结构化学习题集 (2)
- 格式:doc
- 大小:467.50 KB
- 文档页数:25
第一章量子力学基础一选择题(1)根据无限深势阱中电子的能级公式,近似估计:当宏观粒子变为纳米微粒时,HOMO与LUMO之间的能隙将发生什么变化:(A)变大(B)变小(C)不变(2)为了写出一个经典力学量对应的量子力学算符,若坐标算符取作坐标本身,动量应换成算符(以一维运动为例)(A) mv (B)ħƏ / i Ə x (C)-ħ2Ə2/ Əx2(3)电子的de broglie波长为(A)λ= h / p(B)λ= c/ υ(C)λ= ∆x∆px(4)丁二烯等共轭分子中的π电子的离域化可降低体系的能量,这与简单的一维势阱中的粒子模型是一致的,因为一维势阱中的粒子的能量(A)反比于势阱长度的平方(B)正比于势阱长度(C)正比于量子数(5)对于厄米算符,下面那些说法是对的:(A)厄米算符中必然不包含虚数(B)厄米算符的本征值必定是实数(C)厄米算符的本征函数中必然不包括虚数(6) 对于算符Ĝ的非本征态(A)不可能测量其本征值g(B)不可能测量其平均值<g>(C)本征值与平均值均可测量,且两者相等第二章原子结构(1)P2组态的原子光谱项为:(A)1D,3P,1S (B)3D ,1P ,3S (C)3D,3P ,1D(2)Hund规则适用于下列哪种情况:(A)求出激发组态下的能量最低谱项(B)求出基组态下的基谱项(C)在基组态下为谱项的能量排序(3)配位化合物中d→d跃迁一般都很弱,因为这种跃迁属于(A)g←∕→g (B)g↔u (C)u←∕→u(4)CI原子基态的光谱项为2P,其能量最低的光谱支项为:(A) 2P3/2 (B) 2P1/2(C) 2P第三章双原子分子结构与化学键理论(1)用线性变分法求出的分子基态能量比起基态真实能量,只可能(A)更高或相等(B)更低 (C) 相等(2)N2,O2,F2的键长递增是因为(A)核外电子数依次减少(B)键级依次增大(C)净成键电子数依次减少(3)根据O2与O2+的电子结构,可知(A)O2是单重态(B) O2+是三重态(C)O2+比O2的键长短(4)顺磁性分子中的电子(A)有的不成对(B)完全成对(C)完全不成对(5)下列哪一条属于所谓的“成键三原则”之一:(A)原子半径相似(B)对称性匹配(C)电负性相似(5)下列哪种说法是正确的:(A)原子轨道只能以同号重叠组成分子轨道(B)原子轨道以异号重叠组成非键分子轨道(C)原子轨道可以按同号重叠或异号重叠,分别组成成键或反键轨道(6)氧的O2+,O2,O2-,O22- 对应下列哪种键级顺序:(A)2.5,2.0,1.5,1.0 (B)1.0,1.5,2.0,2.5 (C)2.5,1.5,1.0,2.0(7)下列哪些分子或分子离子具有顺磁性:(A)O2 ,N2(B) N2,F2(C)O22+,NO+第四章分子对称性与群论初步(1)丙二烯属于D2d点群,表明它有(A)两个小π键(B)一个∏34两个(C)两个∏33(2)C60 ,NH3,立方烷的分子点群分别是(A)C1, C2 ,C3(B)D2,D4V ,Td(C)Ih,C3V ,Oh(3) 含有不对称C原子但能与其镜像重合的化合物是(A)内消旋化合物(B)外消旋化合物(C)不对称分子(4) 下列哪组点群的分子可能具有偶极距:(A)Oh ,Dn ,Cnh(B)Ci ,Td ,S4(C)Cn ,Cnv ,Cs(5) CCI4 PH3SF6的分子点群分别是(A)C4 C3C6(B)D2D3hTd(C)TdC3vOh(6 非极性分子的判据之一是(A) 所有对称元素交于唯一一点(B) 至少有两个对称元素只交于唯一一点(C) 两个对称元素相交(7) 下列那种分子可能具有旋光性:(A)丙二烯(B)六螺环烯(C) C60(8) [Co(NH3)4(H2O)2]3+能够有几种异构体:(A)2 (B)3 (C)6(9) 一个分子的分子点群是指:(A)全部对称操作的集合 (B)全部对称元素的集合(C)全部实对称操作的集合(10) 群中的某些元素若是可以通过相似变换联系起来,它们就共同组成(A)一个类(B)一个子群(C)一个不可约表示(11) 几个不可约表示的直积是(A) 可约表示(B)不可约表示(C)可约表示或不可约表示(12)水分子B1振动的基包括X和XZ,这种振动(A) 只有红外活性(B)只有拉曼活性(C)兼有红外和拉曼活性第五章多原子分子的结构与性质(1) 用VSEPR理论判断,IF5的几何构型是(A)三角双锥(B)正四棱锥(C)平面五边形(2)共轭有机分子的哪种原子上易发生游离基反应:(A)ρ较大的分子(B)F较大者(C)任意原子(3)己三烯电环化反应,在加热条件下保持什么对称性不变:(A)C2 (B)m (C)m和C2(4)根据分子轨道对称守恒原理,乙烯加氢反应是对称性禁阻的,由此判断(A)反应在热力学上必然属于吸热反应(B)平衡产率必然很低(C)反应活化能比较大(5)分子的下列反应哪些性质必须用离域分子轨道来描述(A)电子能谱,电子光谱(B)偶极距, 电荷密度(C)键长,键能第六章晶体的点阵结构与X射线衍射法(1)晶体等于(A)晶胞+点阵(B)特征对称要素+结构基元(C)结构基元+点阵(2)“六方晶系”这个名称表明其(A)晶胞形状为六棱柱(B)晶体有6次对称轴(C)晶胞中含有6个结构基元(3)下列哪两种晶体具有不同的点阵型式(A)NaCl与CsCl (B)NaCl与CaF2(C)NaCl与立方ZnS(4)Bravais格子不包含“四方底心”和“四方面心”,是因为它们其实分别是(A)四方简单和四方体心(B)四方体心和四方简单(C)四方简单和立方面心(5)某晶面与晶轴x,y,z轴相截,截数分别是4,2,1,其晶面指标是(A)(124)(B)(421)(C)(1/4,1/2,1)(6)下列哪种性质是晶态物质所特有的:(A)均匀性(B)各向异性(C)旋光性(7)与结构基元相对应的是(A)点阵点(B)素向量(C)复格子(8)点阵是(A)有规律地排布的一组点(B)按连接其中任意两点的向量平移而能复原的无限多个点(C)只沿特定方向平移而能复原的有限数目的点(9)金刚石与立方ZnS(A)点阵型式都是立方面心( B )点阵型式都是立方简单( C )点阵型式不同(10)在某立方晶体的X衍射粉末图上发现,h+k+l=奇数的衍射产生了系统消光,这种晶体具有下列哪种点阵(A)立方体心(B)立方简单(C)立方面心(11) “CsCl型晶体的点阵为立方体心点阵”这一表述(A)正确(B)不正确,因为立方体心不是一种点阵(C)不正确,因为CsCl型晶体的点阵为立方简单点阵(12)六方晶胞的形状是(A)六棱柱(B)6个顶点的封闭凸多面体(C)α=β=90°,γ=120°的平面六面体(13)空间格子共有多少种形状和型式(A)8,32(B)7,14(C)4,514)划分正当格子的第一标准是(A)平行六面体(B)尽可能高的对称性(C)尽可能少的点阵点(15)空间格子中,顶点,棱心,面心对格子的贡献分别为(A)1/8 ,1/4 ,1/2(B)1,1,1(C)1, 1/2 ,1/416)当Laue方程被满足时,空间点阵中被平移群Tmnp=ma +nb +pc所概括的任意两点阵点之间的波程差的波数为(A)mh+nk+pl(B)m+n+p(C)h+k+l(17)晶面作为等程面的条件是(A)h=nh*,k=nk*,l=nl*(n为整数)(B)h=mh*,k=nk*,l=pl*(m,n,p为整数)(C)h=rh*,k=sk*,l=tl*(r,s,t为分数)第七章金属晶体与离子晶体的结构(1)在离子晶体中,决定正离子配位数的关键因素是(A)正负离子的半径比(B)正负离子的电价比(C)负离子的电负性之比(2)对于二元离子晶体,下列哪一式成立:(A) n+/n-=Z-/Z+=CN-/CN+(B)n-/n+Z-/Z+=CN-/CN+(C)n+/n-=Z-/Z+=CN+/CN_(3)马德隆(madelung)常数与离子晶体的哪种因素有关:(A)化学组成(B)晶体结构型式(C)离子键长(4)Ge晶体(A4,即金刚石的结构)的空间利用率(堆积系数)小于W晶体(A2),它们的晶胞中的原子数目是:(A)Ge<W (B)Ge>W (C)Ge=W (5) NaCl与 CaF2晶体的相同之处是:(A)结构单元(B)负离子堆积方式(C)点阵型式(6)4:4是下列哪一种晶体的CN+/CN-:(A)CsCl (B)NaCl (C)六方ZnS(7)对于CaF2晶体,“简单立方”一词描述的是它的(A)负离子的堆积方式(B)点阵型式(C)正离子的堆积方式(8)某种离子晶体AB被称为NaCl型,这指的是(A)它的化学组成(B)它的结构型式(C)它的点阵型式(9)有的书说CaF2晶体是立方面心堆积中的全部四面体空隙被占据,有的书中却说是简单立方堆积中的半数立方体空隙被占据,说法不一的原因是(A)前一种说法错了(B)后一种说法错了(C)这是分别指正,负离子堆积。
结构化学复习题一、选择填空题第一章量子力学基础知识1.实物微粒和光一样,既有性,又有性,这种性质称为性。
2.光的微粒性由实验证实,电子波动性由实验证实。
3。
电子具有波动性,其波长与下列哪种电磁波同数量级?(A)X射线 (B)紫外线(C)可见光(D)红外线4.电子自旋的假设是被下列何人的实验证明的?(A)Zeeman (B)Gouy (C)Stark (D)Stern—Gerlach5.如果f和g是算符,则(f+g)(f-g)等于下列的哪一个?(A)f2-g2; (B)f2—g2-fg+gf; (C)f2+g2; (D)(f—g)(f+g)6.在能量的本征态下,下列哪种说法是正确的?(A)只有能量有确定值;(B)所有力学量都有确定值;(C)动量一定有确定值; (D)几个力学量可同时有确定值;7.试将指数函数e±ix表示成三角函数的形式—----—8.微观粒子的任何一个状态都可以用来描述; 表示粒子出现的概率密度.9。
Planck常数h的值为下列的哪一个?(A)1.38×10-30J/s (B)1。
38×10—16J/s (C)6。
02×10—27J·s (D)6。
62×10—34J·s 10。
一维势箱中粒子的零点能是答案: 1。
略。
2。
略. 3.A 4.D 5。
B 6。
D 7.略 8。
略 9。
D 10.略第二章原子的结构性质1.用来表示核外某电子的运动状态的下列各组量子数(n, 1, m, m s)中,哪一组是合理的?(A)2,1,-1,—1/2; (B)0,0,0,1/2;(C)3,1,2,1/2; (D)2,1,0,0。
2.若氢原子中的电子处于主量子数n=100的能级上,其能量是下列的哪一个:(A)13.6Ev; (B)13。
6/10000eV; (C)—13.6/100eV;(D)-13.6/10000eV; 3。
氢原子的p x状态,其磁量子数为下列的哪一个?(A)m=+1; (B)m=—1;(C)|m|=1; (D)m=0;4。
一、填空题1. 已知:类氢离子He +的某一状态Ψ=0202/30)22()2(241a re a r a -⋅-⋅π此状态的n ,l ,m 值分别为_____________________.其能量为_____________________,角动量平方为_________________。
角动量在Z 轴方向分量为_________。
2. He +的3p z 轨道有_____个径向节面, 有_____个角度节面。
3。
如一原子轨道的磁量子数m=0,主量子数n ≤2,则可能的轨道为__________。
二、选择题1. 在外磁场下,多电子原子的能量与下列哪些量子数有关( B )A. n,l B 。
n ,l ,m C. n D 。
n ,m2. 用来表示核外某电子运动状况的下列各组量子数(n,l ,m ,ms )中,哪一组是合理的(A ) A 。
(2,1,—1,—1/2) B 。
(0,0,0,1/2)C 。
(3,1,2,1/2)D 。
(2,1,0,0)3. 如果一个原子的主量子数是4,则它( C )A. 只有s 、p 电子B. 只有s 、p 、d 电子C 。
只有s 、p 、d 和f 电子D 。
有s 、p 电子4. 对氢原子Φ方程求解,下列叙述有错的是( C )。
A. 可得复函数解Φ=ΦΦim m Ae )(。
B. 由Φ方程复函数解进行线性组合,可得到实函数解.C. 根据Φm (Φ)函数的单值性,可确定|m|=0。
1.2 (I)D 。
根据归一化条件1)(220=ΦΦΦ⎰d m π求得π21=A5。
He +的一个电子处于总节面数为3的d 态问电子的能量应为 ( D )。
A.1 B 。
1/9 C.1/4 D.1/166。
电子在核附近有非零几率密度的原子轨道是( D ).A.Ψ3PB. Ψ3dC.Ψ2P D 。
Ψ2S7。
氢原子处于下列各状态 (1)ψ2px (2) ψ3dxz (3) ψ3pz (4) ψ3dz 2 (5)ψ322 ,问哪些状态既是M 2算符的本征函数,又是M z 算符的本征函数?CA. (1) (3)B. (2) (4)C. (3) (4) (5) D 。
