考点2 命题及其关系、充分条件与必要条件、简单的逻辑联结词、全称量词与存在量词
- 格式:doc
- 大小:864.00 KB
- 文档页数:6
考点2 命题及其关系、充分条件与必要条件、简单的逻辑联结词、全称量词与存在量词1.(2010·天津高考文科·T5)下列命题中,真命题是( )(A)m R,f x x mx x R ∃∈+∈2使函数()=()是偶函数 (B)m R,f x x mx x R ∃∈+∈2使函数()=()是奇函数 (C)m R,f x x mx x R ∀∈+∈2使函数()=()都是偶函数 (D)m R,f x x mx x R ∀∈+∈2使函数()=()都是奇函数 【命题立意】考查简易逻辑、二次函数的奇偶性。
【思路点拨】根据偶函数的图像关于y 轴对称这一性质进行判断。
【规范解答】选A ,当0m =时函数2()f x x =的图像关于y 轴对称,故选A 。
2.(2010·天津高考理科·T3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( ) (A)若f(x) 是偶函数,则f(-x)是偶函数 (B )若f(x)不是奇函数,则f(-x)不是奇函数 (C )若f(-x)是奇函数,则f(x)是奇函数 (D )若f(-x)不是奇函数,则f(x)不是奇函数 【命题立意】考查命题的四种形式中的否命题的概念。
【思路点拨】原命题“若p 则q ”,否命题为“若p ⌝则q ⌝”。
【规范解答】选B ,明确“是”的否定是“不是”,并对原命题的条件和结论分别进行否定,可得否命题为“若f(x)不是奇函数,则f(-x)不是奇函数”。
3.(2010·辽宁高考文科·T4)已知a >0,函数2()f x ax bx c =++,若x 0满足关于x 的方程2ax+b=0,则下列选项的命题中为假命题的是( )0000(A) R,()() (B) R,()()(C) R,()() (D) R,()()x f x f x x f x f x x f x f x x f x f x ∃∈≤∃∈≥∀∈≤∀∈≥【命题立意】本题考查二次函数的顶点与最值问题,全称命题与特称命题。
命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.考点一 四种命题及其真假判断[典例] (2019·菏泽模拟)有以下命题: ①“若xy =1,则x ,y 互为倒数”的逆命题; ②“面积相等的两个三角形全等”的否命题;③“若m ≤1,则x 2-2x +m =0有实数解”的逆否命题; ④“若A ∩B =B ,则A ⊆B ”的逆否命题. 其中真命题是( ) A .①② B .②③ C .④D .①②③[解析] ①原命题的逆命题为“若x ,y 互为倒数,则xy =1”,是真命题;②原命题的否命题为“面积不相等的两个三角形不全等”,是真命题;③若m ≤1,Δ=4-4m ≥0,所以原命题是真命题,故其逆否命题也是真命题;④由A ∩B =B ,得B ⊆A ,所以原命题是假命题,故其逆否命题也是假命题,故①②③正确.[答案] D [题组训练]1.(2019·长春质监)命题“若x 2<1,则-1<x <1”的逆否命题是( ) A .若x 2≥1,则x ≥1或x ≤-1 B .若-1<x <1,则x 2<1 C .若x >1或x <-1,则x 2>1 D .若x ≥1或x ≤-1,则x 2≥1解析:选D 命题的形式是“若p ,则q ”,由逆否命题的知识,可知其逆否命题是“若非q ,则非p ”的形式,所以“若x 2<1,则-1<x <1”的逆否命题是“若x ≥1或x ≤-1,则x 2≥1”.2.已知集合P =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k +12,k ∈Z ,Q =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k2,k ∈Z ,记原命题:“x ∈P ,则x ∈Q ”,那么,在原命题及其逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .1C .2D .4解析:选C 因为P =⎩⎨⎧⎭⎬⎫x ⎪⎪ x =k +12,k ∈Z =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪x =2k +12,k ∈Z ,Q =⎩⎨⎧⎭⎬⎫x ⎪⎪x =k2,k ∈Z ,所以P Q ,所以原命题“x ∈P ,则x ∈Q ”为真命题,则原命题的逆否命题为真命题.原命题的逆命题“x ∈Q ,则x ∈P ”为假命题, 则原命题的否命题为假命题,所以真命题的个数为2.考点二 充分、必要条件的判断[典例] (1)(2019·湖北八校联考)若a ,b ,c ,d ∈R ,则“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·天津高考)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件(3)已知p :x +y ≠-2,q :x ,y 不都是-1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件[解析] (1)定义法当a =-1,b =0,c =3,d =4时,a +d =b +c ,但此时a ,b ,c ,d 不成等差数列;而当a ,b ,c ,d 依次成等差数列时,由等差数列的性质知a +d =b +c .所以“a +d =b +c ”是“a ,b ,c ,d 依次成等差数列”的必要不充分条件,故选B.