第三讲逻辑联结词与四种命题充要条件
- 格式:docx
- 大小:22.19 KB
- 文档页数:7
逻辑联结词、四种命题、充分条件与必要条件1. 主要内容:命题、真命题、假命题的概念,逻辑连接词、简单命题、复合命题的概念、复合命题的真值表,四种命题、四种命题的关系,反证法、充分条件、必要条件的概念、充分条件的判断。
2. 重点:判断复合命题真假的方法,四种命题的关系,关于充要条件的判断。
3. 难点:逻辑连结词的理解与日常用语的区别,反证法的理解和应用,关于充要条件的判断。
【例题选讲】例1. 分别指出下列复合命题的形式及构造的简单命题。
(1)小李是老师,小赵也是老师。
(2)1是合数或质数。
(3)他是运动员兼教练员。
(4)不仅这些文学作品艺术上有缺点,而且政治上有错误。
解:(1)这个命题是p且q的形式,其中p:小李是老师,q:小赵是老师。
(2)这个命题是p或q的形式,其中p:1是合数,q:1是质数。
(3)这个命题是p且q的形式,其中,p:他是运动员,q:他是教练员。
(4)这个命题是p且q的形式,其中,p:这些文学作品艺术上有缺点,q:这些文学作品政治上有错误。
小结:正确理解逻辑联结词“或”“且”“非”的含义是解题的关键。
应根据组成上述各复合命题的语句中所出现的逻辑联结词,或语句的意义确定复合命题的形式。
例2. 已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根。
若p或q为真,p且q为假,求m的取值范围。
解:若方程4x2+4(m-2)x+1=0无实根,解得:1<m<3。
即q :1<m<3。
因p 或q 为真,所以p 、q 至少有一为真,又p 且q 为假,所以p 、q 至少有一为假,因此,p 、q 两命题应一真一假,即p 为真,q 为假或p 为假,q 为真。
∴或或m m m m m >≤≥⎧⎨⎩≤<<⎧⎨⎩213213解得:或。
m m ≥<≤312小结:由简单命题的真假可根据真值表来判断复合命题的真假。
反过来,由复合命题的真假也应能准确断定构成此复合命 题的简单命题的真假情况,简单命题的真假也应由真值表来判断。
充要条件的逻辑关联词在逻辑学中,存在着一些重要的逻辑关联词,它们用于表达命题之间的逻辑关系。
在命题逻辑中,充要条件是一种非常重要的逻辑关系,我们将在本文中详细讨论充要条件以及与之相关的逻辑关联词。
充要条件是指两个命题之间存在一种必要性和充分性的关系。
也就是说,如果一个命题A是另一个命题B的充分条件,那么只要A成立,B就一定成立;而如果A是B的必要条件,那么只有当B成立时,A才能成立。
在逻辑学中,我们常用到以下几种逻辑关联词来表示充要条件:1.当且仅当:表示两个命题的真值完全一致,其中一个命题成立时另一个命题也成立,两者是相互依存的关系。
用符号"⇔"表示。
例如,命题A当且仅当命题B成立可以表示为A⇔B。
2.只有当:表示只有在某个条件满足时,另一个命题才成立。
用符号"⇒"表示。
例如,命题A只有当命题B成立时才成立可以表示为A⇒B。
3.若...则...:表示如果某个条件成立,那么另一个命题也一定成立。
用符号"→"表示。
例如,若A成立,则B成立可以表示为A→B。
4.必要条件:表示某个条件是实现另一个命题的条件,如果不满足这个条件,那么另一个命题也无法成立。
用符号"⇐"表示。
例如,命题A是命题B的必要条件可以表示为A⇐B。
5.充分条件:表示某个条件可以保证另一个命题的成立,但并不是必要条件,也就是说还有其他条件可以使得另一个命题成立。
用符号"⇒"表示。
例如,命题A是命题B的充分条件可以表示为A⇒B。
接下来,我们将通过一些例子来说明这些逻辑关联词的具体用法。
例1:假设我们要表达"一个数是偶数当且仅当它能被2整除"这个关系。
可以表示为:命题A:这个数是偶数命题B:这个数能被2整除由于偶数除2没有余数,因此A⇒B;而对于任意能被2整除的数来说,它都可以表示为2的倍数,所以B⇒A。
因此,我们可以用"一个数是偶数当且仅当它能被2整除"来表示这个关系。
四种命题的形式、充分条件与必要条件基础概念一、基础知识概述本周主要学习了四种命题的形式,充分条件与必要条件等相关概念,及反证法的思想.充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p和结论q之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.二、重点知识归纳及讲解1、命题的概念:可以判断真假的语句叫做命题.2、简单命题与复合命题:不含逻辑联结词“或”、“且”、“非”的命题叫做简单命题,由简单命题与逻辑联结词构成的命题叫复合命题.3、判断复合命题的真假:(1)“非p”形式复合命题的真假可以用下表表示:p非p真假假真即一个命题的否命题与原命题的真假相反.(2)“p且q”形式复合命题的真假可以用下表表示:p q p且q真真真真假假假真假假假假即当p、q为真时,p且q为真;当p、q中至少有一个为假时,p且q为假.(3)“p或q”形式复合命题的真假可以用下表表示:p q p或q真真真真假真假真真假假假即当p、q中至少有一个为真时,p或q为真;当p、q都为假时,p或q为假.4、原命题:若p则q(p是原命题的条件,q是原命题的结论);逆命题:若q则p(交换原命题的题设和结论);否命题:若非p则非q(同时否定原命题的条件与结论);逆否命题:若非q则非p(交换原命题的题设和结论后同时否定之).四种命题及相互关系用图表表示为:说明:①原命题、否命题、逆命题和逆否命题是相互的.②写原命题的否命题、逆命题和逆否命题的关键是:找出所给原命题的条件p与结论q.5、反证法:欲证“若p则q”为真命题,从否定其结论“非p”出发,经过正确的逻辑推理得出矛盾,从而“非p”为假,即原命题为真,这样的方法叫反证法.证题的步骤:(1)假设命题的结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理论证,得出矛盾;(3)由矛盾判定假设不正确,从而肯定命题的结论正确.说明:反证法是一种间接证明命题的基本方法.在证明一个数学命题时,如果运用直接证明法比较困难或难以证明时,可运用反证法进行证明.反证法的基本思想:通过证明命题的否定是假命题,从而说明原命题是真命题.6、推断符号“⇒”的含义:p⇒”;由p经过推理可以得出q,即如果p成立,那么q一定成立,此时可记作“qp⇒/”.由p经过推理得不出q,即如果p成立,推不出q成立,此时可记作“q7、充分条件与必要条件:p⇒,那么就说:p是q的充分条件;q是p的必要条件.一般地,如果已知q8、充要条件:一般地,如果既有q p ⇒,又有p q ⇒,就记作:q p ⇔.“⇔”叫做等价符号.q p ⇔表示q p ⇒且p q ⇒.这时p 既是q 的充分条件,又是q 的必要条件,则p 是q 的充分必要条件,简称充要条件. 9、充分条件与必要条件的分类:命题按条件和结论的充分性和必要性可分为四类: 若q p ⇒但p q ⇒/,则p 是q 的充分不必要条件; 若p q ⇒但q p ⇒/,则p 是q 的必要不充分条件; 若q p ⇒且p q ⇒,则p 是q 的充要条件;若q p ⇒/且p q ⇒/,则p 是q 的既不充分也不必要条件. 