5逻辑联结词与四种命题
- 格式:pdf
- 大小:224.12 KB
- 文档页数:9
常用逻辑用语—、命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假的陈述句叫做命题•其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2、四种命题及其关系(1) 、四种命题(2) 、四种命题间的逆否关系(3) 、四种命题的真假关系**两个命题互为逆否命题,它们有相同的真假性;*两个命题为互逆命题或互否命题,它们的真假性没有关系.、充分条件与必要条件1、定义1 .如果p? q,则p是q的充分条件,q是p的必要条件.2•如果p? q, q? p,则p是q的充要条件.2、四种条件的判断1.如果若p则q ”为真,记为p q,如果若p则q ”为假,记为p q .2.若p q,则p是q的充分条件,q是p的必要条件3.判断充要条件方法:p q p q(1 )定义法:①p是q的充分不必要条件p q ②p是q的必要不充分条件p qp q p q③p是q的充要条件q p ④p是q的既不充分也不必要条件p q(2)集合法:设P={p}, Q={q},①若P Q,则p是q的充分不必要条件,q是p的必要不充分条件②若P=Q,则p是q的充要条件(q也是p的充要条件).③若P g.Q且Q ^ P,则p是q的既不充分也不必要条件.(3)逆否命题法:①q是p的充分不必要条件p是q的充分不必要条件②q是p的必要不充分条件p是q的充分不必要条件③q是p的充分要条件p是q的充要条件④q是p的既不充分又不必要条件p是q的既不充分又不必要条件三、简单的逻辑联结词⑴命题中的且”或”非”叫做逻辑联结词.①用联结词且”联结命题p和命题q,记作p A q,读作p且q”.②用联结词或”联结命题p和命题q,记作p V q,读作p或q”.③对一个命题p全盘否定,就得到一个新命题,记作?p,读作非p”或p的否定(2)简单复合命题的真值表:*p A q:p、q有一假为假, *p V q:一真为真, .四、量词1、全称量词与存在量词(1)常见的全称量词有:任意一个” 一切”每一个”任给”所有的”等.(2)常见的存在量词有:存在一个”至少有一个”有些”有一个”某个”有的”等.(3)全称量词用符号?”表示;存在量词用符号? ”表示.2全称命题与特称命题(1) 含有全称量词的命题叫全称命题:对M中任意一个x,有p(x)成立”可用符号简记为?x€ M, p(x),读作对任意x属于M,有p(x)成立”.(2) 含有存在量词的命题叫特称命题:存在M中的一个x o,使p(x o)成立"可用符号简记为?x o€ M , P(x o),读作存在M中的兀素x o,使p(x o)成立”3 命题的否定(1) 含有量词命题的否定全称命题p:x M , p(x) 的否定p:x M, p x ;全称命题的否定为存在命题存在命题p:x M, p x 的否定p:x M , p x ;存在命题的否定为全称命题其中p x p (x)是一个关于x的命题.(2) 含有逻辑连接词命题的否定“p 或q ”的否定:“ p 且q” ;p且q ”的否定:“ p或q”(3) “若p则q “命题的否定:只否定结论特别提醒:命题的“否定”与“否命题”是不同的概念,命题的否定:只否定结论;否命题:全否对命题p的否定(即非p)是否定命题p所作的判断,而否命题”是若p则q ”。
§.常用逻辑用语一、知识导学1.逻辑联结词:“且”、“或”、 “非”分别用符号“∧”“∨”“⌝”表示.2.命题:能够判断真假的陈述句.3.简单命题:不含逻辑联结词的命题4.复合命题:由简单命题和逻辑联结词构成的命题,复合命题的基本形式:p 或q ;p 且q ;非p5.四种命题的构成:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若p 则q ;逆否命题:若q 则p.6.原命题与逆否命题同真同假,是等价命题,即“若p 则q”“若q 则p ” . 7.反证法:欲证“若p 则q”,从“非q”出发,导出矛盾,从而知“若p 则非q”为假,即“若p 则q”为真 .8.充分条件与必要条件 :①pq :p 是q 的充分条件;q 是p 的必要条件; ②p q :p 是q 的充要条件 . 9.常用的全称量词:“对所有的”、“ 对任意一个”“ 对一切”“ 对每一个”“任给”等;并用符号“∀” 表示.含有全称量词的命题叫做全称命题.10.常用的存在量词:“存在一个”、“至少有一个”、“有些”、“有一个”、 “有的”、“对某个”; 并用符号“∃”表示.含有存在量词的命题叫做特称命题.二、疑难知识导析1.基本题型及其方法(1)由给定的复合命题指出它的形式及其构成;(2)给定两个简单命题能写出它们构成的复合命题,并能利用真值表判断复合命题的真假;(3)给定命题,能写出它的逆命题、否命题、逆否命题,并能运用四种命题的相互关系,特别是互为逆否命题的等价性判断命题的真假.注意:否命题与命题的否定是不同的.(4)判断两个命题之间的充分、必要、充要关系;方法:利用定义(5)证明p 的充要条件是q ;方法:分别证明充分性和必要性(6)反证法证题的方法及步骤:反设、归谬、结论.反证法是通过证明命题的结论的反面不成立而肯定命题的一种数学证明方法,是间接证法之一. 