(2)集合法由⎪⎪⎪⎪x -12<12,得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪x -12<12”⇒“x 3<1”; 由x 3<1,得x <1, 当x ≤0时,⎪⎪⎪⎪x -12≥12, 即“x 3<1”“⎪⎪⎪⎪x -12<12”. 所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件. (3)等价转化法因为p :x +y ≠-2,q :x ≠-1或y ≠-1, 所以非p :x +y =-2,非q :x =-1且y =-1,因为非q ⇒非p 但非p非q ,所以非q 是非p 的充分不必要条件,即p 是q 的充分不必要条件.[答案] (1)B (2)A (3)A[提醒] 判断条件之间的关系要注意条件之间关系的方向,要注意“A 是B 的充分不必要条件”与“A 的充分不必要条件是B ”的区别,要正确理解“p 的一个充分不必要条件是q ”的含义.[题组训练]1.[集合法]已知x ∈R ,则“x <1”是“x 2<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若x 2<1,则-1<x <1,∵(-∞,1)⊇(-1,1),∴“x <1”是“x 2<1”的必要不充分条件.2.[定义法](2018·南昌调研)已知m ,n 为两个非零向量,则“m·n <0”是“m 与n 的夹角为钝角”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 设m ,n 的夹角为θ,若m ,n 的夹角为钝角,则π2<θ<π,则cos θ<0,则m·n <0成立;当θ=π时,m·n =-|m |·|n |<0成立,但m ,n 的夹角不为钝角.故“m·n <0”是“m 与n 的夹角为钝角”的必要不充分条件.3.[等价转化法]“xy ≠1”是“x ≠1或y ≠1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 设p :xy ≠1,q :x ≠1或y ≠1, 则非p :xy =1,非q :x =1且y =1. 可知非q ⇒非p ,非p非q ,即非q 是非p 的充分不必要条件.故p 是q 的充分不必要条件,即“xy ≠1”是“x ≠1或y ≠1”的充分不必要条件.考点三 根据充分、必要条件求参数的范围[典例] 已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围是________.[解析] 由x 2-8x -20≤0,得-2≤x ≤10,所以P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,所以0≤m ≤3.所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3]. [答案] [0,3][变透练清]1.[变结论]若本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件. 解:若x ∈P 是x ∈S 的充要条件,则P =S , 所以{ 1-m =-2,+m =10,解得{ m =3,m =9,即不存在实数m ,使x ∈P 是x ∈S 的充要条件.2.(变条件)若本例将条件“若x ∈P 是x ∈S 的必要条件”变为“若非P 是非S 的必要不充分条件”,其他条件不变,求实数m 的取值范围.解:由例题知P ={x |-2≤x ≤10}, ∵非P 是非S 的必要不充分条件, ∴S 是P 的必要不充分条件,∴P ⇒S 且S P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧1-m <-2,1+m ≥10. ∴m ≥9,即m 的取值范围是[9,+∞).[课时跟踪检测]1.已知命题p :“正数a 的平方不等于0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定解析:选B 命题p :“正数a 的平方不等于0”可写成“若a 是正数,则它的平方不等于0”,从而q 是p 的否命题.2.命题“若x 2+3x -4=0,则x =4”的逆否命题及其真假性为( ) A .“若x =4,则x 2+3x -4=0”为真命题B.“若x≠4,则x2+3x-4≠0”为真命题C.“若x≠4,则x2+3x-4≠0”为假命题D.“若x=4,则x2+3x-4=0”为假命题解析:选C根据逆否命题的定义可以排除A、D,因为x2+3x-4=0,所以x=-4或1,故原命题为假命题,即逆否命题为假命题.3.原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假解析:选B当z1,z2互为共轭复数时,设z1=a+b i(a,b∈R),则z2=a-b i,则|z1|=|z2|=a2+b2,所以原命题为真,故其逆否命题为真.取z1=1,z2=i,满足|z1|=|z2|,但是z1,z2不互为共轭复数,所以其逆命题为假,故其否命题也为假.4.(2018·北京高考)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选B a,b,c,d是非零实数,若a<0,d<0,b>0,c>0,且ad=bc,则a,b,c,d不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件.5.已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系中,下列说法正确的是()①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③B.