工 程 力 学 教 案-圆轴扭转
- 格式:doc
- 大小:264.50 KB
- 文档页数:8
第9章扭转(6学时)教学目的:理解圆轴扭转的受力和变形特点,剪应力互等定理;掌握圆轴受扭时的内力、应力、变形的计算;熟练掌握圆轴受扭时的强度、刚度计算。
教学重点:外力偶矩的计算、扭矩图的画法;纯剪切的切应力;圆杆扭转时应力和变形;扭转的应变能。
教学难点:圆杆扭转时截面上切应力的分布规律;切应力互等定理,横截面上切应力公式的推导,扭转变形与剪切变形的区别;掌握扭转时的强度条件和刚度条件,能熟练运用强度和刚度计算。
教具:多媒体。
通过工程实例建立扭转概念,利用幻灯片演示和实物演示表示扭转时的变形。
教学方法:采用启发式教学,通过提问,引导学生思考,让学生回答问题。
通过例题、练习和作业熟练掌握强度和刚度计算。
本章中给出了具体情形下具体量的计算公式,记住并会使用这些公式,强调单位的统一,要求学生在学习和作业中体会。
教学内容:扭转的概念;扭转杆件的内力(扭矩)计算和画扭矩图;切应力互等定理及其应用,剪切胡克定律与剪切弹性模量;扭转时的切应力和变形,圆杆扭转时截面上切应力的分布规律;扭转杆件横截面上的切应力计算方法和扭转强度计算方法;扭转杆件变形(扭转角)计算方法和扭转刚度计算方法。
教学学时:6学时。
教学提纲:9.1 引言工程实际中,有很多构件,如车床的光杆、搅拌机轴、汽车传动轴等,都是受扭构件。
还有一些轴类零件,如电动机主轴、水轮机主轴、机床传动轴等,除扭转变形外还有弯曲变形,属于组合变形。
例如,汽车方向盘下的转向轴,攻螺纹用丝锥的锥杆(图9-1)等,其受力特点是:在杆件两端作用大小相等、方向相反、且作用面垂直于杆件轴线的力偶。
在这样一对力偶的作用下,杆件的变形特点是:杆件的任意两个横截面围绕其轴线作相对转动,杆件的这种变形形式称为扭转。
扭转时杆件两个横截面相对转动的角度,称为扭转角,一般用φ表示(图9-2)。
以扭转变形为主的杆件通常称为轴。
截面形状为圆形的轴称为圆轴,圆轴在工程上是常见的一种受扭转的杆件。
图9-1图9-2本章主要讨论圆轴扭转时的应力、变形、强度及刚度计算等问题,同时非圆截面杆进行简单介绍。
圆轴扭转实验一、试验目的⒈观察低碳钢和铸铁的扭转破坏现象, 比较其试件断口形状并分析破坏原因。
⒉测定低碳钢的剪切屈服极限, 剪切强度极限和铸铁的剪切强度极限。
⒊分析比较塑性材料(低碳钢)和脆性材料(铸铁)受扭转时的破坏特征。
二、实验设备和仪器⒈扭转实验机⒉游标卡尺三、实验原理圆轴扭转时, 横截面上各点均处于纯剪切状态, 因此常用扭转实验来测定不同材料在纯剪切作用下的机械性能。
利用实验机的自动绘图装置, 可记录T—曲线, 低碳钢的T—曲线如图3-9所示。
图 3-9扭矩在以内, 与T呈线形关系, 材料处于弹性状态, 直到试件横截面边缘处的剪应力达到剪切屈服极限, 这时对应的扭矩用表示横截面上的剪应力分布如图3-10(a)所示。
图3-10 低碳钢圆轴在不同扭矩下剪应力分布图在扭矩超过以后, 材料发生屈服形成环形塑性区, 横截面上的剪应力分布如图3-10(b)所示。
此后, 塑性区不断向圆心扩展, T—曲线稍微上升, 然后趋于平坦, 扭矩度盘上指针几乎不动或摆动所示的最小值即是扭矩, 这时塑性区占据了几乎全部截面, 横截面上剪应力分布如图3-10(c)所示。
剪切屈服极限近似等于(a)式中, , 是试件的抗扭截面系数试件继续变形, 进入强化阶段, 到达T- 趋线上的C点, 试件发生断裂。
扭矩度盘上的从动指针指出最大扭矩, 扭转剪切强度极限的计算式为(b)试件扭转时横截面上各点处于纯剪切状态如图3-11所示, 在于杆轴成±45°角的螺旋面上, 分别受到主应力为和的作用, 低碳钢的抗拉能力大于抗剪能力, 故以横截面剪断。
铸铁扭转时, 其T—曲线如图3-12所示。