10、从集合角度理解:①q p ⇒,相当于Q P ⊆,即或即:要使Q x ∈成立,只要P x ∈就足够了——有它就行.②p q ⇒,相当于Q P ⊇,即或即:为使Q x ∈成立,必须要使P x ∈——缺它不行.p q ⇒等价于q p ⌝⇒⌝. ③q p ⇔,相当于Q P =,即即:互为充要的两个条件刻划的是同一事物. 三、难点知识剖析本节的难点主要是充要条件的判断,其解决方法主要有:1、要理解“充分条件”“必要条件”的概念,当“若p 则q ”形式的命题为真时,就记作q p ⇒,称p 是q 的充分条件,同时称q 是p 的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假.2、要理解“充要条件”的概念,对于符号“⇔”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“必须并且只需”,“ ,反之也真”等.3、数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质.4、从集合观点看,若B A ⊆,则A 是B 的充分条件,B 是A 的必要条件;若B A =,则A 、B 互为充要条件.5、证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).典型例题例1、(1)“ABC ∆中,若︒=∠90C ,则A ∠、B ∠都是锐角”的否命题为( ) A .ABC ∆中,若︒≠∠90C ,则A ∠、B ∠都不是锐角 B .ABC ∆中,若︒≠∠90C ,则A ∠、B ∠不都是锐角 C .ABC ∆中,若︒≠∠90C ,则A ∠、B ∠都不一定是锐角 D .以上都不对(2)用反证法证明命题:若整数系数一元二次方程)0(02≠=++a c bx ax 有有理根,那么a 、b 、c 中至少有一个是偶数,下列假设中正确的是( )A .假设a 、b 、c 都是偶数B .假设a 、b 、c 都不是偶数C .假设a 、b 、c 至多有一个是偶数D .假设a 、b 、c 至多有两个是偶数(3)有甲、乙、丙、丁四位歌手参加比赛,其中有一位获奖,有人走访了四位歌手,甲说:“我获奖了”;乙说:“甲、丙未获奖”;丙说:“是甲或乙获奖”;丁说:“是乙获奖”.四位歌手的话只有两句是对了,则是_______获奖了. 解析:(1)由命题之间的关系易选B ;(2)“至少有一个”的反面是“一个都没有”,故选B ;(3)设获奖用“1”表示,未获奖用“0”表示,则依次四人的话列表如下:甲 乙 丙 丁 甲:甲获奖 1 0 0 0 乙:甲、丙未获奖 0 1 0 1 丙:甲或乙获奖 1 1 0 0 丁:乙获奖1由表可知,只有第一列符合四位歌手的话只有两句是对的,故是甲获奖了. 答案:(1)B ;(2)B ;(3)甲例2、(上海)(1)222111,,,,,c b a c b a 均为非零实数,不等式01121>++c x b x a 和02222>++c x b x a 的解集分别为集合M 和N ,那么“212121c c b b a a ==”是“N M =”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 (2)已知2|43:|>-x p ,021:2>--x x q ,则p ⌝是q ⌝的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 解析: (1)如果“0212121>==c c b b a a ”,则“N M =”,如果“0212121<==c cb b a a ”,则“N M ≠”,所以“212121c c b b a a ==”⇒/“N M =”,反之若“∅==N M ”,即说明二次不等式的解集为空集,与它们的系数比无任何关系,只要求判别式小于零.所以“N M =”⇒/“212121c c b b a a ==”,因此“212121c cb b a a ==”是“N M =”的既不充分也不必要条件. (2)解法一:∵}322|{:<>x x x p 或,}12|{:-<>x x x q 或.∴}232|{:≤≤⌝x x p ,}21|{:≤≤-⌝x x q . ∴q p ⌝⇒⌝,p q ⌝⇒/⌝.∴p ⌝是q ⌝的充分不必要条件.解法二:由法一知,∴p q ⇒,q p ⇒/.∴q p ⌝⇒⌝,p q ⌝⇒/⌝.即:p ⌝是q ⌝的充分不必要条件. 答案:(1)D (2)A例3、已知命题:p 方程012=++mx x 有两个不相等的实负根.命题:q 方程01)2(442=+-+x m x 无实根;若p 或q 为真,p 且q 为假,求实数m 的取值范围.分析:先分别求满足条件p 和q 的m 的取值范围,再利用复合命题的真假进行转化与讨论. 解析:由命题p 可以得到:⎩⎨⎧>>-=∆042m m ,∴2>m .由命题q 可以得到:016)]2(4[2<--=∆m ,∴31<<m .∵p 或q 为真,p 且q 为假,∴p 、q 有且仅有一个为真. 当p 为真,q 为假时,3312≥⇒⎩⎨⎧≥≤>m m m m 或,当p 为假,q 为真时,21312≤<⇒⎩⎨⎧<<≤m m m ,所以,m 的取值范围为}213|{≤<≥m m m 或. 例4、已知2311:≤--x p ,)0(012:22>≤-+-m m x x q ,若p ⌝是q ⌝的充分而不必要条件,求实数m 的取值范围. 分析:利用等价命题先进行命题的等价转化,搞清命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决. 解析: 由2311≤--x 解得:102≤≤-x ,则}102|{:>-<=⌝x x x A p 或. 又当0>m 时,由01222≤-+-m x x 得:m x m +≤≤-11,则}0,11|{:>+>-<=⌝m m x m x x B q 或. ∵p ⌝是q ⌝的充分非必要条件,∴B A ⊆,结合数轴应有⎪⎩⎪⎨⎧≤+-≥->101210m m m ,解得:30≤<m 为所求.例5、若0>p ,0>q ,233=+q p .试用反证法证明:2≤+q p . 分析:此题直接由条件推证2≤+q p 是较难的,由此用反证法证之. 证明:假设2>+q p ,∵0>p ,0>q .∴833)(32233>+++=+q pq q p p q p . 又∵233=+q p .∴代入上式得:6)(3>+q p pq ,即:)1(2)( >+q p pq .又由233=+q p ,即2))((22=+-+q pq p q p 代入)1(得:))(()(22q pq p q p q p pq +-+>+. ∵0>p ,0>q .∴0>+q p .∴22q pq p pq +->,但这与0)(2≥-q p 矛盾, ∴假设2>+q p 不成立,故2≤+q p . 