②C.②③D.①②③解析:选A本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换所得,故①正确,②错误,③正确.6.(2018·北京高考)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的() A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选C由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2,即a 2+9b 2-6a ·b =9a 2+b 2+6a ·b .因为a ,b 均为单位向量,所以a 2=b 2=1, 所以a ·b =0,能推出a ⊥b .由a ⊥b 得|a -3b |=10,|3a +b |=10, 能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件. 7.如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以B A .于是“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.8.(2019·湘东五校联考)“不等式x 2-x +m >0在R 上恒成立”的一个必要不充分条件是( )A .m >14B .0<m <1C .m >0D .m >1解析:选C 若不等式x 2-x +m >0在R 上恒成立,则Δ=(-1)2-4m <0,解得m >14,因此当不等式x 2-x +m >0在R 上恒成立时,必有m >0,但当m >0时,不一定推出不等式在R 上恒成立,故所求的必要不充分条件可以是m >0.9.在△ABC 中,“A =B ”是“tan A =tan B ”的________条件.解析:由A =B ,得tan A =tan B ,反之,若tan A =tan B ,则A =B +k π,k ∈Z.∵0<A <π,0<B <π,∴A =B ,故“A =B ”是“tan A =tan B ”的充要条件.答案:充要10.在命题“若m >-n ,则m 2>n 2”的逆命题、否命题、逆否命题中,假命题的个数是________.解析:若m =2,n =3,则2>-3,但22<32,所以原命题为假命题,则逆否命题也为假命题,若m =-3,n =-2,则(-3)2>(-2)2,但-3<2,所以逆命题是假命题,则否命题也是假命题.故假命题的个数为3.答案:311.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3. 又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围为[3,8). 答案:[3,8)12.(2019·齐鲁名校调研)给出下列说法:①“若x +y =π2,则sin x =cos y ”的逆命题是假命题;②“在△ABC 中,sin B >sin C 是B >C 的充要条件”是真命题;③“a =1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件;④命题“若x <-1,则x 2-2x -3>0”的否命题为“若x ≥-1,则x 2-2x -3≤0”. 以上说法正确的是________(填序号).解析:对于①,“若x +y =π2,则sin x =cos y ”的逆命题是“若sin x =cos y ,则x +y=π2”,当x =0,y =3π2时,有sin x =cos y 成立,但x +y =3π2,故逆命题为假命题,①正确;对于②,在△ABC 中,由正弦定理得sin B >sin C ⇔b >c ⇔B >C ,②正确;对于③,“a =±1”是“直线x -ay =0与直线x +ay =0互相垂直”的充要条件,故③错误;对于④,根据否命题的定义知④正确.答案:①②④13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p ∨q 真⇔p ,q 至少一个真⇔(非p )∧(非q)假. (2)p ∨q 假⇔p ,q 均假⇔(非p )∧(非q)真. (3)p ∧q 真⇔p ,q 均真⇔(非p )∨(非q)假. (4)p ∧q 假⇔p ,q 至少一个假⇔(非p )∨(非q)真. 考点一 判断含有逻辑联结词命题的真假[典例] (1)(2017·山东高考)已知命题p :∀x >0,ln(x +1)>0;命题q :若a >b ,则a 2>b 2.下列命题为真命题的是( )A .p ∧qB .p ∧非qC .非p ∧qD .非p ∧非q(2)(2019·安徽安庆模拟)设命题p :∃x 0∈(0,+∞),x 0+1x 0>3;命题q :∀x ∈(2,+∞),x 2>2x ,则下列命题为真的是( )A .p ∧(非q )B .(非p )∧qC .p ∧qD .(非p )∨q[解析] (1)当x >0时,x +1>1,因此ln(x +1)>0,即p 为真命题;取a =1,b =-2,这时满足a >b ,显然a 2>b 2不成立,因此q 为假命题.由复合命题的真假性,知B 为真命题.(2)对于命题p ,当x 0=4时,x 0+1x 0=174>3,故命题p 为真命题;对于命题q ,当x =4时,24=42=16,即∃x0∈(2,+∞),使得2x0=x20成立,故命题q为假命题,所以p∧(非q)为真命题,故选A.[答案](1)B(2)A[题组训练]1.