关键词 是 都是(全是) >(<) 至少有一个 至多有一个 任意 存在否定 不是 不都是(全是) ≤(≥) 一个也没有 至少有两个 存在 任意2.全称命题与特称命题的关系:全称命题p:)(,x p M x ∈∀,它的否定p ⌝:)(,x p M x ⌝∈∃;特称命题p:)(,x p M x ∈∃,它的否定p ⌝:)(,x p M x ⌝∈∀;即全称命题的否定是特称命题,特称命题的否定是全称命题.否定一个全称命题可以通过“举反例”来说明.三、经典例题导讲[例1] 把命题“全等三角形一定相似”写成“若p 则q ”的形式,并写出它的逆命题、否命题与逆否命题.错解:原命题可改写成:若两个三角形全等,则它们一定相似.否命题:若两个三角形不一定全等,则它们不一定相似.逆否命题:若两个三角形不一定相似,则它们不一定全等.错因:对“一定”的否定把握不准,“一定”的否定 “一定不”,在逻辑知识中求否定相当于求补集,而“不一定”含有“一定”的意思.对这些内容的学习要多与日常生活中的例子作比较,注意结合集合知识.因而否命题与逆否命题错了.正解:否命题:若两个三角形不全等,则它们不相似.逆否命题:若两个三角形不相似,则它们不全等.[例2] 将下列命题改写成“若p 则q ”的形式,并写出否命题.a>o 时,函数y=ax+b 的值随x 值的增加而增加.错解:原命题改为:若a>o 时,x 的值增加,则函数y=ax+b 的值也随着增加.错因:如果从字面上分析最简单的方法是将a>o 看作条件,将“随着”看作结论,而x 的值增加,y 的值也增加看作研究的对象,那么原命题改为若a>o 时,则函数y=ax+b 的值随着x 的值增加而增加,其否命题为若a ≤o 时,则函数y=ax+b 的值不随x 值的增加而增加.此题错解在注意力集中在“增加”两个字上,将x 值的增加当做条件,又不把a>o 看作前提,就变成两个条件的命题,但写否命题时又没按两个条件的规则写,所以就错了.正解:原命题改为: a>o 时,若x 的值增加,则函数y=ax+b 的值也随着增加.否命题为: a>o 时,若x 的值不增加,则函数y=ax+b 的值也不增加.原命题也可改为:当x 的值增加时,若a>o ,,则函数y=ax+b 的值也随着增加.否命题为: 当x 增加时,若a ≤o ,则函数y=ax+b 的值不增加.[例3] 已知h>0,设命题甲为:两个实数a 、b 满足h b a 2<-,命题乙为:两个实数a 、b 满足h a <-|1且h b <-|1,那么A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件错解:h b a 2<-⇔h h h b a +=<---2)1()1(⇔h a <-|1|,h b <-|1|2.全称命题与特称命题的关系:全称命题p:)(,x p M x ∈∀,它的否定p ⌝:)(,x p M x ⌝∈∃;特称命题p:)(,x p M x ∈∃,它的否定p ⌝:)(,x p M x ⌝∈∀;即全称命题的否定是特称命题,特称命题的否定是全称命题.否定一个全称命题可以通过“举反例”来说明.三、经典例题导讲[例1] 把命题“全等三角形一定相似”写成“若p 则q ”的形式,并写出它的逆命题、否命题与逆否命题.错解:原命题可改写成:若两个三角形全等,则它们一定相似.否命题:若两个三角形不一定全等,则它们不一定相似.逆否命题:若两个三角形不一定相似,则它们不一定全等.错因:对“一定”的否定把握不准,“一定”的否定 “一定不”,在逻辑知识中求否定相当于求补集,而“不一定”含有“一定”的意思.对这些内容的学习要多与日常生活中的例子作比较,注意结合集合知识.因而否命题与逆否命题错了.正解:否命题:若两个三角形不全等,则它们不相似.逆否命题:若两个三角形不相似,则它们不全等.[例2] 将下列命题改写成“若p 则q ”的形式,并写出否命题.a>o 时,函数y=ax+b 的值随x 值的增加而增加.错解:原命题改为:若a>o 时,x 的值增加,则函数y=ax+b 的值也随着增加.错因:如果从字面上分析最简单的方法是将a>o 看作条件,将“随着”看作结论,而x 的值增加,y 的值也增加看作研究的对象,那么原命题改为若a>o 时,则函数y=ax+b 的值随着x 的值增加而增加,其否命题为若a ≤o 时,则函数y=ax+b 的值不随x 值的增加而增加.此题错解在注意力集中在“增加”两个字上,将x 值的增加当做条件,又不把a>o 看作前提,就变成两个条件的命题,但写否命题时又没按两个条件的规则写,所以就错了.正解:原命题改为: a>o 时,若x 的值增加,则函数y=ax+b 的值也随着增加.否命题为: a>o 时,若x 的值不增加,则函数y=ax+b 的值也不增加.原命题也可改为:当x 的值增加时,若a>o ,,则函数y=ax+b 的值也随着增加.否命题为: 当x 增加时,若a ≤o ,则函数y=ax+b 的值不增加.[例3] 已知h>0,设命题甲为:两个实数a 、b 满足h b a 2<-,命题乙为:两个实数a 、b 满足h a <-|1且h b <-|1,那么A .甲是乙的充分但不必要条件B .甲是乙的必要但不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件错解:h b a 2<-⇔h h h b a +=<---2)1()1(⇔h a <-|1|,h b <-|1|故本题应选C.