说明:反证法:是一种证明题目的间接方法,在有些题目的证明中用反证法非常简洁,但并不是每一题用反证都恰倒好处.那么,对于哪些题目适合用反证法呢?1)从这些条件推出所知的也很少或无法用已知条件进行直接证明的;2)当问题中能用来作为推理依据的公理、定理很少,无法直接证明或证明无从下手的;3)结论以否定的形式出现,无法引用定理来证明否定形式的结论;4)对要证明的命题,已知它的逆命题是正确的;5)要求证明的命题适合某种条件的结论唯一存在.对反证法的掌握,还有待于随着学习的深入,逐步提高.基础练习一、选择题1、有以下5个命题:(1)没有男生爱踢足球;(2)所有男生都不爱踢足球;(3)至少有一个男生不爱踢足球;(4)所有女生都爱踢足球;(5)所有男生都爱踢足球.其中命题(5)的否命题是( )A .(1)B .(2)C .(3)D .(4)2、某个命题与正整数n 有关,如果当)(*∈=N k k n 时,该命题成立,那么可得当1+=k n 时命题也成立,现已知当5=n 时,该命题不成立,则可推出( ) A .当6=n 时,该命题不成立 B .当6=n 时,该命题成立 C .当4=n 时,该命题不成立 D .当4=n 时,该命题成立3、设集合}06|{2=-+=x x x A ,}01|{=+=mx x B ,则B 是A 的真子集的一个充分不必要的条件是( ) A .}3,21{ -∈m B .21-=m C .}1,21,0{ -∈m D .}2,0{ ∈m 4、(湖北)有限集合S 中元素个数记作)(S card ,设A 、B 都为有限集合,给出下列命题:①∅=B A 的充要条件是)()()(B card A card B A card += ;②B A ⊆的必要条件是)()(B card A card ≤;③B A ⊂/的充分条件是)()(B card A card ≤;④B A =的充要条件是)()(B card A card =.其中真命题的序号是( )A .③④B .①②C .①④D .②③ 二、填空题5、有下列命题:①面积相等的三角形是全等三角形;②“若0=xy ,则0||||=+y x ”的逆命题;③“若b a >,则c b c a +>+”的否命题;④“矩形的对角线互相垂直”的逆否命题.其中真命题共有_________个.6、在原命题及其逆命题、否命题、逆否命题这四个命题中,真命题的个数可以是_________.7、命题}3,2,1{}2{: ∈p ,}3,2,1{}2{: ⊆q ,则对复合命题的下述判断:①p 或q 为真;②p 或q 为假;③p 且q 为真;④p 且q 为假;⑤非p 为真;⑥非q 为假.其中判断正确的序号是_________(填上你认为正确的所有序号).8、如果x 、y 是实数,那么0>xy 是||||||y x y x +=+的________条件.9、若三条抛物线3442+-+=a ax x y ,22)1(a x a x y +-+=,a ax x y 222-+=中至少有一条与x 轴有公共点,则a 的取值范围是________.10、设集合},|),{(R y R x y x U ∈∈= ,}02|),{(>+-=m y x y x A ,}0|),{(≤-+=n y x y x B ,那么点B C A P U ∈)3,2( 的充要条件是________.三、解答题: 11、已知2311:≤--x p ,)0(012:22>≤-+-m m x x q ,若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.12、02:<<-m p ,10<<n ;:q 关于x 的方程02=++n mx x 有2个小于1的正根,试分析p 是q 的什么条件.13、已知关于x 的实系数二次方程02=++b ax x 有两个实数根α、β,证明:2||<α且2||<β是b a +<4||2且4||<b 的充要条件.。
§1.2 逻辑联结词与四个命题(一)【复习目标】1.了解命题、复合命题等概念;2.理解逻辑联结词“或”、“且”、“非”的含义,会根据《真值表》判断复合命题的真假;3.掌握四个命题及其相互关系,理解“否命题”与“命题的否定”的不同含义。
【重点难点】掌握四个命题及其相互关系,理解“否命题”与“命题的否定”的不同含义【知识回顾】1、命题的定义:。
2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做;不含有逻辑联结词的命题是;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是。
构成复合命题的形式:p或q(记作“” );p且q(记作“” );非p(记作“” ) 。
3、“或”、“且”、“非”的真值判断(1)“非p”形式复合命题的真假与P的真假;(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.4、常用正面词语的否定如下表:原命题:若P则q;逆命题:;否命题:;逆否命题:。
(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.6、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题 逆否命题)原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互①、原命题为真,它的逆命题不一定为真。
②、原命题为真,它的否命题不一定为真。
③、原命题为真,它的逆否命题一定为真。
7、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。
若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p ⇔q.【课前预习】1. 下列语句是否命题?如果是,判断真假:(1)上课! ; (2)22x + ; (4)对顶角难道不相等吗? ;(42. 有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数;③梯形不是矩形;④方程21x =的解1x =±。