(2019·惠州调研)已知命题p,q,则“非p为假命题”是“p∧q是真命题”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B充分性:若非p为假命题,则p为真命题,由于不知道q的真假性,所以推不出p∧q是真命题.必要性:p∧q是真命题,则p,q均为真命题,则非p为假命题.所以“非p为假命题”是“p∧q是真命题”的必要不充分条件.2.已知命题p:“若x2-x>0,则x>1”;命题q:“若x,y∈R,x2+y2=0,则xy=0”.下列命题是真命题的是()A.p∨(非q) B.p∨qC.p∧q D.(非p)∧(非q)解析:选B若x2-x>0,则x>1或x<0,故p是假命题;若x,y∈R,x2+y2=0,则x =0,y=0,xy=0,故q是真命题.则p∨q是真命题.考点二全称命题与特称命题[典例](1)命题∀x∈R,e x-x-1≥0的否定是()A.∀x∈R,e x-x-1≤0B.∀x∈R,e x-x-1≥0C.∃x0∈R,e x0-x0-1≤0D.∃x0∈R,e x0-x0-1<0(2)对命题∃x0>0,x20>2x0,下列说法正确的是()A.真命题,其否定是∃x0≤0,x20≤2x0B.假命题,其否定是∀x>0,x2≤2xC.真命题,其否定是∀x>0,x2≤2xD.真命题,其否定是∀x≤0,x2≤2x[解析](1)改全称量词为存在量词,把不等式中的大于或等于改为小于.故选D.(2)已知命题是真命题,如32=9>8=23,其否定是∀x>0,x2≤2x.故选C.[答案](1)D(2)C[题组训练]1.命题“∀x∈R,∃n∈N*,使得n≤x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n>x2B.∀x∈R,∀n∈N*,使得n>x2C.∃x0∈R,∃n∈N*,使得n>x20D.∃x0∈R,∀n∈N*,使得n>x20解析:选D∀改写为∃,∃改写为∀,n≤x2的否定是n>x2,则该命题的否定形式为“∃x0∈R,∀n∈N*,使得n>x20”.2.已知命题p:∃n∈R,使得f(x)=nxn2+2n是幂函数,且在(0,+∞)上单调递增;命题q:“∃x0∈R,x20+2>3x0”的否定是“∀x∈R,x2+2<3x”.则下列命题为真命题的是()A.p∧q B.(非p)∧qC.p∧(非q) D.(非p)∧(非q)解析:选C当n=1时,f(x)=x3为幂函数,且在(0,+∞)上单调递增,故p是真命题,则非p是假命题;“∃x0∈R,x20+2>3x0”的否定是“∀x∈R,x2+2≤3x”,故q是假命题,非q是真命题.所以p∧q,(非p)∧q,(非p)∧(非q)均为假命题,p∧(非q)为真命题,选C.考点三根据命题的真假求参数的取值范围[典例]已知p:存在x0∈R,mx20+1≤0,q:任意x∈R,x2+mx+1>0.若p或q为假命题,求实数m的取值范围.[解]依题意知p,q均为假命题,当p是假命题时,则mx2+1>0恒成立,则有m≥0;当q是真命题时,则Δ=m2-4<0,-2<m<2.因此由p,q均为假命题得{m≥0,m≤-2或m≥2,即m≥2.所以实数m的取值范围为[2,+∞).[变透练清]1.(变条件)若本例将条件“p或q为假命题”变为“p且q为真命题”,其他条件不变,则实数m的取值范围为________.解析:依题意,当p 是真命题时,有m <0;当q 是真命题时,有-2<m <2,由⎩⎪⎨⎪⎧m <0,-2<m <2,可得-2<m <0. 所以m 的取值范围为(-2,0).答案:(-2,0)2.(变条件)若本例将条件“p 或q 为假命题”变为“p 且q 为假,p 或q 为真”,其他条件不变,则实数m 的取值范围为________.解析:若p 且q 为假,p 或q 为真,则p ,q 一真一假.当p 真q 假时⎩⎪⎨⎪⎧ m <0,m ≥2或m ≤-2,所以m ≤-2; 当p 假q 真时⎩⎪⎨⎪⎧m ≥0,-2<m <2,所以0≤m <2. 所以m 的取值范围为(-∞,-2]∪[0,2).答案:(-∞,-2]∪[0,2)3.(变条件)若本例将条件q 变为:存在x 0∈R ,x 20+mx 0+1<0,其他条件不变,则实数m的取值范围为________.解析:依题意,当q 是真命题时,Δ=m 2-4>0,所以m >2或m <-2.由⎩⎪⎨⎪⎧m ≥0,-2≤m ≤2,得0≤m ≤2, 所以m 的取值范围为[0,2].答案:[0,2][课时跟踪检测]1.(2019·西安摸底)命题“∀x >0,x x -1>0”的否定是( ) A .∃x 0≥0,x 0x 0-1≤0 B .∃x 0>0,0≤x 0≤1 C .∀x >0,x x -1≤0 D .∀x <0,0≤x ≤1解析:选B ∵x x -1>0,∴x <0或x >1,∴x x -1>0的否定是0≤x ≤1, ∴命题的否定是“∃x 0>0,0≤x 0≤1”.2.下列命题中,假命题的是( )A .∀x ∈R,21-x >0 B .∃a 0∈R ,y =xa 0的图象关于y 轴对称C .函数y =x a 的图象经过第四象限D .直线x +y +1=0与圆x 2+y 2=12相切 解析:选C 对于A ,由指数函数的性质可知为真命题;对于B ,当a =2时,其图象关于y 轴对称;对于C ,当x >0时,y >0恒成立,从而图象不过第四象限,故为假命题;对于D ,因为圆心(0,0)到直线x +y +1=0的距离等于12,等于圆的半径,命题成立. 3.(2019·陕西质检)已知命题p :对任意的x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .(非p )∧(非q)C .