错因:(1)对充分、必要、充要条件的概念分不清,无从判断,凭猜测产生错误;(2)不能运用绝对值不等式性质作正确推理而产生错误.正解:因为,11⎪⎩⎪⎨⎧<-<-h b h a 所以,11⎩⎨⎧<-<-<-<-h b h h a h 两式相减得h b a h 22<-<- 故h b a 2<-即由命题甲成立推出命题乙成立,所以甲是乙的必要条件.由于⎪⎩⎪⎨⎧<-<-hb h a 22 同理也可得h b a 2<-因此,命题甲成立不能确定命题乙一定成立,所以甲不是乙的充分条件,故应选B.[例4] 已知命题甲:a+b ≠4, 命题乙:a 1≠且b 3≠,则命题甲是命题乙的 .错解:由逆否命题与原命题同真同假知,若a=1且b=3则a+b=4成立,所以命题甲是命题乙的充分不必要条件.错因 :对命题的否定不正确.a 1≠且b 3≠的否定是a=1或b=3.正解:当a+b ≠4时,可选取a=1,b=5,故此时a 1≠且b 3≠不成立( a=1).同样,a 1≠,且b 3≠时,可选取a=2,b=2,a+b=4,故此时a+b=4.因此,甲是乙的既不充分也不必要条件.注:a 1≠且b 3≠为真时,必须a 1≠,b 3≠同时成立.[例5] 已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件,那么p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件分析:本题考查简易逻辑知识.因为p ⇒r ⇒s ⇒q 但r 成立不能推出p 成立,所以q p ⇒,但q 成立不能推出p 成立,所以选A 解:选A[例6] 已知关于x 的一元二次方程 (m∈Z)① mx 2-4x +4=0 ② x 2-4mx +4m 2-4m -5=0求方程①和②都有整数解的充要条件.解:方程①有实根的充要条件是,04416≥⨯⨯-=∆m 解得m ≤1.方程②有实根的充要条件是0)544(41622≥---=∆m m m ,解得.45-≥m ,.145Z m m ∈≤≤-∴而故m =-1或m =0或m =1. 当m =-1时,①方程无整数解.当m=0时,②无整数解;当m=1时,①②都有整数.从而①②都有整数解m =1.反之,m =1①②都有整数解.∴①②都有整数解的充要条件是m =1.[例7] 用反证法证明:若a 、b 、c R ∈,且122+-=b a x ,122+-=c b y ,122+-=a c z ,则x 、y 、z 中至少有一个不小于0证明: 假设x 、y 、z 均小于0,即:0122<+-=b a x ----① ;0122<+-=c b y ----② ;0122<+-=a c z ----③;①+②+③得0)1()1()1(222<-+-+-=++c b a z y x ,这与0)1()1()1(222≥-+-+-c b a 矛盾,则假设不成立, ∴x 、y 、z 中至少有一个不小于0[例8] 已知命题p :方程x 2+mx +1=0有两个不等的负根;命题q :方程4x 2+4(m -2)x +1=0无实根.若“p 或q ”为真,“p 且q ”为假,求m 的取值范围.分析:“p 或q ”为真,则命题p 、q 至少有一个为真,“p 且q ”为假,则命题p 、q 至少有一为假,因此,两命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真. 解: 若方程x 2+mx +1=0有两不等的负根,则⎩⎨⎧>>-=∆0042m m 解得m >2,即命题p :m >2若方程4x 2+4(m -2)x +1=0无实根,则Δ=16(m -2)2-16=16(m 2-4m +3)<0解得:1<mq :1<m <3.因“p 或q ”为真,所以p 、q 至少有一为真,又“p 且q ”为假,所以命题p 、q 至少有一为假,因此,命题p 、q 应一真一假,即命题p 为真,命题q 为假或命题p 为假,命题q 为真.∴⎩⎨⎧<<≤⎩⎨⎧≥≤>312312m m m m m 或或 解得:m ≥3或1<m ≤2.四、典型习题导练1.方程0122=++x mx 至少有一个负根,则( )A.10<<m 或0<mB.10<<mC.1<mD.1≤m2.“0232>+-x x ”是“1<x 或4>x ”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.三个数,,a b c 不全为0的充要条件是 ( )A.,,a b c 都不是0.B.,,a b c 中至多一个是0.C.,,a b c 中只有一个是0.D.,,a b c 中至少一个不是0.4.由命题p :6是12的约数,q :6是24的约数,构成的“p 或q ”形式的命题是:_ ___,“p 且q ”形式的命题是__ _,“非p ”形式的命题是__ _.5.若,a b R ∈,试从A.0ab =B.0a b +=C.220a b +=D.0ab >E.0a b +>F.220a b +> 中,选出适合下列条件者,用代号填空:(1)使,a b 都为0的充分条件是 ;(2)使,a b 都不为0的充分条件是 ;(3)使,a b 中至少有一个为0的充要条件是 ;(4)使,a b 中至少有一个不为0的充要条件是 .6.