逻辑联结词、四种命题、充要条件例1. 分别写出由下列各组命题构成的“p 或q ”,“p 且q ”,“非p ”形式的复合命题,并判断其真假:(1)p :3是9的约数,q :3是18的约数;(2)p :矩形的对角线相等,q :矩形的对角线互相垂直.解 (1)p 或q :3是9的约数或18的约数.此为真命题;p 且q :3是9的约数且是18的约数.此为真命题;非p :3不是9的约数.此为假命题.(2)p 或q :矩形的对角线相等或互相垂直.此为真命题;p 且q :矩形的对角线相等且互相垂直.此为假命题;非p :矩形的对角线不相等.此为假命题.点评 由p ,q 的真假,判断“p 或q ”的真值时,可简称为“有真即真”;判断“p 且q ”的真值时,可简称为“有假则假”.例2. 已知命题p :方程012=++mx x 有两个不等的负实根, 命题q :方程01)2(442=+-+x m x 无实根.若p 或q 为真,p 且q 为假,求实数m 的取值范围.分析 先分别求满足命题p 和q 的m 的取值范围,再利用复合命题的真假进行转化与讨论.解 由已知p ,q 中有且仅有一为真,一为假.⎪⎩⎪⎨⎧>=⋅>⇒<-=+>∆01200:2121x x m m x x p . 310:<<⇒<∆m q .(1)若p 假q 真,则21213m m m ≤⎧⇒<≤⎨<<⎩; (2)若p 真q 假,则2313m m m m >⎧⇒≥⎨≤≥⎩或. 综上所述:点评 本题在利用复合命题的真假条件时,实质上涉及到化归思想、分类讨论思想和集合的“交”、“并”、“补”运算.例3. (1)设p :;:A B A q = A B ,则p 是q 的 条件;q 是p 的 条件.(2)设A 是C 的充分条件,B 是C 的充分条件,D 是C 的必要条件,D 是B 的充分条件,那么D 是C 的 条件,A 是B 的_______________条件.分析 弄清概念、理清关系后再加以判断.(1)必要非充分;充分非必要.(2) 根据右边的示意图,易知D 是C 的充要条件;A 是B 的充分条件. 点评 对于相关因素较复杂的充要性判断问题,有时画出并利用“关系图”,可以更为形象、直观、简便地加以判断.变题 设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要不充分条件,那么甲是丁的__________条件. 提示 由已知得甲⇒乙⇔丙⇒丁,且乙⇒甲,丁⇒丙,易知答案为:充分不必要.例4. 已知p :2311≤--x ; q :)0(01222>≤-+-m m x x ,若p ⌝是q ⌝的充分而不必要条件,求实数m 的取值范围.分析 先通过解不等式将p 、q 具体化,然后写出p ⌝和q ⌝,再根据⎩⎨⎧⌝⇒⌝⌝⇒⌝p q q p 进行推理分析,求出m 的范围.≠⊂解 由2311≤--x 解得:102≤≤-x ,则p ⌝:{}102>-<=x x x A 或. 又当m>0时,由22210x x m -+-≤得m x m +≤≤-11,则q ⌝:{}0,11>+>-<=m m x m x x B 或. p ⌝是q ⌝的充分非必要条件,∴A ⊂≠B ,结合数轴应有0,12,110.m m m >⎧⎪-≥-⎨⎪+≤⎩解得 03m <≤为所求.点评 (1)应注意m>0的条件及区间端点值能否取到;(2)本题亦可先化为等价命题:q 是p 的充分而非必要条件,然后再分析、列式、转化.例5.若p>0, q>0,p 3+q 3=2.试用反证法证明p+q ≤2解:法一:反设p+q>2,(p+q)3=p 3+q 3+3pq(p+q)>8, 3pq(p+q)>6, pq(p+q)>2, p 3+q 3=(p+q)(p 2-pq+q 2)=2, pq(p+q)> (p+q) (p 2-pq+q 2), pq>(p 2-pq+q 2),(p-q)2<0,矛盾。
高一数学逻辑联结词与四种命题通用版【本讲主要内容】逻辑联结词与四种命题含有“或”、“且”、“非”复合命题的概念及其构成形式;四种命题的关系,充分、必要条件。
【知识掌握】【知识点精析】1、命题:可以判断真假的语句叫做命题。
2、逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词。
3、简单命题和复合命题:不含逻辑联结词的命题叫做简单命题。
简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。
由简单命题和逻辑联结词构成的命题叫做复合命题。
4、真值表:非或且真真假真真真假真假假真真真假假假假假为了正确判断复合命题的真假,首先应该确定复合命题的形式,然后指出其中简单命题的真假,再根据真值表判断这个复合命题的真假。
5、四种命题的形式:如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。
一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。
把其中一个命题叫做原命题,另一个命题叫做原命题的否命题。
一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。
把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题。
原命题:若则;逆命题:若则;否命题:若则;逆否命题:若则。
一个命题的真假与其他三个命题的真假有如下关系:①原命题为真,它的逆命题不一定为真;②原命题为真,它的否命题不一定为真;③原命题为真,它的逆否命题一定为真;④原命题的逆命题为真,原命题的否命题一定为真。
6、一般地,如果已知,那么我们就说是成立的充分条件;q是p成立的必要条件;如果既有,又有q p 那么我们就说是成立的充分必要条件。
【解题方法指导】例1. “已知、、、是实数,若,,则。
”写出上述命题的逆命题、否命题、逆否命题,并分别判断它们的真假。
点拨:“已知,,,是实数”是大前提,写四种命题时应该保留。
高中数学知识点总结:常用逻辑用语
高中学生在学习中或多或少有一些困惑,的编辑为大家总结了高中数学知识点总结:常用逻辑用语,各位考生可以参考。
常用逻辑用语:
1、四种命题:
⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p 则q;⑷逆否命题:若 q则 p
注:1、原命题与逆否命题等价;逆命题与否命题等价。
判断命题真假时注意转化。
2、注意命题的否定与否命题的区别:命题否定形式是 ;否命题是 .命题或的否定是且且的否定是或 .
3、逻辑联结词:
⑴且(and) :命题形式 p q; p q p q p q p
⑵或(or):命题形式 p q; 真真真真假
⑶非(not):命题形式 p . 真假假真假
假真假真真
假假假假真
或命题的真假特点是一真即真,要假全假
且命题的真假特点是一假即假,要真全真
非命题的真假特点是一真一假
4、充要条件
由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
5、全称命题与特称命题:
短语所有在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。
含有全体量词的命题,叫做全称命题。
短语有一个或有些或至少有一个在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。
全称命题p: ; 全称命题p的否定 p:。
特称命题p: ; 特称命题p的否定 p:
以上就是高中数学知识点总结:常用逻辑用语的全部内容,更多考试资讯请继续关注!。
