量来定义的,因此在书写它的热化学方程式时,应以燃烧1 mol 物质为标准来配平其余物质的化学计量数。
例如:C 8H 18(l)+252O 2(g)===8CO 2(g)+9H 2O(l) ΔH =-5 518 kJ·mol -1,即C 8H 18的燃烧热为5 518 kJ·mol -1。
(4)燃烧热的计算:可燃物完全燃烧放出的热量的计算方法为Q 放=n (可燃物)×ΔH式中:Q 放为可燃物燃烧反应放出的热量;n 为可燃物的物质的量;ΔH 为可燃物的燃烧热。
2.中和热(1)概念:在稀溶液中,强酸跟强碱发生中和反应生成1 mol 液态H 2O 时的反应热叫中和热。
(2)注意几个限定词:①稀溶液;②产物是1 mol 液态H 2O ;③用离子方程式可表示为OH -(aq)+H +(aq)===H 2O(l) ΔH =-57.3 kJ·mol -1。
(3)中和热的测定①测定原理ΔH = m 酸+m 碱 ·c · t 终-t 始 nc =4.18 J·g -1·℃-1=4.18×10-3 kJ·g -1·℃-1;n 为生成H 2O 的物质的量。
盖斯定律及其在热化学方程式中的应用一:盖斯定律要点1840年,瑞士化学家盖斯(G 。
H 。
Hess,1802—1850)通过大量实验证明,不管化学反应是一步完成或分几步完成,其反应热是相同的。
换句话说,化学反应的反应热只与反应体系的始态和终态有关,而与反应的途径无关。
这就是盖斯定律。
例如:可以通过两种途径来完成。
如上图表:已知:H 2(g )+21O 2(g )= H 2O (g );△H 1=-241.8kJ/mol H 2O (g )=H 2O (l );△H 2=-44.0kJ/mol根据盖斯定律,则△ H=△H 1+△H 2=-241.8kJ/mol+(-44.0kJ/mol )=-285.8kJ/mol盖斯定律表明反应热效应取决于体系变化的始终态而与过程无关。
因此,热化学方程式之间可以进行代数变换等数学处理。
该定律使用时应注意: 热效应与参与反应的各物质的本性、聚集状态、完成反应的物质数量,反应进行的方式、温度、压力等因素均有关,这就要求涉及的各个反应式必须是严格完整的热化学方程式。
二:盖斯定律在热化学方程式计算中的应用 盖斯定律的应用价值在于可以根据已准确测定的反应热来求知实验难测或根本无法测定的反应热,可以利用已知的反应热计算未知的反应热。
,它在热化学方程式中的主要应用在于求未知反应的反应热,物质蒸发时所需能量的计算 ,不完全燃烧时损失热量的计算,判断热化学方程式是否正确,涉及的反应可能是同素异形体的转变,也可能与物质三态变化有关。
其主要考察方向如下:1.已知一定量的物质参加反应放出的热量,写出其热化学反应方程式。
例1、将0.3mol 的气态高能燃料乙硼烷(B 2H 6)在氧气中燃烧,生成固态三氧化二硼和液态水,放出649.5kJ 热量,该反应的热化学方程式为_____________。
又已知:H 2O (g )=H 2O (l );△H 2=-44.0kJ/mol ,则11.2L (标准状况)乙硼烷完全燃烧生成气态水时放出的热量是_____________kJ 。