分别指出由下列各组命题构成的逻辑关联词“或”、“且”、“非”的真假.(1)p : 梯形有一组对边平行;q :梯形有一组对边相等.(2)p : 1是方程0342=+-x x 的解;q :3是方程0342=+-x x 的解. (3)p : 不等式0122>+-x x 解集为R ;q : 不等式1222≤+-x x 解集为. 7.命题:已知a 、b 为实数,若x 2+ax +b ≤0 有非空解集,则a 2- 4b ≥0.写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.8.用反证法证明:若a 、b 、c 、d 均为小于1的正数,且x=4a(1-b),y=4b(1-c),z=4c(1-d),t=4d(1-a),则x 、y 、z 、t 四个数中,至少有一个不大于1.。
知识点一 命题及四种命题1、命题的概念在数学中用语言、符号或式子表达的,可以判断真假 的陈述句叫做命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.注意:命题必须是陈述句,疑问句、祈使句、感叹句 都不是命题。
2.四种命题及其关系(1)四种命题间的相互关系.(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题为互逆命题或互否命题,它们的真假性无关.注意:(补充)1、一个命题不可能同时既是真命题又是假命题 原词语 等于(=) 大于(>) 小于(<)是 否定词语 不等于(≠) 不大于(≤) 不小于(≥)不是 原词语 都是 至多有一个 至多有n 个或 否定词语 不都是 至少有两个 至少有n+1个且 原词语 至少有一个 任意两个 所有的任意的 否定词语 一个也没有 某两个 某些某个 知识点二 充分条件与必要条件1、充分条件与必要条件的概念(1)充分条件:q p ⇒ 则p 是q 的充分条件即只要有条件p 就能充分地保证结论q 的成立, 亦即要使q 成立,有p 成立就足够了,即有它即可。
(2)必要条件: q p ⇒ 则q 是p 的必要条件q p ⇒⇔q p ⌝⇒⌝ 即没有q 则没有p ,亦即q 是p 成立的必须要有的条件,即无它不可。
(补充)(3)充要条件q p ⇒且q p ⇒即p q ⇔ 则p 、q 互为充要条件(既是充分又是必要条件) “p 是q 的充要条件”也说成“p 等价于q ”、“q 当且仅当p ”等(补充)2、充要关系的类型 (1)充分但不必要条件定义:若q p ⇒,但p q ⇒/,则p 是q 的充分但不必要条件; (2)必要但不充分条件定义:若p q ⇒,但q p ⇒/,则p 是q 的必要但不充分条件 (3)充要条件定义:若 q p ⇒,且 p q ⇒,即p q ⇔,则p 、q 互为充要条件; (4)既不充分也不必要条件定义:若q p ⇒/,且p q ⇒/,则p 、q互为既不充分也不必要条件. 3、判断充要条件的方法:①定义法;②集合法;③逆否法(等价转换法).逆否法----利用互为逆否的两个命题的等价性集合法----利用集合的观点概括充分必要条件 若条件p 以集合A 的形式出现,结论q 以集合B 的形式出现,则借助集合知识,有助于充要条件的理解和判断.(1)若⊂≠A B ,则p 是q 的充分但不必要条件(2)若⊂≠B A ,则p 是q 的必要但不充分条件 (3)若B A =,则p 是q 的充要条件(4)若B A ⊂/,且B A ⊃/,则p 是q 的既不必要也不充分条件 (补充)简记作----若A 、B 具有包含关系,则(1)小范围是大范围的充分但不必要条件(2)大范围是小范围的必要但不充分条件二、例题分析(一)四种命题及其相互关系例1.(1) 命题“若x ,y 都是偶数,则x +y 也是偶数”的逆否命题是( )A .若x +y 是偶数,则x 与y 不都是偶数 B .若x +y 是偶数,则x 与y 都不是偶数C .若x +y 不是偶数,则x 与y 不都是偶数D .若x +y 不是偶数,则x 与y 都不是偶数例1.(2)下列命题中正确的是( )①“若a ≠0,则ab ≠0”的否命题;②“正多边形都相似”的逆命题; ③“若m>0,则x2+x -m =0有实根”的逆否命题;④“若x -123是有理数,则x 是无理数”的逆否命题.A .①②③④ B .①③④ C .②③④ D .①④例1.(3) 原命题为“若z1,z2互为共轭复数,则|z1|=|z2|”,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )A .真,假,真 B .假,假,真 C .真,真,假 D .假,假,假 问题2四种命题间关系的两条规律(1)逆命题与否命题互为逆否命题; 互为逆否命题的两个命题同真假.(2)当判断一个命题的真假比较困难时,可转化为判断它的逆否命题的真假.同时要关注“特例法”的应用.例2.(1)已知a ,b ,c ∈R ,命题“若a b c ++=3,则222a b c ++≥3”的否命题是( )(A)若a+b+c ≠3,则222a b c ++<3 (B)若a+b+c=3,则222a b c ++<3(C)若a+b+c ≠3,则222a b c ++≥3 (D)若222a b c ++≥3,则a+b+c=3 例2.)命题:“若0xy =,则0x =或0y =”的否定是:________注意:命题的否定与否命题的区别(二)充要条件的判断与证明例1.(1)(补充) (07湖北)已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件。