(非p )∧qD .p ∧(非q)解析:选D 由指数函数的性质知命题p 为真命题.易知x >1是x >2的必要不充分条件,所以命题q 为假命题.由复合命题真值表可知p ∧(非q)为真命题.4.(2018·湘东五校联考)下列说法中正确的是( )A .“a >1,b >1”是“ab >1”成立的充分条件B .命题p :∀x ∈R,2x >0,则非p :∃x 0∈R,2x0<0C .命题“若a >b >0,则1a <1b”的逆命题是真命题 D .“a >b ”是“a 2>b 2”成立的充分不必要条件解析:选A 对于选项A ,由a >1,b >1,易得ab >1,故A 正确.对于选项B ,全称命题的否定是特称命题,所以命题p :∀x ∈R,2x >0的否定是非p :∃x 0∈R,2x 0≤0,故B 错误.对于选项C ,其逆命题:若1a <1b,则a >b >0,可举反例,如a =-1,b =1,显然是假命题,故C 错误.对于选项D ,由“a >b ”并不能推出“a 2>b 2”,如a =1,b =-1,故D 错误.故选A.5.(2019·唐山五校联考)已知命题p :“a >b ”是“2a >2b ”的充要条件;命题q :∃x 0∈R ,|x 0+1|≤x 0,则( )A .(非p )∨q 为真命题B .p ∧(非q)为假命题C .p ∧q 为真命题D .p ∨q 为真命题 解析:选D 由题意可知命题p 为真命题.因为|x +1|≤x 的解集为空集,所以命题q 为假命题,所以p ∨q 为真命题.6.下列说法错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .若命题p :存在x 0∈R ,x 20+x 0+1<0,则非p :对任意x ∈R ,x 2+x +1≥0C .若x ,y ∈R ,则“x =y ”是“xy ≥⎝⎛⎭⎫x +y 22”的充要条件D .已知命题p 和q ,若“p 或q ”为假命题,则命题p 与q 中必一真一假解析:选D 由原命题与逆否命题的关系,知A 正确;由特称命题的否定知B 正确;由xy ≥⎝⎛⎭⎫x +y 22⇔4xy ≥(x +y )2⇔4xy ≥x 2+y 2+2xy ⇔(x -y )2≤0⇔x =y ,知C 正确;对于D ,命题“p 或q ”为假命题,则命题p 与q 均为假命题,所以D 不正确.7.(2019·长沙模拟)已知命题“∀x ∈R ,ax 2+4x +1>0”是假命题,则实数a 的取值范围是( )A .(4,+∞)B .(0,4]C .(-∞,4]D .[0,4)解析:选C 当原命题为真命题时,a >0且Δ<0,所以a >4,故当原命题为假命题时,a ≤4.8.下列命题为假命题的是( )A .存在x >y >0,使得ln x +ln y <0B .“φ=π2”是“函数y =sin(2x +φ)为偶函数”的充分不必要条件 C .∃x 0∈(-∞,0),使3x 0<4x 0成立D .已知两个平面α,β,若两条异面直线m ,n 满足m ⊂α,n ⊂β且m ∥β,n ∥α,则α∥β解析:选C 对于A 选项,令x =1,y =1e,则ln x +ln y =-1<0成立,故排除A.对于B 选项,“φ=π2”是“函数y =sin(2x +φ)为偶函数”的充分不必要条件,正确,故排除B.对于C 选项,根据幂函数y =x α,当α<0时,函数单调递减,故不存在x 0∈(-∞,0),使3x 0<4x 0成立,故C 错误.对于D 选项,已知两个平面α,β,若两条异面直线m ,n 满足m ⊂α,n ⊂β且m ∥β,n ∥α,可过n 作一个平面与平面α相交于直线n ′.由线面平行的性质定理可得n ′∥n ,再由线面平行的判定定理可得n ′∥β,接下来由面面平行的判定定理可得α∥β,故排除D ,选C.9.若命题p 的否定是“∀x ∈(0,+∞),x >x +1”,则命题p 可写为________________________.解析:因为p 是非p 的否定,所以只需将全称量词变为特称量词,再对结论否定即可. 答案:∃x 0∈(0,+∞),x 0≤x 0+110.已知命题p :x 2+4x +3≥0,q :x ∈Z ,且“p ∧q ”与“非q ”同时为假命题,则 x =________.解析:若p 为真,则x ≥-1或x ≤-3,因为“非q ”为假,则q 为真,即x ∈Z ,又因为“p ∧q ”为假,所以p 为假,故-3<x <-1,由题意,得x =-2.答案:-211.已知p :a <0,q :a 2>a ,则非p 是非q 的________条件(填:充分不必要、必要不充分、充要、既不充分也不必要).解析:由题意得非p :a ≥0,非q :a 2≤a ,即0≤a ≤1.因为{a |0≤a ≤1}{a |a ≥0},所以非p 是非q 的必要不充分条件.答案:必要不充分12.已知命题p :a 2≥0(a ∈R),命题q :函数f (x )=x 2-x 在区间[0,+∞)上单调递增,则下列命题:①p ∨q ;②p ∧q ;③(非p )∧(非q);④(非p )∨q.其中为假命题的序号为________.解析:显然命题p 为真命题,非p 为假命题.∵f (x )=x 2-x =⎝⎛⎭⎫x -122-14, ∴函数f (x )在区间⎣⎡⎭⎫12,+∞上单调递增.∴命题q 为假命题,非q 为真命题.∴p ∨q 为真命题,p ∧q 为假命题,(非p )∧(非q)为假命题,(非p )∨q 为假命题. 答案:②③④13.设t ∈R ,已知命题p :函数f (x )=x 2-2tx +1有零点;命题q :∀x ∈[1,+∞), 1x-x ≤4t 2-1.(1)当t =1时,判断命题q 的真假;(2)若p ∨q 为假命题,求t 的取值范围.解:(1)当t =1时,⎝⎛⎭⎫1x -x max =0,1x-x ≤3在[1,+∞)上恒成立,故命题q 为真命题. (2)若p ∨q 为假命题,则p ,q 都是假命题.当p 为假命题时,Δ=(-2t )2-4<0,解得-1<t <1;当q 为真命题时,⎝⎛⎭⎫1x -x max ≤4t 2-1,即4t 2-1≥0, 解得t ≤-12或t ≥12, ∴当q 为假命题时,-12<t <12, ∴t 的取值范围是⎝⎛⎭⎫-12,12.。