结构化学习题集习题1:1.1 某同步加速器,可把质子加速至具有100×109eV的动能,试问此时质子速度多大?1.2 计算波长为600nm(红光),550nm(黄光),400nm(蓝光)和200nm(紫光)光子的能量。
1.3 在黑体辐射中,对一个电热容器加热到不同温度,从一个针孔辐射出不同波长的极大值,试从其推导Planck常数的数值:T/℃1000 1500 2000 2500 3000 3500l max/nm 2181 1600 1240 1035 878 7631.4 计算下列粒子的德布洛意波长(1) 动能为100eV的电子;(2) 动能为10eV的中子;(3) 速度为1000m/s的氢原子.1.5 质量0.004kg子弹以500ms-1速度运动,原子中的电子以1000ms-1速度运动,试估计它们位置的不确定度, 证明子弹有确定的运动轨道, 可用经典力学处理, 而电子运动需量子力学处理。
1.6 用测不准原理说明普通光学光栅(间隙约10-6m)观察不到10000V电压加速的电子衍射。
1.7 小球的质量为2mg,重心位置可准确到2μm,在确定小球运动速度时,讨论测不准关系有否实际意义?1.8 判断下列算符是否是线性\厄米算符:(1)(2)(3)x1+x2(4)1.9 下列函数是否是的本征函数?若是,求其本征值:(1)exp(ikx)(2)coskx (3)k (4)kx1.10 氢原子1s态本征函数为(a0为玻尔半径),试求1s态归一化波函数。
1.11 已知一维谐振子的本征函数为其中a n和α都是常数,证明n=0与n=1时两个本征函数正交。
1.12 若是算符的本征函数(B为常数), 试求α值,并求其本征值。
1.13 计算Poisson 方括,1.14 证明Poisson 方括的下列性质:(1)(2)1.15 角动量算符定义为:, ,证明: (1) (2)1.16 在什么条件下?1.17 设体系处于状态中,角动量和M Z有无定值。
原子结构习题一、填空题(在划线处填上正确答案)2101、在直角坐标系下,Li 2+ 的Schr ödinger 方程为________________ 。
2102、已知类氢离子 He +的某一状态波函数为:()022-023021e 222241a r a r a ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛π 则此状态的能量为 )(a ,此状态的角动量的平方值为 )(b ,此状态角动量在 z 方向的分量为 )(c ,此状态的 n , l , m 值分别为 )(d ,此状态角度分布的节面数为 )(e 。
2103、写出 Be 原子的 Schr ödinger 方程 。
2104、已知类氢离子 He +的某一状态波函数为ψ= ()022-023021e 222241a r a r a ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛π 则此状态最大概率密度处的 r 值为 )(a ,此状态最大概率密度处的径向分布函数值为 )(b ,此状态径向分布函数最大处的 r 值为 )(c 。
2105、原子轨道是原子中的单电子波函数, 每个原子轨道只能容纳 ______个电子。
2106、H 原子的()φr,θψ,可以写作()()()φθr R ΦΘ,,三个函数的乘积,这三个函数分别由量子数 (a) ,(b), (c) 来规定。
2107、给出类 H 原子波函数()θa r Z a Zr a Z a Zr cos e6812032022023021-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛π=ψ 的量子数 n ,l 和 m 。
2108、H 原子 3d 电子轨道角动量沿磁场方向分量的可能值 。
2109、氢原子的波函数131321122101-++=ψψψψc c c其中 131211210-ψψψψ和,,都是归一化的。
那么波函数所描述状态的能量平均值为(a ),角动量出现在 π22h 的概率是(b ),角动量 z 分量的平均值为(c )。
2110、氢原子中,归一化波函数131321122101-++=ψψψψc c c ( 131211210-ψψψψ和,,都是归一化的 )所描述的状态, 其能量平均值是 (a )R , 能量 -R /4 出现的概率是(b ),角动量平均值是(c )π2h , 角动量π22h 出现的概率是(d ),角动量 zπ2,角动量 z 分量π22h 出现的概率是(f )。
习题选答习题11.2 600nm(红), 3.31³10-19J, 199KJ²mol-1550nm(黄), 3.61³10-19J, 218KJ²mol-1400nm(蓝), 4.97³10-19J, 299KJ²mol-1200nm(紫), 9.93³10-19J, 598KJ²mol-11.3 6.51³10-34J²s1.4 (1)100eV电子 122.6pm(2)10eV中子 9.03pm(3)1000m/sH原子0.399nm1.5 子弹~10-35m, 电子~10-6m1.6 Dx=1.226³10-11m<< 10-6m1.8 (2),(4) 是线性厄米算符.1.9 (1) exp(ikx)是本征函数, 本征值ik.(2), (4)不是.1.101.12 , 本征值为±√B1.131.16 当两算符可对易, 即两物理量可同时测定时,式子成立.1.18 (1) (2) <x>= l/2, (3) <P x>=01.19 0.4l~0.6l间, 基态出现几率0.387,第一激发态出现几率0.049.1.20 (1) 基态n x=n y=n z=1 非简并(2) 第一激发态211, 121, 112 三重简并(3) 第二激发态221, 122, 212 三重简并1.23 λ=239nm.习题22.1 (1) E0=-13.6eV, E1=-3.4eV.(2) <r>=3a0/2 , <P>=02.4 ψ1s波函数在r=a0, 2a0处比值为2.718ψ2在r=a0, 2a0处比值为7.389.2.6 3d z2 , 3d xy各有2个节面: 3d z2是2个圆锥节面, 3d xy是XZ,YZ面.2.9 (1) 2p轨道能量为-3.4eV 角动量为(2) 离核平均距离为5a0.(3) 极大值位置为4a0.2.102.11 ; He+ a0/2, F8+ a0/9.2.13(1)径向分布函数最大值离核距离a0/3,(2)电子离核平均距离为a0/2.