逻辑联结词、四种命题、充分条件与必要条件1. 主要内容:命题、真命题、假命题的概念,逻辑连接词、简单命题、复合命题的概念、复合命题的真值表,四种命题、四种命题的关系,反证法、充分条件、必要条件的概念、充分条件的判断。
2. 重点:判断复合命题真假的方法,四种命题的关系,关于充要条件的判断。
3. 难点:逻辑连结词的理解与日常用语的区别,反证法的理解和应用,关于充要条件的判断。
【例题选讲】例1. 分别指出下列复合命题的形式及构造的简单命题。
(1)小李是老师,小赵也是老师。
(2)1是合数或质数。
(3)他是运动员兼教练员。
(4)不仅这些文学作品艺术上有缺点,而且政治上有错误。
解:(1)这个命题是p且q的形式,其中p:小李是老师,q:小赵是老师。
(2)这个命题是p或q的形式,其中p:1是合数,q:1是质数。
(3)这个命题是p且q的形式,其中,p:他是运动员,q:他是教练员。
(4)这个命题是p且q的形式,其中,p:这些文学作品艺术上有缺点,q:这些文学作品政治上有错误。
小结:正确理解逻辑联结词“或”“且”“非”的含义是解题的关键。
应根据组成上述各复合命题的语句中所出现的逻辑联结词,或语句的意义确定复合命题的形式。
例2. 已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m-2)x+1=0无实根。
若p或q为真,p且q为假,求m的取值范围。
解:若方程4x2+4(m-2)x+1=0无实根,解得:1<m<3。
即q :1<m<3。
因p 或q 为真,所以p 、q 至少有一为真,又p 且q 为假,所以p 、q 至少有一为假,因此,p 、q 两命题应一真一假,即p 为真,q 为假或p 为假,q 为真。
∴或或m m m m m >≤≥⎧⎨⎩≤<<⎧⎨⎩213213解得:或。
m m ≥<≤312小结:由简单命题的真假可根据真值表来判断复合命题的真假。
反过来,由复合命题的真假也应能准确断定构成此复合命 题的简单命题的真假情况,简单命题的真假也应由真值表来判断。
§1.2 逻辑联结词与四个命题(一)【复习目标】1.了解命题、复合命题等概念;2.理解逻辑联结词“或”、“且”、“非”的含义,会根据《真值表》判断复合命题的真假;3.掌握四个命题及其相互关系,理解“否命题”与“命题的否定”的不同含义。
【重点难点】掌握四个命题及其相互关系,理解“否命题”与“命题的否定”的不同含义【知识回顾】1、命题的定义:。
2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做;不含有逻辑联结词的命题是;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是。
构成复合命题的形式:p或q(记作“” );p且q(记作“” );非p(记作“” ) 。
3、“或”、“且”、“非”的真值判断(1)“非p”形式复合命题的真假与P的真假;(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.4、常用正面词语的否定如下表:原命题:若P则q;逆命题:;否命题:;逆否命题:。
(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.6、四种命题之间的相互关系:一个命题的真假与其他三个命题的真假有如下三条关系:(原命题 逆否命题)原命题若p 则q 否命题若┐p 则┐q逆命题若q 则p逆否命题若┐q 则┐p互为逆否互逆否互为逆否互互逆否互①、原命题为真,它的逆命题不一定为真。
②、原命题为真,它的否命题不一定为真。
③、原命题为真,它的逆否命题一定为真。
7、如果已知p ⇒q 那么我们说,p 是q 的充分条件,q 是p 的必要条件。
若p ⇒q 且q ⇒p,则称p 是q 的充要条件,记为p ⇔q.【课前预习】1. 下列语句是否命题?如果是,判断真假:(1)上课! ; (2)22x + ; (4)对顶角难道不相等吗? ;(42. 有下列命题:①2004年10月1日是国庆节,又是中秋节;②10的倍数一定是5的倍数;③梯形不是矩形;④方程21x =的解1x =±。
逻辑联结词和四种命题1、逻辑联结词(1)命题:一般地,我们把用语言、符号、式子表达的,可以判断真假的语句叫做命题其中判断为真的语句叫真命题,判断为假的语句叫假命题(2)逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词或:两个简单命题至少一个成立且:两个简单命题都成立非:对一个命题的否定(3)简单命题与复合命题:不含逻辑联结词的命题叫简单命题;由简单命题和逻辑联结词构成的命题叫复合命题(4)表达形式用小写的拉丁字母p、 q 、 r 、 s……来表示简单命题复合命题有三类:① p或q ② p且q ③非p(5)真值表:表示命题真假的表叫真值表①非p② p且q③p或q2、四种命题(1)一般地,用p和q分别表示原命题的条件和结论,用┐p和┐q分别表示p和q的否定,于是四种命题的形式就是:原命题:若p则 q(p q);逆命题:若q则 p(q p);否命题:若┐p则┐q(┐p┐q);逆否命题:若┐q则┐p(┐q ┐p)(2)四种命题的关系原命题逆命题否命题逆否命题(3)一个命题的真假与其他三个命题的真假有如下四种关系①原命题为真,它的逆命题不一定为真②原命题为真,它的否命题不一定为真③原命题为真,它的逆否命题一定为真④逆命题为真,否命题一定为真3、反证法证明命题的一般步骤(1)否定结论(2)从假设出发,经过推理论证得出矛盾(3)断定假设错误,肯定结论成立反证法属于间接证法,当证明一个结论成立,已知条件较少,或结论的情况较多,或结论是以否定形式出现,如某些结论中含有“至多”、“至少”、“唯一”、“不可能”、“不都”等指示性词语时往往考虑采用反证法证明结论成立。