第一章集合与常用逻辑用语第02节命题及其关系、逻辑联结词、充分条件与必要条件【知识清单】1.命题及其关系(1)命题的概念在数学中把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.(2)四种命题及相互关系(3)四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;@网(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.2.逻辑联结词(1)用联结词“且”联结命题p和命题q,记作____,读作______”.(2)用联结词“或”联结命题p和命题q,记作_____,读作“____”.(3)对一个命题p全盘否定,就得到一个新命题,记作_____,读作“_____”.(4)命题p且q、p或q、非p的真假判断3.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件.(2)如果p⇒q,q⇒p,则p是q的充要条件.【重点难点突破】考点1四种命题的关系及真假判断【1-1】【北京卷理】能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.+也是偶数”的逆否命题是()【1-2】命题“若,x y都是偶数,则x y+是偶数,则x与y不都是偶数A.若x y+是偶数,则x与y都不是偶数B.若x y+不是偶数,则x与y不都是偶数C.若x y+不是偶数,则x与y都不是偶数D.若x y【领悟技法】1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。
注意:在写其他三种命题时,大前提必须放在前面。
专题02 充分条件与必要条件、全称量词与存在量词一、知识结构思维导图二、学法指导与考点梳理知识点一充分条件与必要条件(1)一般地,“若p,则q”为真命题,是指由p通过推理可以得出q,这时,我们就说,由p可以推出q,记作p⇒q,并且说,p是q的充分条件,q是p的必要条件.(2)几点说明知识点二充要条件(1)如果“若p,则q”和它的逆命题“若q,则p”均是真命题,即既有p⇒q,又有q⇒p,就记作p⇔q,此时,p既是q的充分条件,也是q的必要条件,我们就说p是q的充分必要条件,简称为充要条件.(2)如果p是q的充要条件,那么q也是p的充要条件.概括地说,如果p⇔q,那么p与q互为充要条件.知识点三全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M中任意一个x,有p(x)成立”用符号简记为:∀x∈M,p(x).(3)含有存在量词的命题,叫做特称命题.“存在M中元素x0,使p(x0)成立”用符号简记为:∃x0∈M,p(x0).知识点四含有一个量词的命题的否定一般地,对于含有一个量词的命题的否定,有下面的结论:(1)全称量词命题p:∀x∈M,p(x),它的否定﹁p:∃x∈M,﹁p(x);(2)存在量词命题p:∃x∈M,p(x),它的否定﹁p:∀x∈M,﹁p(x).全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题.【知识拓展】1.充分必要条件判断精髓:小集合推出大集合,小集合是大集合的充分不必要条件,大集合是小集合的必要不充分条件;若两个集合范围一样,就是充要条件的关系;2.若条件p,q以集合的形式出现,即A={x|p(x)},B={x|q(x)},则由A⊆B可得,p是q的充分条件,请写出集合A,B的其他关系对应的条件p,q的关系.①若A B,则p是q的充分不必要条件;②若A⊇B,则p是q的必要条件;③若A B,则p是q的必要不充分条件;④若A=B,则p是q的充要条件;⑤若A⊈B且A⊉B,则p是q的既不充分也不必要条件.三、重难点题型突破重难点1 充分必要条件的判断例1(1).(2019·全国高一课时练习)“x+y=3”是“x=1且y=2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也必要条件【答案】B【解析】当x=0,y=3时,满足x+y=3,但x=1且y=2不成立,即充分性不成立,若x=1且y=2,则x+y=3成立,即必要性成立,即“x +y =3”是“x =1且y =2”的必要不充分条件。
温馨提示:此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,关闭Word 文档返回原板块。