§5 逻辑联结词和四种命题【知识要点】一、逻辑联结词1.命题:可以判断真假的语句叫做命题.2.逻辑联结词:“或”、“且”、“非”叫做逻辑联结词.3.简单命题:不含逻辑联结词的命题叫做简单命题.常用小写拉丁字母p、q等表示.4.复合命题:由简单命题和逻辑联结词构成的命题叫做复合命题.分或命题(p或q)、与命题(p且q)和非命题(非p).5.复合命题真假的判断方法(1)非p形式:当p为真时,非p为假;当p为假时,非p为真. 记忆方法:非p和p的真假相反.(2)p且q形式:当q、q都为真时,p且q为真;当p、q中至少有一为假时,p且q为假.记忆方法:一假必假.(3)p或q形式:当p、q中至少有一个为真时,p或q为真;当p、q 都为假时,p或q为假.记忆方法:一真必真.二、四种命题1.若用p和q分别表示原命题的条件和结论,用¬p 和¬q表示p和q 的否定,则四种命题的形式可写为:原命题:若p,则q.即qp⇒.逆命题:若q,则p.即pq⇒.否命题:若¬p,则¬q.即¬p⇒¬q.逆否命题:若¬q,则¬p.即¬p⇒¬q.2.四种命题的关系是:互逆3.四种命题的真假有下列结论:(1)原命题为真,其逆命题不一定为真;(2)原命题为真,其否命题不一定为真;(3)原命题为真,其逆否命题一定为真;(4)逆命题为真,否命题一定为真.三、反证法1.定义:因为命题“p”与它的否定“非p”的真假相反,所以要证一个命题为真,只要证它的否定为假即可,这种证明命题的否定为假,进而证明命题为真的证明方法叫做反证法.2.证题步骤:反设→归谬→下结论.3 .适用范围:(1)用直接证法较困难的命题;(2)待证命题的结论以否定形式出现或涉及“至多”、“至少”、“唯一”等词;(3)某些定理的逆定理或某些存在性问题的证明等.【考试要求】1.了解命题的概念和命题的构成;2.理解逻辑联结词“或”、“且”、“非”的含义;3.理解四种命题及其相互关系;4.能用反证法证明较简单的问题.【课前训练题】一、选择题1.下列命题中是“p 或q “形式的为( ) A.25> B.2是4和6的公约数C.{}0≠φD.B A ⊆2.与命题“若p 则q ”的逆否命题的否命题同真假的命题为( )A.若p 则qB.若q 则pC.若¬p ,则¬qD. 若¬q ,则¬p3.如果命题“p 或q ”是真命题,“p 且q”是假命题.那么( )A.命题p 和命题q 都是假命题B.命题p 和命题q 都是真命题C.命题p 和命题“非q ”真值不同D.命题q 和命题p 的真值不同4.对于命题q :“若a<3,则a>1”,则p 和它的逆命题、否命题、逆否命题中真命题的个数为( )A.0 B.1 C.2 D.3二、填空题5.命题“若实数y x ,满足1222+++x y x=0,则1-=x 且0=y ”的否命题为6 .复合命题“矩形的对角线垂直平分”的形 式为7.命题“若0=ab ,则a 、b 中至少有一个为零”的逆否命题为【例题分析】例1下列各组命题中,满足“p 或q”为真,“p 且q ”为假,“非p ”为真的是( )A.p:Φ∈Φ=0:;0qB:.sin :;,2cos 2cos ,:在第一象限是增函数则若中在x y q B AB A ABC p ===∆ C.),(2:R b a ab b a p ∈≥+:q 不等式x x >的解集为()0,∞-D.p:圆()1)2(122=-+-y x 的面积被直线1=x 平分;q:椭圆13422=+y x 的一条准线方程是x=4例2 以下列命题为原命题,分别写出它们的逆命题、否命题和逆否命题.(1) 垂直于平面α内无数条直线的直线l 垂直于平面α;(2) 设d c b a ,,,是实数,若d c b a ==,,则d b c a +=+.例3 已知p :012=++mx x 有两个不等的负根,q :01)2(442=+-+x m x 无实根.若p 或q 为真,p 且q 为假,求m 的取值范围.例4大小不等的三个圆两两相外切,半径成等差数列,以各圆心为顶点的三角形的三个内角能否组成等差数列?为什么?【小结归纳】1.对于几个复合命题真假同时发生的问题,应根据复合命题真值表先对每个复合命题进行判断,再综合考虑.2.当一个命题的真假判断出现困难时,通常转化为判断它的逆否命题的真假.这是因为原命题与它的逆否命题是等价的.反证法的实质就是证明“原命题的逆否命题成立”.3.一个命题(若p则q)的否定与它的否命题是两个不同的概念,前者是“若p则¬q”,后者是“若¬p则¬q”.4.用反证法证明问题时,准确地作出反设是很重要的,下表是一些常见结论的否定形式:【巩固训练题】一、 选择题1.已知全集,,U A R U ⊆=如果命题p:B A ∈3,则命题“非p”是( )A. 非p:A ∉3B. 非p:B C U ∈3C. 非p:B A ∉3D. 非p:)()(3B C A C U U ∈2.给出以下四个命题(1)若0232=+-x x ,则21==x x 或(2)若0)3)(2(,32≤--<≤-x x x 则(3)若0==y x ,则022=+y x(4)若x 、y *∈N ,y x +是奇数,则x 、y 中一个是奇数,一个是偶数. 则( )A.(1)的逆命题真B.(2)的否命题真C.(3)的逆否命题假D.(4)的逆命题假3.与命题“若M m ∈,则M n ∉”等价的命题是( )A. 若M m ∉,则M n ∉B.若Mm∈n∉,则MC.若Mm∉,则Mn∈D.若Mm∉n∈,则M4.若p、q是两个简单命题,且“p或q”的否定是真命题,则必有()A.p真q真B.p假q真C.p真q假D.p假q假5.下列四个命题中是真命题的是()A.ΦA ,则Φ=BB=A或Φ=B.两条对角线相等的四边形是正方形C.U=或A=则为全集),(=UBBAUUE.如果一个角的两边分别垂直于另一个角的两边,那么这两个角互补.二、填空题6.在空间中,(1)若四点不共面,则这四点中任何三点都不共线;(2)若两条直线没有公共点,则这两条直线是异面直线.这两个命题中逆命题为真命题的是7.命题“若ab=0,则a、b中至少有一个为零”的逆否命题是8.已知命题p:不等式m-+1的解集为R,命题q:xx>x(--=5()2xmf)是减函数,若“p或q”为真命题,“p且q”为假命题,则实数m的取值范围是三、解答题9.写出下列命题的非命题,并判断它们的真假.(1) p :对任意实数x ,都有0122≥+-x x (2)q :存在一个实数x ,使092=-x10.设b a ,是两个实数,{,),(n x y x A == }Z n b na y ∈+=,,{,),(m x y x B == }Z m m y ∈+=,1532,{+=2),(x y x C }1442≤y 是平面xOy 内的点的集合.求证:不存在b a ,使得Φ≠B A ,且点C b a ∈),(同时成立.。