高一数学逻辑联结词与四种命题通用版【本讲主要内容】逻辑联结词与四种命题含有“或”、“且”、“非”复合命题的概念及其构成形式;四种命题的关系,充分、必要条件。
【知识掌握】【知识点精析】1、命题:可以判断真假的语句叫做命题。
2、逻辑联结词:“或”、“且”、“非”这些词叫做逻辑联结词。
3、简单命题和复合命题:不含逻辑联结词的命题叫做简单命题。
简单命题是不含其他命题作为其组成部分(在结构上不能再分解成其他命题)的命题。
由简单命题和逻辑联结词构成的命题叫做复合命题。
4、真值表:非或且真真假真真真假真假假真真真假假假假假为了正确判断复合命题的真假,首先应该确定复合命题的形式,然后指出其中简单命题的真假,再根据真值表判断这个复合命题的真假。
5、四种命题的形式:如果第一个命题的条件是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。
一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定,这样的两个命题叫做互否命题。
把其中一个命题叫做原命题,另一个命题叫做原命题的否命题。
一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定,这样的两个命题叫做互为逆否命题。
把其中一个命题叫做原命题,另一个命题就叫做原命题的逆否命题。
原命题:若则;逆命题:若则;否命题:若则;逆否命题:若则。
一个命题的真假与其他三个命题的真假有如下关系:①原命题为真,它的逆命题不一定为真;②原命题为真,它的否命题不一定为真;③原命题为真,它的逆否命题一定为真;④原命题的逆命题为真,原命题的否命题一定为真。
6、一般地,如果已知,那么我们就说是成立的充分条件;q是p成立的必要条件;如果既有,又有q p 那么我们就说是成立的充分必要条件。
【解题方法指导】例1. “已知、、、是实数,若,,则。
”写出上述命题的逆命题、否命题、逆否命题,并分别判断它们的真假。
点拨:“已知,,,是实数”是大前提,写四种命题时应该保留。
1.2--逻辑联结词与四种命题1.2 逻辑联结词与四种命题●知识梳理1.逻辑联结词(1)命题:可以判断真假的语句叫做命题.(2)逻辑联结词:“或”“且”“非”这些词叫做逻辑联结词.(3)简单命题与复合命题:不含逻辑联结词的命题叫简单命题;由简单命题和逻辑联结词构成的命题叫做复合命题.(4)真值表:表示命题真假的表叫真值表.2.四种命题(1)四种命题原命题:如果p,那么q(或若p则q);逆命题:若q则p;否命题:若⌝p则⌝q;逆否命题:若⌝q则⌝p.(2)四种命题之间的相互关系这里,是等价命题.●点击双基1.由“p:8+7=16,q:π>3”构成的复合命题,下列判断正确的是A.p或q为真,p且q为假,非p为真B.p或q为假,p且q为假,非p为真C.p或q为真,p且q为假,非p为假D.p或q为假,p且q为真,非p为真解析:因为p假,q真,由复合命题的真值表可以判断,p或q为真,p且q为假,非p为真.答案:A2.(2004年福建,3)命题p:若a、b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题q:函数y=2|1x的定义域是(-∞,-|--1]∪[3,+∞),则A.“p或q”为假B.“p且q”为真C. p真q假D. p假q真解析:∵|a+b|≤|a|+|b|,若|a|+|b|>1,不能推出|a+b|>1,而|a+b|>1,一定有|a|+|b|>1,故命题p为假.又由函数y=2|1x的定义域为|x-1|-2≥0,-|-即|x-1|≥2,即x-1≥2或x-1≤-2.故有x∈(-∞,-1]∪[3,+∞).∴q为真命题.答案:D3.(2005年春季上海,15)设函数f(x)的定义域为R,有下列三个命题:①若存在常数M,使得对任意x∈R,有f (x)≤M,则M是函数f(x)的最大值;②若存在x0∈R,使得对任意x∈R,且x ≠x0,有f(x)<f(x0),则f(x0)是函数f(x)的最大值;③若存在x0∈R,使得对任意x∈R,有f (x)≤f(x0),则f(x0)是函数f(x)的最大值.这些命题中,真命题的个数是A.0B.1C.2D.3解析:①错.原因:可能“=”不能取到.②③都正确.答案:C4.命题“若m>0,则关于x的方程x2+x-m=0有实数根”与它的逆命题、否命题、逆否命题中,真命题的个数为___________________.解析:先写出其命题的逆命题、否命题、逆否命题,逐一判断.答案:25.