(3) 因无电子相关, 2s, 2p态能量相同., 磁矩为2.15 轨道角动量为12.17 (1) N 原子价电子层半充满, 电子云呈球状分布.(2)基态谱项为4S, 支项为4S3/2(3)2p23s1光谱项: p2—3P,1D,1S, s1—2S, 偶合后4P, 2P, 2D, 2S.2.19 Al S K Ti Mn基态谱项2P 3P 2S 3F 6S光谱支项2P1/23P22S1/2 3F2 6S5/22.20 C(2p13p1): 3D, 1D, 3P, 1P, 3S, 1S.Mg(3s13p1): 3P,1PTi(3d34s1): 5F,3F,5P,3P,3H,1H,3G,1G,3F,1F,3D,1D,3P,1P2.21 3d84s2态含3F4谱项2.22 I1=5.97eV , I2=10.17eV .习题33.2 CO: C∞, ∞个σv ;CO2: C∞, ∞个C2, ∞个σv, σh.3.3 顺丁二烯: C2, σv, σv/;反丁二烯: C2, σh, I3.4 (1)菱形: C2, C2', C2”, σh " D2h;(2) 蝶形: C2, σv, σv' "C2v(3) 三棱柱: C3,3C2,3σv, σh" D3h;(4) 四方锥: C4, 4σv" C4v(5) 圆柱体: C∞, ∞个C2, ∞个σv, σh. "D∞h(6) 五棱台: C5,5σv" C5v3.53.6 E,{C31, C32},{C2,C2',C2”},σh, {S31,S32}, {σv, σv', σv”}3.73.8 苯D6h; 对二氯苯D2h ; 间二氯苯C2v; 氯苯C2v; 萘D2h3.9 SO2 C2v, P4 T d, PCl5 D3h, S6(椅式) D3d,S8 D4d, Cl2 D∞h3.10 ①D2h②C2v ③D3h④C2v⑤D2h3.14 CoCl4F23+分子有2种异构体, 对二氟异构体为D4h, 邻二氟异构体为C2v3.15 ①C s②C2v③C s④C4v⑤D2h⑥C2v⑦C i⑧C2h3.16 (1) C60 I h子群: D5d, D5, C5v, C5, D3h, D3, C3v, C3等.(2) 二茂铁D5d,子群D5, C5v等.(3)甲烷T d, 子群C3v, C3, D2d, D2等.3.17 ①C3O2直线形D∞h②双氧水C2③NH2NH2鞍马型C2V ④F2O V形C2v ⑤NCCN 线形D∞h3.18 8.7(邻), 5.0³10-30C﹒m (间), 0 (对)3.20 ①~⑧均无旋光性; ①、③船式、⑦、⑧有偶极矩, 其余无。
一 选 择 题1首先提出能量量子化假定的科学家是 ( ) (A) Einstein (B) Bohr (C) Schrodinger(D) Planck2微粒在间隔为1eV 的二能级之间跃迁所产生的光谱线的波数应为( ) (A) 4032cm -1(B) 8066cm -1(C) 16130cm -1(D) 2021cm -1(1eV=1.602×10-19J)3 以下条件不是合格波函数的必备条件是( ) (A) 连续 (B) 单值 (C) 归一 (D) 有限 4 波函数ψ是 ( ) (A) 几率密度 (B) 几率 (C) 电子云 (D) 原子轨道 5 波函数|ψ| 2 是( )(A) 几率密度(B) 几率(C) 电子云(D) 原子轨道6 一维势箱中运动的粒子的波函数为ψ(x ),那么该粒子在2l 和43l间出现的概率为( )(A) 22|)4/3(||)2/(|l l ψψ+ (B)⎰4/32/2d |)(|l l x x ψ(C)⎰4/32/d )(l l x x ψ(D) ⎪⎭⎫⎝⎛-⨯243|)(|2l l x ψ7假设⎰=ττψ5d 2,那么ψ的归一化系数是 ( )(A) 5(B) 1/5 (C)5 (D) 5/1 8 立方势箱的能量2243mlh E =,粒子的状态数是( )(A) 1 (B) 2 (C) 3(D) 6 9 以下函数中哪些是d/dx 的本征函数( )(A) cos kx (B) sin kx (C) e ikx (D) x 2 10 一个2p 电子可以被描述为以下6 组量子数之一① 2,1,0,1/2 ② 2,1,0,-1/2 ③ 2,1,1,1/2 ④ 2,1,1,-1/2⑤ 2,1,-1,1/2⑥ 2,1,-1,-1/2氧的电子层结构为1s 22s 22p 4,试指出4个2p 电子在以下组合中正确的有( ) (A) ①②③⑤ (B) ①②⑤⑥ (C) ②④⑤⑥ (D) ③④⑤⑥ 11 B 原子的基态为1s 22s 22p 1,B 原子的原子轨道有多少个 ( ) (A) 2个 (B) 3个 (C) 5个 (D) 无穷多个 12氢原子的p x 态,其磁量子数是以下的哪一个( ) (A) 1 (B) -1 (C) |±1| (D) 013 B 原子的基态为1s 22s 22p 1,其光谱项是哪一个( )(A) 2P(B) 1S(C) 2D(D) 3P14 He 原子的基态波函数是哪一个 ( )(A) )2()1()2()1(s 1s 1ββψψ(B) )2()1()2()1(s 1s 1ααψψ(C) )]2()1()2()1()[2()1(s 1s 1αββαψψ+ (D) )]2()1()2()1()[2()1(s 1s 1αββαψψ-15 ψ,R ,Θ,Φ皆已归一化,那么以下式中哪些成立( )(A) ⎰=π021d sin ||θθΘ(B) ⎰⎰=π20π021d d ||ϕθΘΦ(C)⎰∞=021d ||r R(D)⎰∞=021d ||r ψ16 Be 3+的一个电子所处的轨道,能量等于氢原子1s 轨道能,该电子所处的轨道可能是( )(A) 1s(B) 2s(C) 3p(D) 4d17 双原子分子AB ,如果分子轨道中的一个电子有90%的时间在A 原子轨道上,10%的时间在B 的原子轨道上,描述该分子轨道的表达式为:( )(A)b a φφψ1.09.0+=(B) b a φφψ9.01.0+= (C)b a φφψ1.09.0+=(D) b a φφψ221.09.0+=18由n 个原子轨道形成杂化原子轨道时,以下哪一个说法是正确的( )(A) 杂化原子轨道的能量低于原子轨道 (B) 杂化原子轨道的成键能力强(C) 每个杂化原子轨道中的s 成分必须相等 (D) 每个杂化原子轨道中的p 成分必须相等19两个原子轨道形成分子轨道时,以下哪一个条件是必须的( )(A) 两个原子轨道能量相同(B) 两个原子轨道的主量子数相同 (C) 两个原子轨道对称性相同(D) 