四种命题与充要条件 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】常用逻辑用语与充要条件【高考考情解读】 1.本讲在高考中主要考查集合的运算、充要条件的判定、含有一个量词的命题的真假判断与否定,常与函数、不等式、三角函数、立体几何、解析几何、数列等知识综合在一起考查.2.试题以选择题、填空题方式呈现,考查的基础知识和基本技能,题目难度中等偏下.1.命题的定义用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及其关系(1)原命题为“若p则q”,则它的逆命题为若q则p;否命题为若┐p则┐q;逆否命题为若┐q则┐p.(2)原命题与它的逆否命题等价;逆命题与它的否命题等价.四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理,即,可以转化为判断它的逆否命题的真假.命题真假判断的方法:(1)对于一些简单命题,若判断其为真命题需推理证明.若判断其为假命题只需举出一个反例.(2)对于复合命题的真假判断应利用真值表.(3)也可以利用“互为逆否命题”的等价性,判断其逆否命题的真假.3.充分条件与必要条件的定义(1)若pq且q p,则p是q的充分非必要条件.(2)若qp且p q,则p是q的必要非充分条件.(3)若pq且qp,则p是q的充要条件.(4)若p q且q p,则p是q的非充分非必要条件.设集合A={x|x满足条件p},B={x|x满足条件q},则有(1)若AB,则p是q的充分条件,若A⊇B,则p是q的充分不必要条件;(2)若BA,则p是q的必要条件,若B⊇A,则p是q的必要不充分条件;(3)若A=B,则p是q的充要条件;(4)若AB,且BA,则p是q的既不充分也不必要条件.2.充分、必要条件的判定方法(1)定义法,直接判断若p则q、若q则p的真假.(2)传递法.(3)集合法:若p以集合A的形式出现,q以集合B的形式出现,即A={x|p(x)},B={x|q(x)},则①若AB,则p是q的充分条件;②若BA,则p是q的必要条件;③若A=B,则p是q的充要条件.(4)等价命题法:利用A?B与┐B?┐A,B?A与┐A?┐B,A?B与┐B?┐A的等价关系,对于条件或结论是否定式的命题,一般运用等价法,利用原命题和逆否命题是等价的这个结论,有时可以准确快捷地得出结果,是反证法的理论基础.1.简单的逻辑联结词(1)命题中的“且”、“或”、“非”叫作逻辑联结词.(2)简单复合命题的真值表:2.(1)常见的全称量词有“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定:非p且非q;p且q的否定:非p或非q.注:1.逻辑联结词“或”的含义逻辑联结词中的“或”的含义,与并集概念中的“或”的含义相同.如“x∈A或x∈B”,是指:x∈A且xB;xA且x∈B;x∈A且x∈B三种情况.再如“p真或q真”是指:p真且q假;p假且q真;p真且q真三种情况.2.命题的否定与否命题“否命题”是对原命题“若p ,则q ”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p ”,只是否定命题p 的结论. 命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系. 3.含一个量词的命题的否定全称命题的否定是特称命题,特称命题的否定是全称命题.1.(2013·皖南八校)命题“若一个数是负数,则它的平方是正数”的逆命题是( ) A .“若一个数是负数,则它的平方不是正数” B .“若一个数的平方是正数,则它是负数” C .“若一个数不是负数,则它的平方不是正数” D .“若一个数的平方不是正数,则它不是负数”解析 依题意得原命题的逆命题是:若一个数的平方是正数,则它是负数.选B.2.(2012·湖北)命题“存在一个无理数,它的平方是有理数”的否定是( ) A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数 C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 答案 B解析这是一个特称命题,特称命题的否定不仅仅要否定结论而且要将相应的存在量词“存在一个”改为全称量词“任意一个”,故选B 。
2008届高三数学复习教案 3. 逻辑联结词与四种命题一、基础知识 (一)逻辑联结词1.命题:可以判断真假的语句叫做命题 2.逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词.或:两个简单命题至少一个成立 且:两个简单命题都成立, 非:对一个命题的否定 3.简单命题与复合命题:不含逻辑联结词的命题叫做简单命题;由简单命题与逻辑联结词构成的命题叫做复合命题.4.表示形式:用小写的拉丁字母p 、q 、r 、s …来表示简单的命题,复合命题的构成形式有三类:“p 或q ”、“p 且q ”、“非p ”5.(二)四种命题1.一般地,用p 和q 分别表示原命题的条件和结论,用┐p 和┐q 分别表示p 和q 的否定。
于是四种命题的形式为:原命题:若p 则q (q p ⇒) 逆命题:若q 则p )(p q ⇒ 否命题:若┐p 则┐q )(q p ⌝⇒⌝ 逆否命题:若┐q 则┐p )(p q ⌝⇒⌝ 2.四种命题的关系:3.一个命题的真假与其它三个命题的真假有如下四条关系: (1)原命题为真,它的逆命题不一定为真. (2)原命题为真,它的否命题不一定为真. (3)原命题为真,它的逆否命题一定为真. (4)逆命题为真,否命题一定为真. (三)几点说明互 逆 互 为 为 否逆逆 互 互 互 逆1.逻辑联结词“或”的理解是难点,“或”有三层含义:以“P 或q ”为例:一是p 成立但q 不成立,二是p 不成立但q 成立,三是p 成立且q 成立, 2.对命题的否定只是否定命题的结论,而否命题既否定题设又否定结论 3.真值表 P 或q :“一真为真”, P 且q :“一假为假”4.互为逆否命题的两个命题等价,为命题真假判定提供一个策略. 二、举例选讲例1.已知复合命题形式,指出构成它的简单命题, (1)等腰三角形顶角的角平分线垂直平分底边,(2)垂直于弦的直径平分这条弦且平分弦所对的两条弧, (3)34≥(4)平行四边形不是梯形 解:(1)P 且q 形式,其中p :等腰三角形顶角的角平分线垂直底边, q :等腰三角形顶角的角平分线平分底边;(2)P 且q 形式,其中p :垂直于弦的直径平分这条弦, q :垂直于弦的直径平分这条弦所对的两条弧(3)P 或q 形式,其中p :4>3,q :4=3 (4)非p 形式:其中p :平行四边形是梯形.练习1分别写出下列各组命题构成的“p 或q ”、“p 且q ”、“非p ”形式的复合命题 (1)p :5是有理数,q :5是无理数(2)p :方程x 2+2x-3=0的两根符号不同,q : 方程x 2+2x-3=0的两根绝对值不同. 例2.(四种命题之间的关系)写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假.(1) 已知c b a ,,为实数,若0<ac ,则02=++c bx ax 有两个不相等的实根; (2)若ab=0,则a=0或b=0,(3)若x 2+y 2=0,则x 、y 全为零.