(2005年北京西城区抽样测试题)已知命题p:函数y=log a(ax+2a)(a>0且a≠1)的图象必过定点(-1,1);命题q:如果函数y=f(x-3)的图象关于原点对称,那么函数y=f(x)的图象关于点(3,0)对称.则A.“p且q”为真B.“p或q”为假C. p真q假D. p假q真解析:解决本题的关键是判定p、q的真假.由于p真,q假(可举反例y=x+3),因此正确答案为C.答案:C●典例剖析【例1】给出命题“已知a、b、c、d是实数,若a=b,c=d,则a+c=b+d”,对其原命题、逆命题、否命题、逆否命题而言,真命题有A.0个B.2个C.3个D.4个剖析:原命题和逆否命题为真.答案:B深化拓展若a、b、c∈R,写出命题“若ac<0,则ax2+bx+c=0有两个不相等的实数根”的逆命题、否命题、逆否命题,并判断这三个命题的真假.思路:认清命题的条件p和结论q,然后按定义写出逆命题、否命题、逆否命题,最后判断真假.解:逆命题“若ax2+bx+c=0(a、b、c∈R)有两个不相等的实数根,则ac<0”是假命题,如当a=1,b=-3,c=2时,方程x2-3x+2=0有两个不等实根x1=1,x2=2,但ac=2>0.否命题“若ac≥0,则方程ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根”是假命题.这是因为它和逆命题互为逆否命题,而逆命题是假命题.逆否命题“若ax2+bx+c=0(a、b、c∈R)没有两个不相等的实数根,则ac≥0”是真命题.因为原命题是真命题,它与原命题等价.评述:解答命题问题,识别命题的条件p与结论q的构成是关键.【例2】指出下列复合命题的形式及其构成.(1)若α是一个三角形的最小内角,则α不大于60°;(2)一个内角为90°,另一个内角为45°的三角形是等腰直角三角形;(3)有一个内角为60°的三角形是正三角形或直角三角形.解:(1)是非p形式的复合命题,其中p:若α是一个三角形的最小内角,则α>60°.(2)是p且q形式的复合命题,其中p:一个内角为90°,另一个内角为45°的三角形是等腰三角形,q:一个内角为90°,另一个内角为45°的三角形是直角三角形.(3)是p或q形式的复合命题,其中p:有一个内角为60°的三角形是正三角形,q:有一个内角为60°的三角形是直角三角形.【例3】写出命题“当abc=0时,a=0或b=0或c=0”的逆命题、否命题、逆否命题,并判断它们的真假.剖析:把原命题改造成“若p则q”形式,再分别写出其相应的逆命题、否命题、逆否命题.在判断真假时要注意利用等价命题的原理和规律.解:原命题:若abc=0,则a=0或b=0或c=0,是真命题.逆命题:若a=0或b=0或c=0,则abc=0,是真命题.否命题:若abc≠0,则a≠0且b≠0且c≠0,是真命题.逆否命题:若a≠0且b≠0且c≠0,则abc ≠0,是真命题.●闯关训练夯实基础1.如果原命题的结论是“p且q”形式,那么否命题的结论形式为A.⌝p且⌝qB.⌝p或⌝qC.⌝p或⌝qD.⌝q或⌝p解析:p且q的否定为⌝p或⌝q.答案:B2.下列四个命题中真命题是①“若xy=1,则x、y互为倒数”的逆命题②“面积相等的三角形全等”的否命题③“若m≤1,则方程x2-2x+m=0有实根”的逆否命题④“若A∩B=B,则A B”的逆否命题A.①②B.②③C.①②③D.③④解析:写出满足条件的命题再进行判断.答案:C3.分别用“p或q”“p且q”“非p”填空.(1)命题“15能被3和5整除”是___________________形式;(2)命题“16的平方根是4或-4”是______________形式;(3)命题“李强是高一学生,也是共青团员”是___________________形式.答案:(1)p且q(2)p或q(3)p且q4.命题“若ab=0,则a、b中至少有一个为零”的逆否命题是_______________.答案:若a≠0且b≠0,则ab≠05.在一次模拟打飞机的游戏中,小李接连射击了两次,设命题p1“第一次射击击中飞机”,命题p2“第二次射击击中飞机”,试用p1、p2及联结词“或”“且”“非”表示下列命题:(1)两次都击中飞机;(2)两次都没击中飞机;(3)恰有一次击中飞机;(4)至少有一次击中飞机.解:(1)两次都击中飞机是p1且p2;(2)两次都没击中飞机是⌝p1且⌝p2;(3)恰有一次击中飞机是p1且⌝p2,或p2且⌝p1;(4)至少有一次击中飞机是p1或p2.培养能力6.(2004年湖北,15)设A、B为两个集合.下列四个命题:①A B ⇔对任意x∈A,有x∉B;②A B⇔A∩B=∅;③A B⇔A B;④A B⇔存在x∈A,使得x∉B.其中真命题的序号是______________.(把符合要求的命题序号都填上)解析:A B ⇔存在x∈A,有x∉B,故①错误;②错误;④正确.亦或如下图所示.③反例如下图所示.ABA B A B.反之,同理.答案:④7.命题:已知a、b为实数,若x2+ax+b≤0有非空解集,则a2-4b≥0,写出该命题的逆命题、否命题、逆否命题,并判断这些命题的真假.分析:原命题中,a、b为实数是前提,条件是x2+ax+b≤0有非空解集(即不等式有解),结论是a2-4b≥0,由四种命题的关系可得出其他三种命题.解:逆命题:已知a、b为实数,若a2-4b ≥0,则x2+ax+b≤0有非空解集.