两个原子轨道相互重叠程度最大 20价键理论用变分法处理氢分子,a 、b 分别表示两个氢原子,1、2分别表示两个电子,选用的试探函数是( )(A) )1()1(b a c φφ=Φ(B) )1()1(21b a c c φφ+=Φ(C) )2()2()1()1(21b a b a c c φφφφ+=Φ(D) )1()2()2()1(21b a b a c c φφφφ+=Φ 21分子轨道理论用变分法处理氢分子,a 、b 分别表示两个氢原子,1、2分别表示两个电子,选用的试探函数是( )(A) )1()1(b a c Φφφ=(B) )1()1(21b a c c Φφφ+=(C) )2()2()1()1(21b a b a c c Φφφφφ+=(D) )1()2()2()1(21b a b a c c Φφφφφ+=22当φi 代表某原子的第 i 个原子轨道时,)21(1,n ,,k φc ψn i i ki k ==∑=的意义是 ( ) (A) 第k 个原子轨道 (B) 第k 个杂化轨道 (C) 第k 个分子轨道(D) 第k 个休克尔分子轨道23 当φi 代表i 原子的某个原子轨道时,)21(1,n ,,k φc ψn i i ki k ==∑=的意义是 ( ) (A) 第k 个原子轨道(B) 第k 个杂化轨道(C) 第k 个分子轨道 (D) 第k 个休克尔分子轨道24 用价电子对互斥理论判断以下键角关系中,哪一个是不正确的 ( )(A) NH 3的键角大于H 2O 的键角 (B) OF 2的键角小于OCl 2的键角(C) NH 3的键角小于PH 3的键角(D)C HHO中O-C-H 键角大于H-C-H 键角25用紫外光照射某双原子分子,使该分子电离出一个电子并发现该分子的核间距变短了,该电子是( )(A) 从成键MO 上电离出的 (B) 从非键MO 上电离出的 (C) 从反键MO 上电离出的 (D) 不能断定从哪个轨道上电离出的 26以下分子中哪一个磁矩最大( ) (A) N 2+ (B) Li 2 (C) B 2(D) -2O27以下分子中含有大П键的是哪一个( ) (A) OCCl 2(B) HCN(C) H 2C=C=CH 2(D) C 2H 5OH28 在八面体场中没有上下自旋络合物之分的组态是 ( )(A) d 3 (B) d 4 (C) d 5 (D) d 6 (E) d 7 29 以下配位离子那个分裂能较大 ( ) (A) -36][FeF (B) +262])O [Mn(H (C) -46])[Fe(CN (D) -24][CuCl 30 以下配位离子那个是低自旋的 ( ) (A) -36][FeF (B) +262])O [Mn(H (C) -46])[Fe(CN (D) -24][CuCl 31 以下配位离子那个是反磁性的( ) (A) -36][FeF (B) +262])O [Mn(H (C) -46])[Fe(CN(D) -24][CuCl32 Fe 原子的电子组态是3d 64s 2,形成水合物[Fe(H 2O)6]2+,其磁矩为( )(A) 0(B) B 24μ(C) B 35μ(D)B 48μ 33某金属离子在弱八面体场中磁矩为4.9μB ,在强八面体场中磁矩为0,该离子是( ) (A) Cr(Ⅲ) (B) Mn(Ⅱ) (C) Co(Ⅱ) (D) Fe(Ⅱ)34 同一中心离子的以下构型配合物哪个分裂能大 ( ) (A) 八面体 (B) 四面体(C) 平面正方形35 同一中心离子,以下那种配体分裂能大( ) (A) Cl -(B) NH 3(C) H 2O (D) CN -36以下配位离子中,哪个构型会发生畸变( ) (A)+262O)Cr(H(B) +362O)Cr(H (C)+262O)Mn(H(D) +362O)Fe(H 37 Fe 3+的电子构型为3d 6,-46])[Fe(CN 的CFSE 是多少( )(A) 0(B) 4Dq(C) 12Dq(D) 24Dq38 化合物K 3[FeF 6]的磁矩为5.9μB ,而K 3[Fe(CN)6]的磁矩为1.7μB ,这种差异的原因是( )(A) 铁在这两种化合物中有不同的氧化数(B) CN -比 F -引起的配位场分裂能更大(C) 氟比碳或氮具有更大的电负性(D) 这两种化合物的构型不同39 (1)六氟合铁(Ⅱ)(2)六水合铁(Ⅱ)(3)六水合铁(Ⅲ)三种配合物的d-d 跃迁频率大小顺序( ) (A) 321ννν>> (B) 123ννν>> (C) 312ννν>> (D) 213ννν<< 40 Ni 〔3d 84s 2〕与CO 形成羰基配合物Ni(CO)n ,式中n 是 ( ) (A) 6(B) 3(C) 4(D) 541 Ni 与CO 形成羰基配合物Ni(CO)4时,CO 键会( ) (A) 不变(B) 加强(C) 削弱(D) 断裂42以下分子或离子作为配位体时, 与中心离子只形成σ键的是 ( ) (A) Cl - (B) CN - (C) NH 3 (D) NO 2 43 在s 轨道上运动的一个电子的总角动量为( )(A) 0 (B)2πh 23 (C) 2πh 21 (D) 2πh 2344 ,Y 是归一化的,以下等式中哪个是正确的( )(A) 34d d sin 02020,1π=⎰⎰ππφθθY(B)1d 2=r ψ(C)()()r r r τφθr R φθd d ,,22200=⎰⎰2π=π=ψ (D) π=⎰⎰4d d sin cos 2φθθθ45 对于氢原子的n s 态,以下哪个是正确的:( )(A)τr τψψd 4d 222⎰⎰π= (B)τr τR ψd 4d 222⎰⎰π=(C)φθθr r τR ψd d sin d d 222⎰⎰⎰⎰= (D)22224ns ψR r r π=46 就氢原子波函数x ψp 2和x ψp 4两状态的图像,以下说法错误的选项是( ) (A)原子轨道的角度分布图相同 (B)电子云图相同 (C)径向分布图不同 (D)界面图不同 47 以下分子的键长次序正确的选项是 ( )(A) OF -> OF > OF + (B) OF > OF -> OF + (C) OF +> OF > OF - (D) OF - > OF +> OF48 假设以x 轴为键轴,以下何种轨道能与p y 轨道最大重叠? ( )(A) s (B) d xy (C) p z (D) d xz49 根据MO 理论, 正八面体络合物中的d 轨道能级分裂定义为( )(A) E (e g )-E(t 2g ) (B) E (e g *)-E (t 2g ) (C) E (t 2g )-E (e g ) (D) E (t 2g *)-E(e g *)50 等性的d 2sp 3杂化的杂化轨道波函数的一般形式为( )(A) d3/1p 2/1s 6/1ψψψψ++= (B) d 3/1p 4/1s 2/1ψψψψ++=(C) d3/1p 2/1s 6/1ψψψψ++= (D) d3/1p 6/1s 2/1ψψψψ++=51 以下氯化物中, 哪个氯的活泼性最差? ( )(A) C 6H 5Cl (B) C 2H 5Cl (C) CH 2═CHCl (D) C 6H 5CH 2Cl52考虑电子的自旋, 氢原子n =3的简并波函数有几种 ( )(A) 3 (B) 9 (C) 18 (D) 153 以下络合物的几何构型哪一个偏离正八面体最大 ( )(A) 六水合铜(Ⅱ) (B) 六水合钴(Ⅱ) (C) 六氰合铁(Ⅲ) (D) 六氰合镍(Ⅱ)54 单核羰基络合物 Fe(CO)5的立体构型为 ( ) (A) 三角双锥 (B) 四面体 (C) 正方形 (D) 八面体55 四羰基镍的构型应为 ( ) (A)正八面体 (B)平面三角形 (C)四面体 (D)正方形56 H 2+的Rr r Hb a 11121ˆ2+--∇-=, 此种形式已采用了以下哪几种方法 ( )(A) 波恩-奥本海默近似 (B) 单电子近似(C) 原子单位制 (D) 中心力场近似57 对于"分子轨道"的定义,以下表达中正确的选项是 ( )(A) 分子中电子在空间运动的波函数 (B) 分子中单个电子空间运动的波函数 (C) 分子中单电子完全波函数(包括空间运动和自旋运动)(D) 原子轨道线性组合成的新轨道58 含奇数个电子的分子或自由基在磁性上 ( )(A) 一定是顺磁性 (B) 一定是反磁性 (C) 可为顺磁性或反磁性59 R n,l (r )-r 图中,R = 0称为节点,节点数有 ( ) (A) (n -l ) 个 (B) (n -l -1) 个 (C) (n -l +1) 个 (D) (n -l -2) 个 60 物质颜色的产生是由于吸收了 ( ) (A) 红外光 (B) 微波 (C) 紫外光 (D) 可见光61 Pauli 原理的正确表达是 ( ) (A) 电子的空间波函数是对称的 (B) 电子的空间波函数是反对称的 (C) 电子的完全波函数是对称的 (D) 电子的完全波函数是反对称的选择题参考答案 1 D 2 B 3 C 4 D 5 A 6 B 7 D 8 C 9 C 10 A 、C 11 D 12 C 13 A14 D15 A 16 D 17 C 18 B19 C20 D 21 B22 B23 C 、D24 C 25C 26 C27 A 28 A 29 C30 C31 C 32 B 33 D 34 C 35 D 36 A 37 D 38 B 39 B 40 C 41 C 42 C 43 B 44 C 45 D 46 B 47 A 48 B49 B 50 A 51 A 52 C 53 A 54 A55 C56 A 、C57 B 58 A59 B60 D61 D二 填 空 题1 具有100eV 能量的电子,其德布罗意波长是———————————。
第二章原子结构与原子光谱赖才英070601319 何雪萍070601319 陈小娟070601319陈杉杉070601316 肖丽霞070601318 王水金0706013471.n、l、m三个量子数的取值范围、相互关系与物理意义。
取值范围及相互关系:n=1、2、3……共n个l=0、1、2……n-1共n个m=0、±1、±2……±l共2l+1个物理意义:主量子数n决定体系能量的高低、对单电子原子:En=-μe2/8ε2h2*Z2/n2=-13.6Z2/n2(eV)角量子数l决定电子的轨道角动量绝对值|M|=l*(l+1) *h/2π磁量子数m决定电子的轨道角动量在磁量子数方向上的分量Mz:Mz=m*h/2π2.为什么P+1与P-1不是分别对应Px与Py?答:决定复波函数的三个量子数都是确定的,可以用两种方式表示。
实波函数Ψnl| m|的磁量子数仅对应| m|,波函数中既有+| m|的成分又有-| m|的成分。
说明仅在m=0时,复波函数和实波函数是一致的,在m≠0时,是一组复波函数对应于一组实波函数,而不是一一对应的关系。
3.如何由氢原子空间波函数确定轨道的名称,求出En、|M|与Mz等力学量的确定值或平均值。
氢原子空间波函数为:ψ1、0、0=1/π*(Z/a)3/2*e-zr/a=1/π*(1/a)3/2*e-r/a∵n=1、l=0、m=0∴轨道名称应是:1S 此时En=-13.6*Z2/n2(eV)=-13.6ev∵|M|=l*(l+1) *h/2π=0Mz= m*h/2π=04.研究多电子原子结构碰到什么困难?作了那些近似?用了什么模型?答:困难:多电子原子中存在着复杂的电子间瞬时相互作用,其薛定谔方程无法进行变数分离,不能精确求解;多电子原子中存在能级倒臵,一般用屏蔽效应和钻穿效应解释,但是由于这两个效应都是定性的效应,相互又是关联的,所以,定量地解释能级倒臵的原因较为困难;用SCF法似乎解决了问题,但实际上方程仍无法求解,因为解方程需知ψj,而ψi也是未知的.近似:完全忽略电子间的排斥势能即零级近似;体系近似波函数;体系近似总能量;中心势场是近似的球对称势场;在SCF法中,每个电子的运动与其他电子的瞬时坐标无关,即在多电子原子中,每个电子均在各自的原子轨道上,彼此”独立”地运动.模型:中心势场模型是将原子中其他电子对第i个电子的排斥作用看成是球对称的,只与径向有关的力场。
《结构化学》第二章习题2001 在直角坐标系下, Li 2+的Schr ödinger 方程为________________ 。
2002 已知类氢离子 He +的某一状态波函数为:()022-023021e 222241a r a r a ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛π 则此状态的能量为)(a , 此状态的角动量的平方值为)(b , 此状态角动量在z 方向的分量为)(c , 此状态的n ,l ,m 值分别为)(d , 此状态角度分布的节面数为)(e 。
2003 已知 Li 2+的 1s 波函数为32130s1e 27a r -α⎥⎦⎤⎢⎣⎡π=ψ(1)计算 1s 电子径向分布函数最大值离核的距离; (2)计算 1s 电子离核平均距离;(3)计算 1s 电子概率密度最大处离核的距离。