考点2 命题及其关系、充分条件与必要条件、 简单的逻辑联结词、全称量词与存在量词1.(2010·天津高考文科·T5)下列命题中,真命题是( )(A)m R,f x x mx x R ∃∈+∈2使函数()=()是偶函数 (B)m R,f x x mx x R ∃∈+∈2使函数()=()是奇函数 (C)m R,f x x mx x R ∀∈+∈2使函数()=()都是偶函数 (D)m R,f x x mx x R ∀∈+∈2使函数()=()都是奇函数 【命题立意】考查简易逻辑、二次函数的奇偶性.【思路点拨】根据偶函数的图像关于y 轴对称这一性质进行判断.【规范解答】选A.当0m =时,函数2()f x x =的图像关于y 轴对称,故选A.2.(2010·天津高考理科·T3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是( ) (A)若f(x) 是偶函数,则f(-x)是偶函数 (B )若f(x)不是奇函数,则f(-x)不是奇函数 (C )若f(-x)是奇函数,则f(x)是奇函数 (D )若f(-x)不是奇函数,则f(x)不是奇函数 【命题立意】考查命题的四种形式中的否命题的概念.【思路点拨】原命题“若p 则q ”,否命题为“若p ⌝则q ⌝”.【规范解答】选B.明确“是”的否定是“不是”,并对原命题的条件和结论分别进行否定,可得否命题为“若f(x)不是奇函数,则f(-x)不是奇函数”.3.(2010·辽宁高考文科·T4)已知a >0,函数2()f x ax bx c =++,若x 0满足关于x 的方程2ax+b=0,则下列选项的命题中为假命题的是( )0000(A) R,()() (B) R,()()(C) R,()() (D) R,()()x f x f x x f x f x x f x f x x f x f x ∃∈≤∃∈≥∀∈≤∀∈≥【命题立意】本题考查二次函数的顶点与最值问题,全称命题与特称命题.【思路点拨】02bx a =-,由于a>0,所以0()f x 是()f x 的最小值.【规范解答】选C.由x 0满足方程2ax+b=0,可得02b x a =-.∵a>0,∴0()()2bf x f a =-是二次函数()f x 的最小值,可判定D 选项是真命题,C 选项是假命题;存在x= x 0时,0()()f x f x =,可判定A ,B 选项都是真命题,故选C.4.(2010 ·海南宁夏理科·T5)已知命题1p :函数22x xy -=-在R 上为增函数, 2p :函数22x x y -=+在R 上为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是( )(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q【命题立意】本小题主要考查逻辑联结词和判断命题的真假. 【思路点拨】先判断出12,p p 的真假,然后再进行相关的判断,得出相应的结论.【规范解答】选C.因为2x y =为增函数,2x y -=为减函数,易知1p :函数22x xy -=-在R 上为增函数是真命题,2p :函数22x xy -=+在R 上为减函数为假命题.故1q ,4q 为真命题.5.(2010·陕西高考文科·T6)“a >0”是“a>0”的 ( )(A)充分不必要条件 (B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件【命题立意】本题考查充分条件、必要条件等的基本概念,属送分题. 【思路点拨】由“条件”的定义求解即可. 【规范解答】选A. 因为“a >0” ⇒ “a>0”,但是“a>0” ⇒ “a >0或a<0” ,所以“a>0”推不出“a >0”,故“a >0”是“a>0”的充分不必要条件,故选A.6.(2010·广东高考文科·T8)“x >0”成立的( ) (A)充分非必要条件 (B )必要非充分条件 (C)非充分非必要条件 (D )充要条件【命题立意】本题考查充要条件的判断以及不等式的基本性质.【思路点拨】判断由“x >0”.【规范解答】选A . “x >0” ⇒””不能得到“x >0”,故选A .7.(2010·广东高考理科·T5) “14m <”是“一元二次方程20x x m ++=”有实数解的( )(A)充分非必要条件 (B)充分必要条件 (C)必要非充分条件 (D)非充分非必要条件 【命题立意】本题考查充分必要条件,一元二次方程根的判定.【思路点拨】 先求出一元二次方程20x x m ++=”有实数解的条件,再分析与14m <的关系.【规范解答】选A . 由“一元二次方程20x x m ++=”有实数解得:211404m m -≥⇒≤,故选A .8.(2010·福建高考文科·T8)若向量(,3)()a x x R =∈,则“4x =”是“||5a =”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分又不必要条件 【命题立意】本题考查充分必要条件,平面向量长度的坐标运算. 【思路点拨】先判断||5a =的充要条件,然后可得结论. 【规范解答】选A.a 5,5,x 4==∴=±,x 4a 5,a 5∴=⇒==⇒x 4= x=4,所以x 4=是a 5=的充分而不必要条件.9.(2010·北京高考理科·T6)a ,b 为非零向量.“a b ⊥”是“函数f (x )=()()xa b xb a +⋅-为一次函数”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【命题立意】本题考查充分必要条件,向量的数量积、一次函数等知识. 【思路点拨】把()f x 展开,由一次函数的条件可得到a b ⊥且||||a b ≠.【规范解答】选 B.函数222()()f x x a b b a x a b =⋅+--⋅为一次函数,则2200a b b a ⎧⋅=⎪⎨-≠⎪⎩,,即a b ⊥且⇒||||a b ≠,反之不成立,因此“a b ⊥”是“函数()f x =()()xa b xb a +⋅-为一次函数”的必要而不充分条件.【方法技巧】(1)0a b a b ⊥⇔⋅=;(2)“p q ⇒”.p 是q 的充分条件,q 是p 的必要条件. 10.