否命题:已知a、b为实数,若x2+ax+b≤0没有非空解集,则a2-4b<0.逆否命题:已知a、b为实数,若a2-4b<0,则x2+ax+b≤0没有非空解集.原命题、逆命题、否命题、逆否命题均为真命题.8.写出下列命题非的形式:(1)p:函数f(x)=ax2+bx+c的图象与x 轴有唯一交点;(2)q:若x=3或x=4,则方程x2-7x+12=0.解:(1)函数f(x)=ax2+bx+c的图象与x 轴没有交点或至少有两个交点.(2)若x=3或x=4,则x2-7x+12≠0.探究创新9.小李参加全国数学联赛,有三位同学对他作如下的猜测.甲:小李非第一名,也非第二名;乙:小李非第一名,而是第三名;丙:小李非第三名而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,问:小李得了第几名?解:(1)假设小李得了第三名,则甲全猜对,乙全猜错,显然与题目已知条件相矛盾,故假设不可能.(2)假设小李得了第二名,则甲猜对一半,乙猜对一半,也与已知条件矛盾,故假设不可能.(3)假设小李得了第一名,则甲猜对一半,乙全猜错,丙全猜对,无矛盾.综合(1)(2)(3)知小李得了第一名.●思悟小结1.有的“p或q”与“p且q”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义,从而分清是“p 或q”还是“p且q”形式.一般地,若两个命题属于同时都要满足的为“且”,属于并列的为“或”.2.原命题与它的逆否命题同为真假,原命题的逆命题与否命题同为真假,所以对一些命题的真假判断(或推证),我们可通过对与它同真假的(具有逆否关系的)命题来判断(或推证).●教师下载中心教学点睛1.有的“p或q”与“p且q”形式的复合命题语句中,字面上未出现“或”与“且”字,此时应从语句的陈述中搞清含义,从而分清是“p 或q”还是“p且q”形式.一般地,若两个命题属于同时都要满足的为“且”,属于并列的为“或”.2.要明确原命题、否命题、逆命题、逆否命题之间的关系.拓展题例【例1】写出下列各命题的否定及其否命题,并判断它们的真假.(1)若x、y都是奇数,则x+y是偶数;(2)若xy=0,则x=0或y=0;(3)若一个数是质数,则这个数是奇数.解:(1)命题的否定:x、y都是奇数,则x+y不是偶数,为假命题.原命题的否命题:若x、y不都是奇数,则x+y不是偶数,是假命题.(2)命题的否定:xy=0则x≠0且y≠0,为假命题.原命题的否命题:若xy≠0,则x≠0且y≠0,是真命题.(3)命题的否定:一个数是质数,则这个数不是奇数,是假命题.原命题的否命题:若一个数不是质数,则这个数不是奇数,为假命题.【例2】有A、B、C三个盒子,其中一个内放有一个苹果,在三个盒子上各有一张纸条.A盒子上的纸条写的是“苹果在此盒内”,B盒子上的纸条写的是“苹果不在此盒内”,C盒子上的纸条写的是“苹果不在A盒内”.如果三张纸条中只有一张写的是真的,请问苹果究竟在哪个盒子里?解:若苹果在A盒内,则A、B两个盒子上的纸条写的为真,不合题意.若苹果在B盒内,则A、B两个盒子上的纸条写的为假,C盒子上的纸条写的为真,符合题意,即苹果在B盒内.同样,若苹果在C盒内,则B、C两盒子上的纸条写的为真,不合题意.综上,苹果在B盒内.。
常用逻辑用语一、逻辑联结词与四种命题、含有一个量词的命题的否定1逻辑连接词:或、且、非P C P Q P q p Q P q p U ⇔⌝⋂⇔∧⋃⇔∨;;(1) q p ∨命题的真假性:有一个真即真,都假才假;(2)q p ∧命题的真假性:有一个假即假,都真才真;(3)P ⌝命题的真假性:命题P 与命题P ⌝真假性相反。
即P 真P ⌝假;P 假P ⌝真(4)“或”的否定是“且”,“且”的否定是“或”2四种命题:原命题、逆命题、否命题、逆否命题(1)互为逆否的命题具有相同的真假性。
(2)原命题与逆否命题、逆命题与否命题同真同假3全称量词:短语:“所有的”、“任意一个”、“一切”、“每一个”,用符号“∀”表示 全称命题:含有全称量词的命题存在量词:短语“存在一个”、“至少一个”、“有一个”、“有的”,用符号“∃”表示 特称命题:含有特称量词的命题(1)含有一个量词的命题的否定:全称命题的否定是特称命题,特称命题的否定是全称命题(2)“且”的否定是“或”,“或”的否定是“且”4(1)充分不必要条件:(2)必要不充分条件:(3)充要条件:(4)既不充分也不必要条件:二、典型例题例1已知全集U B U A R U ⊆⊆=,,,如果命题B A p ⋃∈3:,则命题“非p ”是( D )A A ∉3.BC B U ∈3. B A C ⋂∉3. B C A CD U U ⋂∈3.例2设原命题“已知d c b a ,,,是实数,若d c b a ==.则d b c a +=+”,它的逆否命题是( B )A 已知d c b a ,,,是实数,若d b c a +≠+则b a ≠且d c ≠B 已知d c b a ,,,是实数,若d b c a +≠+则b a ≠或d c ≠C 若d b c a +≠+,则d c b a ,,,不是实数,且b a ≠,d c ≠D 以上全不对例3命题P :已知b a ,是实数,若02≤++b ax x 没有非空解集,则042<-b a 写出该命题的否定和该命题的否命题。