解:(1)逆命题:若02=++c bx ax 有两个不相等的实根,则0<ac ,(假)否命题:若0≥ac ,则02=++c bx ax 没有两个不相等的实根,(假) 逆否命题:若02=++c bx ax 没有两个不相等的实根,则0≥ac ,(真)(2)逆命题:若a=0或b=0,则ab=0,(真)否命题:若ab ≠0,则a ≠0且 b ≠0,(真) 逆否命题:若a ≠0且 b ≠0,则ab ≠0,(真)(3)逆命题:若x 、y 全为零,则x 2+y 2=0(真)否命题:若x 2+y 2≠0,则x 、y 不全为零(真) 逆否命题:若x 、y 不全为零,则x 2+y 2≠0(真)练习2判断下列命题的真假,并写出它的逆命题、否命题、逆否命题,同时判断这些命题的真假(1)若ab ≤0,则a ≤0或b ≤0, (2)若a>b ,则ac 2>bc 2(2) 若在二次函数y=ax 2+bx+c 中b 2-4ac<0,则该二次函数图象与x 轴有公共点. 例3.已知命题01:2=++mx x p 有两个不等的负根;命题01)2(44:2=+-+x m x q 无实根. 若命题p 与命题q 有且只有一个为真,求实数m 的取值范围.解:012=++mx x Θ有两个不等的负根,.2,042>⎩⎨⎧<->-∴m m m 得01)2(442=+-+x m x Θ无实根,,016)2(162<--∴m 得.31<<m 有且只有一个为真,若p 真q 假,得3≥m ………………2分 若p 假q 真,得21≤<m综合上述得21,3≤<≥m m 或练习3(变式3)已知下列三个方程:x 2+4ax-4a+3=0 x 2+(a-1)x+a 2=0 x 2+2ax-2a=0至少有一个方程有实根,求实数a 的取值范围. 三、小结1.逻辑联结词“或”、“且”、“非”的意义与日常生活中的“或”、“且”、“非”的意义不尽相同.要注意集合中的“并”、“交”、“补”的理解.23四、作业1. 命题p :方程x 2-x+1=0有实数根。
2008高考数学复习 逻辑联结词 四种命题 充分必要条件一、基本知识体系:1、 命题、简单命题、复合命题;逻辑联结词:2、 复合命题的真假与构成它的简单命题的真假之间的关系:p 或q :__,p 且q :___;p 与⌝p :___3、 四种命题及它们之间的关系:原命题与逆否命题,否命题与逆命题分别为等价的命题4、 关于充要条件:5、 注意:命题的否定与否命题的区别:如果原命题是“若p 则q ”,那么它的否命题是:“若非p 则非q ”,即既否定条件,又否定结论;而命题的否定形式是:“若p 则非q ”,即只否定命题的结论。
若一个命题的条件与结论不明显时,可以先把它改写为“若p 则q ”的形式,再去确定其否命题或否定形式。
二、典型例题剖析:【★题1】写出下列命题的否定及否命题:① 两组对边平行的四边形是平行四边形。
解:(否定形式:两组对边平行的四边形不是平行四边形;否命题:若一个四边形至少有一组对边不平行,则它不是平行四边形。
② 正整数1既不是质数也不是合数。
解:(否定形式:正整数1是质数或者是合数。
否命题:若一个正整数不是1,则它是质数或者是合数。
③ 命题“若a>b,则2a >2b -1”的否命题为_____(若a ≤b, 则2a ≤2b -10【★题2】已知c >0,设P :函数y=c x 在R 上单调递减;Q :不等式x+|x-2c |>1的解集为R ;如果P 和Q 有且只有一个正确,求c 的取值范围解、c 的取值范围为(0,12]∪[1,+∞)【★题3】(正难则反)若二次函数ƒ(x )=4x 2-2(t-2)x-2t 2-t+1,在[-1,1]内至少存在一个实数c,使得ƒ(c )>0,求实数t 的取值范围解、正难则反:考查反面“对[-1,1]内任意一个实数c,都有ƒ(c )≤0成立的t 的范围”,而此范围则对应为;ƒ(-1)≤0且ƒ(1)≤0从而有{t |t ≤-3或t ≥32}∴所求为t |-3<t <32}【★题4】① 如果不等式|x-m|≤1成立的充分不必要条件是1<x ≤2,则实数m 的取值范围是( A )A [1,2] B (1,2] C [1,2) D (1,2)(2)◆①0<a ≤51是函数ƒ(x )=ax 2+2(a-1)x+2在区间(-∞,4)上为↘的( A )条件: A 充分不必要条件 B 必要不充分条件 C 充要条件 D 非充分非必要条件※【★题5】①关于x 的方程ax 2+2x+1=0(a ≠0)有一正一负两个实根的充分非必要条件为( )A a <0B a >0C a <-1D a >1解、选C,要注意a <0是一个充要条件②已知条件p:|4x-3|≤1;q: x 2-(2a+1)x+a(a+1)≤0 若⌝p 是⌝q 的必要非充分条件,求a 的取值范围_________解、p: 12≤x ≤1 ⌝p: x >1 或 x <12q: a ≤x ≤a+1 ⌝q: x <a 或x >a+1 ∴0≤a ≤12为所求(3)、若m 、n 是实数,则使mn(m-n)>0成立的一个充要条件是(C )A 0<1m <1nB 0>1m >1nC 1m <1nD 1m >1n【★题6】已知命题P:函数y=lg(ax 2-x+a 16)定义域为R ; 命题Q:函数y=(5-2a)x 为↗;若“P 或Q ”为真命题,“P 且Q ”为假命题,则实数a 的取值范围为____________解、命题P: a >2;命题Q: a <2 则{a|a ≠2}为所求【★题7】已知函数ƒ(x )=2-x+3x+1定义域为集合A 函数g (x )=lg[(x-a-1)(2a-x)]定义域为集合B,若B ⊆A 求实数a 的取值范围解、集合A={x|x <-1或 x ≥1}①当a <1时,B=(2a,a+1),则2a ≥1或a+1≤-1 ∴{a|12≤a<1或a ≤-2} ②当a=1时,B=∅ 满足要求③当a >1时, B=(a+1,2a),则2a ≤-1或a+1≥1则a>1; ∴a ∈[12,+∞)∪(-∞,-2]为所求【★题8】①是否存在实数p ,使得“4x+p<0”是“x 2-x-2>0”的充分条件?如果存在,求出p 的取值范围;②是否存在实数p ,使得“4x+p<0”是“x 2-x-2>0”的必要条件?如果存在,求出p 的取值范围解:①{p|p ≥4}则为充分条件;② 不存在。
名师作业练全能
第三讲逻辑联结词与四种命题充要条件班级________ 姓名___________ 考号 __________ 日期__________ 得分___________
一、选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的
括号内.)
1. (2010天津)命题“若f(x)是奇函数,贝U f(—x)是奇函数”的否命题是()
A .若f(x)是偶函数,则f(—x)是偶函数
B •若f(x)不是奇函数,则f( —x)不是奇函数
C.若f( —x)是奇函数,则f(x)是奇函数
D •若f( —x)不是奇函数,则f(x)不是奇函数
解析:否命题是既否定题设又否定结论•因此否命题应为“若函数f(x)不是奇函数,则
f(—X)不是奇函数”.
答案:B
2. (2011大庆模拟)若命题p:x€ M U N,则綈p是()
A . x?M? N
B . x?M 或x?N
C. x?M 且x?N D . x€ M n N
解析:x€ M U N, 即卩x€ M 或x€ N,
•••綈p:x?M 且x?N.