(2010·陕西高考理科·T9)对于数列{n a },“1n na a +>(n=1,2,…)”是“{n a }为递增数列”的( )(A) 必要不充分条件 (B) 充分不必要条件 (C) 必要条件 (D) 既不充分也不必要条件【命题立意】本题考查充分条件、必要条件等的基本概念及数列的基本概念. 【思路点拨】1n n a a +>⇒10n n n a a a +>⇒>⇒{n a }为递增数列;而“{n a }为递增数列”推不出“1n na a +>(n=1,2,…)”.【规范解答】选B .因为1n na a +>,所以0,n a >1n na a +>,即{n a }为递增数列.又“{n a }为递增数列”推不出“1n na a +>(n=1,2,…)”,所以“1n na a +>(n=1,2,…)”是“{n a }为递增数列”的充分不必要条件,故选B.11.(2010·辽宁高考理科·T11)已知a>0,则x 0满足关于x 的方程ax=b 的充要条件是( )(A)220011,22x R ax bx ax bx ∃∈-≥- (B) 220011,22x R ax bx ax bx ∃∈-≤- (C) 220011,22x R ax bx ax bx ∀∈-≥- (D) 220011,22x R ax bx ax bx ∀∈-≤-【命题立意】本题考查充要条件、二次函数的最值,全称命题、特称命题. 【思路点拨】构造二次函数f(x)=21(0)2ax bx a ->,观察对称轴和最值与x 0的关系. 【规范解答】选C.20022000220001() 0,()()2,()()(0),,11,()() ,2211,,()()b bf x ax bx a x f x f a ab x R f x f ab x ax b a x ax R f x f x x R ax bx ax bx x R ax bx ax bx x R f x f x =->=∀∈≥=>=∀∈≥∀∈-≥-∀∈-≥-∀∈≥令()当时取得最小值。
即。
若满足方程即所以有即;反之若,即,.200220001() 0,()()2,()()(0),,11,()() ,22b b f x ax bx a x f x f a a b x R f x f a bx ax b a x a x R f x f x x R ax bx ax bx =->=∀∈≥=>=∀∈≥∀∈-≥-令()当时取得最小值。
即。
若满足方程即所以有即;.圆学子梦想 铸金字品牌 200220002200001() 0,()()2,()()(0),,11,()() ,2211,,()()22()()b b f x ax bx a x f x f a a b x R f x f abx ax b a x ax R f x f x x R ax bx ax bx x R ax bx ax bx x R f x f x x x f x f x =->=∀∈≥=>=∀∈≥∀∈-≥-∀∈-≥-∀∈≥=令()当时取得最小值。
即。
若满足方程即所以有即;反之若,即,即当时取得最小值,而对0022000,11,22bx abx x ax b ax ax b x R ax bx ax bx ====∀∈-≥-而言,当时取得最小值。
所以即满足方程综上,满足方程的充要条件是. 12. (2010·湖南高考文科·T2) 下列命题中的假命题是( )(A ),lg 0x R x ∃∈= (B ),tan 1x R x ∃∈= (C ) 3,0x R x ∀∈> (D ),20x x R ∀∈>【命题立意】本小题以存在性命题和全称命题为载体考查指数不等式、二次不等式、对数不等式和 正切函数的值域.【思路点拨】考查等价化简. 【规范解答】选C.∵lgx=0,∴x=1∈R , ∴A 是真命题.又∵tanx=1时,x=4π∈R,∴B 是真命题. C 显然不对,因为x ≤0时就不成立.对任意x ∈R ,2的x 次幂都大于零, ∴D 是真命题.13.(2010·湖南高考理科·T2)下列命题中的假命题是( ) (A )∀x R ∈,120x -> (B ) ∀*x N ∈,2(1)0x ->(C )∃ x R ∈,lg 1x < (D ) ∃x R ∈,tan 2x =【命题立意】本小题以存在性命题和全称命题为载体考查指数不等式、二次不等式、对数不等式和正切函数的值域.,, , ,圆学子梦想 铸金字品牌 【思路点拨】对各个式子等价化简. 【规范解答】选B.∵120x ->,∴x ∈R ,∴A 是真命题.又∵2(1)0x ->,∴x ∈R 且x ≠1,而1∈N *,∴B是假命题.又lg 1x <,∴0<x<10,∴C 是真命题.又∵y=tanx 的值域为R ,∴D 是真命题.14.(2010·安徽高考文科·T11)命题“存在x R ∈,使得2250x x ++=”的否定是 .【命题立意】本题主要考查特称命题的否定,考查考生的转化能力.【思路点拨】特称命题的否定是全称命题,存在量词“存在” 改为全称量词“任意”,并把结论否定. 【规范解答】“存在” 改为“任意”,“=”改为“≠ ”,即“对任意x R ∈,都有2250x x ++≠”.【答案】“对任意x R ∈,都有2250x x ++≠”15.(2010·安徽高考理科·T11)命题“对任何x ∈R ,243x x -+->”的否定是________.【命题立意】本题主要考查全称命题的否定,考查考生的转化能力.【思路点拨】全称命题的否定是特称命题,全称量词“任何”改为存在量词“存在”,并把结论否定. 【规范解答】“任何” 改为“存在”,“>”改为“≤ ”,即“存在x ∈R ,|2||4|3x x -+-≤”. 【答案】“存在x ∈R ,|2||4|3x x -+-≤”关闭Word 文档返回原板块。