(10!d e +∞-=⎰n ax n a n x x )2004 写出 Be 原子的 Schr ödinger 方程。
2005 已知类氢离子 He +的某一状态波函数为()02-023021e 222241a r a r a ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛π 则此状态最大概率密度处的r 值为)(a , 此状态最大概率密度处的径向分布函数值为)(b , 此状态径向分布函数最大处的r 值为)(c 。
2006 在多电子原子中,单个电子的动能算符均为2228∇π-mh 所以每个 电子的动能都是相等的,对吗? ________ 。
2007 原子轨道是指原子中的单电子波函数,所以一个原子轨道只能容纳一个电子,对吗? ______ 。
2008 原子轨道是原子中的单电子波函数,每个原子轨道只能容纳 ______个电子。
2009 H 原子的()φr,θψ,可以写作()()()φθr R ΦΘ,,三个函数的乘积,这三个函数分别由量子数(a),(b),(c)来规定。
2010 已知ψ= Y R ⨯ = ΦΘ⨯⨯R ,其中Y R ,,,ΦΘ皆已归一化,则以下式中哪些成立?( )(A)⎰∞=021d r ψ(B)⎰∞=021d r R (C)⎰⎰∞=0π2021d d φθY (D)⎰=π021d sin θθΘ 2011 对氢原子Φ方程求解, (A) 可得复数解()φΦm A m i exp =(B) 根据归一化条件数解1d ||202=⎰πφm Φ,可得 A=(1/2π)1/2(C) 根据m Φ函数的单值性,可确定│m │= 0,1,2,…,l(D) 根据复函数解是算符Mz ˆ的本征函数得M z= mh /2π (E) 由Φ方程复数解线性组合可得实数解以上表达何者有错?( )2012 求解氢原子的Schr ödinger 方程能自然得到n ,l ,m ,m s 四个量子数,对吗? 2013解H 原子()φΦ方程式时,由于波函数φm i e 要满足连续条件,所以只能为整数,对吗?2014zyxp 4p 4p 4,,ψψψ是否分别为:410141411,,ψψψ-2015 2p x , 2p y , 2p z 是简并轨道,它们是否分别可用三个量子数表示: 2p x : (n =2,l =1,m =+1) 2p y : (n =2,l =1,m =-1) 2p z : (n =2,l =1,m =0 ) 2016 给出类 H 原子波函数()θa r Z a Zr a Z a Zr cos e6812032022023021-⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛π=ψ的量子数n ,l 和m 。
结构化学习题集习题1:1.1 某同步加速器,可把质子加速至具有100×109eV的动能,试问此时质子速度多大?1.2 计算波长为600nm(红光),550nm(黄光),400nm(蓝光)和200nm(紫光)光子的能量。
1.3 在黑体辐射中,对一个电热容器加热到不同温度,从一个针孔辐射出不同波长的极大值,试从其推导Planck常数的数值:T/℃1000 1500 2000 2500 3000 3500l max/nm 2181 1600 1240 1035 878 7631.4 计算下列粒子的德布洛意波长(1) 动能为100eV的电子;(2) 动能为10eV的中子;(3) 速度为1000m/s的氢原子.1.5 质量0.004kg子弹以500ms-1速度运动,原子中的电子以1000ms-1速度运动,试估计它们位置的不确定度, 证明子弹有确定的运动轨道, 可用经典力学处理, 而电子运动需量子力学处理。
1.6 用测不准原理说明普通光学光栅(间隙约10-6m)观察不到10000V电压加速的电子衍射。
1.7 小球的质量为2mg,重心位置可准确到2μm,在确定小球运动速度时,讨论测不准关系有否实际意义?1.8 判断下列算符是否是线性\厄米算符:(1)(2)(3)x1+x2(4)1.9 下列函数是否是的本征函数?若是,求其本征值:(1)exp(ikx)(2)coskx (3)k (4)kx1.10 氢原子1s态本征函数为(a0为玻尔半径),试求1s态归一化波函数。
1.11 已知一维谐振子的本征函数为其中a n和α都是常数,证明n=0与n=1时两个本征函数正交。
1.12 若是算符的本征函数(B为常数), 试求α值,并求其本征值。
1.13 计算Poisson 方括,1.14 证明Poisson 方括的下列性质:(1)(2)1.15 角动量算符定义为:, ,证明: (1) (2)1.16 在什么条件下?1.17 设体系处于状态中,角动量和M Z有无定值。
若有其值是多少?若无,求其平均值。
1.18 已知一维势箱粒子的归一化波函数为n=1, 2, 3 ……(其中l为势箱长度)计算(1)粒子的能量(2)坐标的平均值(3)动量的平均值1.19 试比较一维势箱粒子(波函数同上题)基态(n=1)和第一激发态(n=2)在0.4l~0.6l区间内出现的几率。
1.20 当粒子处在三维立方势箱中(a=b=c),试求能量最低的前3个能级简并度。
1.21 写出一个被束缚在半径为a的圆周上运动的质量为m的粒子的薛定锷方程,求其解。
1.22 若用一维势箱自由粒子模拟共轭多烯烃中π电子, (a)丁二烯(b)维生素A (c)胡萝卜素分别为无色、桔黄色、红色,试解释这些化合物的颜色。
1.23 若用二维箱中粒子模型, 将蒽(C14H10)的π电子限制在长700pm, 宽400pm的长方箱中,计算基态跃迁到第一激发态的波长.习题2:2.1 已知氢原子的归一化波函数为(1) 试求其基态能量和第一激发态能量。
(2)计算坐标与动量的平均值。
2.2 试求氢原子由基态跃迁到第一激发态(n=2)时光波的波长。
2.3 试证明氢原子1s轨道的径向分布函数极大值位于。
2.4 计算氢原子在和处的比值。
2.5 已知s和p z轨道角度分布的球谐函数分别为:,,试证明s和p z轨道相互正交。
2.6 试画出类氢离子和3d xy轨道轮廓,并指出其节面数及形状。
2.7 原子的5个d轨道能量本来是简并的,但在外磁场的作用下,产生Zeeman效应(能量分裂),试作图描述这种现象。
2.8 试证明球谐函数Y10、Y21、Y32是方程的本征函数。
2.9 已知氢原子2p z轨道波函数为①计算2p z轨道能量和轨道角动量;②计算电子离核的平均距离;③径向分布函数的极值位置。
2.10已知氢原子2s 轨道波函数为试求其归一化波函数。