答案:C
3. (2011北京东城区模拟)已知命题p, q,若p且q为真命题,则必有()
A . p真q真
B . p假q假
C. p真q假 D . p假q真
答案:A
4.
(2011东城区)设命题p:x>2是X2>4的充要条件,命题q:若字电,则a>b.则( )
A .“ p或q”为真
B .“ P且q”为真
C . p真q假
D . p, q均为假命题
2 2 a b
解析:依题意,由x>2? X2>4,而X2>4D?/X>2,所以命题p是假命题,又由二>二,两C C
边同时乘以c2得a>b,所以命题q正确,所以选择 A.
答案:A
5. 有下列四个命题:
①“若x+ y= 0,则x、y互为相反数”的否命题;
②“若a > b,则a2> b2”的逆否命题;
③“若x w—3,贝U x2—x—6>0”的否命题;
④“对顶角相等”的逆命题.
其中真命题的个数是()
A . 0
B . 1
C. 2 D . 3
解析:①“若x+ y z 0,则x、y不是相反数”是真命题;②“若a2w b2,则a w b”,取a= 0, b =—1,贝U a2w b2,但a>b,故是假命题;③ “若x>—3,贝U x2—x—6w0”,解不等式x2—x —6w 0可得—2w x w 3,而x= 4>—3,不是不等式的解,故是假命题;④“相等的角是对顶角”是假命题.
答案:B
点评:本题的解法中运用了举反例的方法,举出一个反例说明一个命题不正确是该类问
题中经常用到的方法.
6. (2011惠州模拟)如果命题“綈(p或q)”是真命题,则正确的是()
A . p、q均为真命题
B. p、q中至少有一个为真命题
C. p、q均为假命题
D. p、q中至多有一个为真命题
解析:•••“綈(p或q)”是真命题,••• “p或q”为假命题,则p和q都是假命题.
答案:C
二、填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)
1 X
7. (2011 宜昌一中月考)已知:A = {x€ R|2<2 <8} , B= {x|—1<x<m+ 1},若x€ B 成立
的一个充分不必要条件是x€ A,则实数m的取值范围是____________ .
解析:A = {x|—1<x<3},由题意x€ A? x€ B 但x€ BD/? x€ A,
•••(—1,3) (—1, m + 1), • m>2.
答案:m>2
&已知P(x):ax2+ 3x+ 2>0 ,若对任意x€ R, P(x)是真命题,则实数a的取值范围是
解析:对任意x€ R, P(x)是真命题,就是不等式ax2+ 3x+ 2>0对一切x€ R恒成立.
(1)若a = 0,不等式仅为3x+ 2>0不能恒成立.
⑵若a>0
△= 9 —
8a<0
解得a>9.
8
(3)若a<0,不等式显然不能恒成立.
综上所述,实数a>9.
8
9
答案:a>9
8
2x
9. (2011厦门市适应性练习)已知p:—;<1, q:(x+ 1)(x—m)(x —3)>0.若p是q的充
x —1
分不必要条件,则实数m的取值范围是 ___________ .
解析:p: —1<x<1,当m>3 时,q:—1<x<3 或x>m.符合题意;当m= 3 时,q : x> — 1 且X M 3.符合题意;当一1<m<3 时,q :—1<x<m 或x>3,若p? q,贝U m> 1,当m W — 1 时, 不符合题意•综上分析m的取值范围是m> 1.
答案:m》1
10. 设P :关于x的不等式a x> 1的解集是{x|x v 0}, Q:函数y= lg(ax2—x+ a)的定义
域为R,如果P和Q有且仅有一个正确,则a的取值范围为_________ .
a> 0
解析:若P真则0 v a v 1,若P假则a> 1或a< 0,若Q真,由* 2得a >
△= 1—4a v 0
1 1
2.若Q假则a W 2.
1
又P和Q有且仅有一个正确,当P真Q假时,0v a<*当P假Q真时,a> 1.
综上,得 a € [o, 1 lu [1 ,+R).
答案:@, 2 U [1,+^ )
三、解答题:(本大题共3小题,11、12题13分,13题14分,写出证明过程或推演步骤.)
11. 已知:p: 1 —< 2, q: x2—2x+ 1 —m2w 0(m>0),若綈p 是綈q 的充分而不
必要条件,求实数m的取值范围.
x一1
解析:解法一:由1 —〒W 2,得一2W x< 10.
•••綈p:x v—2 或x> 10,
由x2—2x+ 1 —m2w 0,
得 1 —m W x W 1 + m(m>0).
•••綈q:x>1 + m 或x<1 —m, (m>0), •••綈p是綈q的充分而不必要条件,
设方程x 2 + ax + 1 = 0的两实根分别为
x 1> x 2
X 1 + X 2=— a 则£
|x 1X 2= 1
x 12 + x 22= (x 1 + x 2)2 — 2x 1x 2 = a 2 — 2> 3 • |a >
•方程x 2 + ax + 1= 0(a € R )的两实根的平方和大于 3的必要条件是|a|>. 3;但a = 2时 X 1 + x 2 = 2
W
3
因此这个条件不是其充分条件.
3 3
13•已知集合 A = {y|y = x 2 — ?x + 1, x € [4, 2]}, B = {x|x + m 2> 1};命题 p : x € A ,命 题q : x € B ,并且命题p 是命题q 的充分条件,求实数
m 的取值范围.
3
解析:化简集合A ,由y = x 2 — §x + 1, 配方得y =
4)+和
4, 2】,
・
-y min = 16 , y max = 2 和2] •
• A ={yf W y w 2}
化简集合 B ,由 x + m 2> 1 ,• x > 1 — m 2,
2
B = {x|x > 1 — m }.
•••命题p 是命题q 的充分条件,• A?
m>0
••• A B 结合数轴有紅+ m W 10 解得O<m w 3.
[l — m > — 2
解法二:綈p 是綈q 的充分不必要条件即为: q 是p 的充分不必要条件•由解法一得
q : 1 — m W x W 1 + m , p : — 2v x v 10. m > 0
点评:一般来说,条件、结论为否定式的命题,都运用等价法判断. 12.
求证方程x 2+ ax + 1 = 0(a € R )的两实根的平方和大于 3的必要条件是|a|> , 3,这个
条件是其充分条件吗?为什么?
解析:•••方程x 2+ ax + 1 = 0(a € R )有两实根,则
由条件可得:<1 + m W 10
• 0 v m W 3.
■/ x € [ • y € [
/• 1 —m2< —,解之,得m》3或m W—-
16 4 4
3 3
实数m的取值范围是(—g ,— 4]或[4,+ m)•。