2.11 类氢离子的1s轨道为:,试求径向函数极大值离核距离,试问He+与F6+的极大值位置。
2.12 证明类氢离子的电子离核的平均距离为2.13 写出Li2+离子的Schrödinger方程,说明各项的意义,并写出Li2+离子2s态的波函数①计算径向分布函数最大值离核距离;②计算1s电子离核的平均距离;③比较2s与2p态能量高低。
2.14 画出4f轨道的轮廓图, 并指出节面的个数与形状.2.15 写出Be原子的Schrödinger方程,计算其激发态2s12p1的轨道角动量与磁矩。
2.16 根据Slater规则, 说明第37个电子应填充在5s轨道,而不是4d或4f轨道.2.17 已知N原子的电子组态为1s22s22p3①叙述其电子云分布特点;②写出N的基态光谱项与光谱支项;③写出激发态2p23s1的全部光谱项。
2.18 已知C原子与O原子电子组态分别为1s22s22p2与1s22s22p4,试用推导证明两种电子组态具有相同的光谱项,但具有不同的光谱支项,简要说明原因。
2.19 写出下列原子的基态光谱项与光谱支项:Al、S、K、Ti、Mn。
2.20 写出下列原子激发态的光谱项:C[1s22s22p13p1] Mg[1s22s22p63s13p1] Ti[1s22s22p63s23p63d34s1]2.21 基态Ni原子可能的电子组态为[Ar]3d84s2或[Ar]3d94s1。
由光谱实验测定能量最低的光谱项为3F4,试判断其属于哪种组态。
2.22 根据Slater规则,求Ca原子的第一、二电离能。
2.23 计算Ti原子第一、二电离能。
习题33.1 寻找下列生活用品中所含的对称元素:剪刀、眼镜、铅笔(削过与未削)、书本、方桌。
3.2 CO和CO2都是直线型分子,试写出这两个分子各自的对称元素。
3.3 分别写出顺式和反式丁二稀分子的对称元素。
3.4 指出下列几何构型所含的对称元素,并确定其所属对称点群:(1)菱形(2) 蝶形(3)三棱柱(4) 四角锥(5) 圆柱体(6) 五棱台3.5 H2O属C2v点群,有4个对称元素:E、C2、、,试写出C2v点群的乘法表。
3.6 BF3为平面三角形分子,属D3h点群,请写出其12个对称元素,并将其分为6类。
3.7 二氯乙烯属C2h点群,有4个对称元素:E、C2、、i,试造出C2h点群的乘法表。
3.8 判断下列分子所属的点群:苯、对二氯苯、间二氯苯、氯苯、萘。
3.9 指出下列分子中的对称元素及其所属点群:SO2(V型)、P4(四面体)、PCl5(三角双锥)、S6(船型)、S8(冠状)、Cl2。
3.10 指出下列有机分子所属的对称点群:①②③④⑤3.11 对下列各点群加入或减少某些元素可得到什么群?①C3+i ②C3+s h③T+i ④D3d-i ⑤D4h-σh3.12 试用对称操作的表示矩阵证明:⑴⑵⑶3.13 判断下列说法是否正确,并说明理由:(1). 凡是八面体配合物一定属于O h点群(2). 异核双原子分子一定没有对称中心(3). 凡是四面体构型分子一定属于T d点群(4). 在分子点群中,对称性最低的是C1,对称性最高的是O h群3.14 CoCl63+是八面体构型的分子,假设两个配位为F原子取代,形成CoCl4F2分子,可能属于什么对称点群?3.15 环丁烷具有D4h对称,当被X或Y取代后的环丁烷属什么对称点群?①②③④⑤⑥⑦⑧3.16 找出下列分子对称性最高的点群及其可能的子群:①C60②二茂铁(交错型)③甲烷3.17 根据偶极矩数据,推测分子立体构型及其点群:①C3O2(μ=0) ②H-O-O-H (μ=6.9×10-30C·m)③H2N-NH2(μ=6.14×10-30C·m) ④F2O (μ=0.9×10-30C·m)⑤N≡C-C≡N(μ=0)3.18 已知连接苯环上C-Cl键矩为5.17×10-30C·m,C-CH3键矩为-1.34×10-30C·m,试推算邻位、间位、对位C6H4ClCH3的偶极矩(实验值分别为4.15×10-30、5.49×10-30、6.34×10-30C·m)3.19 请判断下列点群有无偶极矩、旋光性:3.20 指出下列分子所属的点群,并判断其有无偶极矩、旋光性①②IF5③环己烷(船式和椅式)④SO42-(四面体)⑤(平面)⑥⑦XeOF4(四方锥)⑧3.21 已知C6H5Cl 和C6H5NO2偶极矩分别为1.55D 和3.95D, 试计算下列化合物的偶极矩:(1) 邻二氯苯(2) 间二硝基苯(3) 对硝基氯苯(4) 间硝基氯苯(5) 三硝基苯3.22 已知立方烷C8H8为立方体构型,若2个H、3个H分别为Cl取代:①列出可形成的C8H6Cl2、C8H5Cl3可能的构型与所属的点群;②判别这些构型有无偶极矩、旋光性。
3.23 下列分子具有偶极矩,而不属于C nv群的是①H2O2 ②NH3③CH2Cl2④H2C=CH23.24 下列各组分子或离子中,有极性但无旋光性是①N3-②I3-③O33.25 由下列分子的偶极矩数据,推测分子的立体构型及所属的点群3.26 将分子或离子按下类条件归类:CH3CH3,NO2+, (NH2)2CO,C60,丁三烯,B(OH)3,CH4,乳酸⑴既有极性又有旋光性⑵既无极性有无旋光性⑶无极性但由旋光性⑷有极性但无旋光性3.27 对D6点群求出各表示的直积,并确定组成它们的不可约表示A1×A2, A1×B1,B1×B2,E1×E23.28 分子属D2h点群,试写π电子组成的可约表示,并将其化成不可约表示的直和。
习题44.1 根据极值条件:,以及导出4.2 写出O2、O2-、O22-的键级、键长长短次序及磁性。
4.3 按分子轨道理论说明Cl2的化学键比Cl2+强还是弱?为什么?4.4 画出CN-的分子轨道能级示意图,写出基态的电子组态,计算键级及不成对电子数。
4.5 试用分子轨道理论讨论SO分子的电子结构,说明基态时有几个不成对电子?4.6 下列AB型分子:N2、NO 、O2 、C2、F2、CN、CO哪几个是得电子变为AB-后比原来中性分子能量低,哪几个是失电子变为AB+后比原来中性分子能量低?4.7 OH分子已在星际空间发现1)试按分子轨道理论只用氧原子2p轨道和氢原子的1s轨道叠加,写出其电子组态。
2)在哪个分子轨道中有不成对电子?3)此轨道是由氧和氢的原子轨道叠加形成,还是基本上定域于某个原子上?4)已知OH的第一电离能为13.2eV、HF为16.05eV,它们的差值几乎和O原子与F原子的第一电离能(15.8eV 和18.6eV)的差值相同,为什么?4.8 用两种分子轨道记号写出O2的分子轨道。