从扭转开始到断裂, 近似为一直线, 故其剪切强度极限可近似地按弹性应力公式计算(c)图3-11 纯剪应力状态图3-12 铸铁T—曲线试件的断口面为与试件轴线成45°角的螺旋面。
这说明脆性材料的抗拉能力低于抗剪能力, 它的断裂是由于最大拉应力过大引起的。
第八章 圆轴的扭转工程构件一般可分为三类。
第四章已指出:杆是某一方向尺寸远大于其它二方向尺寸的构件,若杆件的轴线为直线,则称为直杆。
此外,若构件在某一方向的尺寸远小于其它二方向的尺寸,称之为板。
若构件在x 、y 、z 三个方向的尺寸具有相同的数量级,则称为块体。
本课程主要讨论直杆,这是一种最简单的构件。
如同4.4节所述,在空间任意力系的作用下,杆件截面内力的最一般情况是六个分量都不为零,其变形是很复杂的。
为了简化讨论,我们将杆的基本变形分成为三类,即拉压、扭转、弯曲,如图4.3所示。
前面已经讨论了在轴向载荷作用下杆的拉伸和压缩;现在再来研究杆的另一类基本变形,即扭转问题。
§8.1扭转的概念和实例工程中承受扭转的构件是很常见的。
如图8.1所示的汽车转向轴,驾驶员操纵方向盘将力偶作用于转向轴AB 的上端,转向轴的下端B 则受到来自转向器的阻抗力偶的作用,使转向轴AB 发生扭转。
又如图8.2中的传动轴,轮C 上作用着主动力偶矩,使轴转动;轮D 输出功率,受到阻力偶矩的作用,轴CD 也将发生扭转。
以上二例都是承受扭转的构件实例。
由于工程中承受扭转的构件大多为圆截面直杆,故称之为轴。
本章亦仅限于讨论直圆轴的扭转问题。
图8.2 传动轴图8.3所示为等截面直圆轴扭转问题的示意图。
扭转问题的受力特点是:在各垂直于轴线的平面内承受力偶作用。
如在图8.3中,圆轴AB 段两端垂直于轴线的平面内,各作用有一个外力偶M 0,此二力偶的力偶矩相等而转向相反,故是满足平衡方程的。
圆轴扭转问题的变形特点是:在上述外力偶系的作用下,圆轴各横截面将绕其轴线发生相对转动;任意两横截面间相对转过的角度,称为相对扭转角,以φ表示。
图8.3中,φAB 表示截面B 相对于截面A 的扭转角。
必须指出,工程中的传动轴,除受扭转作用外,往往还伴随有弯曲、拉伸(压缩)等其它形式的变形。
这类问题属于组合变形,将在以后研究。
§8.2 扭矩与扭矩图已知轴所传递的功率、转速,可利用6.3节提供的“功率、转速与传递的扭矩之关系”来计算作用于传动轴上的外力偶矩M 0。
工程力学教案【理、工科】§4-1 扭转的概念和实例工程上的轴是承受扭转变形的典型构件,如图4-1所示的攻丝丝锥,图4-2所示的桥式起重机的传动轴以及齿轮轴等。
扭转有如下特点:1. 受力特点:在杆件两端垂直于杆轴线的平面作用一对大小相等,方向相反的外力偶--扭转力偶。
其相应力分量称为扭矩。
2. 变形特点横截面绕轴线发生相对转动,出现扭转变形。
若杆件横截面上只存在扭矩这一个力分量则这种受力形式称为纯扭转。
§4-2 扭矩扭矩图1.外力偶矩如图4-3所示的传动机构,通常外力偶矩不是直接给出的,而是通过轴所传递的功率和转速n计算得到的。
如轴在m作用下匀速转动角,则力偶做功为,由功率定义角速度(单位:弧度/秒,rad/s)与转速n(单位:转/分,r/min)的关系为。
因此功率N的单位用千瓦(KW)时有关系,即(4-1a)式中:-传递功率(千瓦,KW),-转速(r/min)如果功率单位是马力(PS),由于1KW =1000 N·m/s =1.36 PS,式(4-1a)成为(4-1b)式中:-传递功率(马力,PS)-转速(r/min)2. 扭矩求出外力偶矩后,可进而用截面法求扭转力--扭矩。
如图4-4所示圆轴,由,从而可得A-A截面上扭矩T,称为截面A-A上的扭矩;扭矩的正负号规定为:按右手螺旋法则,矢量离开截面为正,指向截面为负。
或矢量与横截面外法线方向一致为正,反之为负。
【例4-4】传动轴如图4-5a所示,主动轮A输入功率马力,从动轮B、C、D输出功率分别为马力,马力,轴的转速为。
试画出轴的扭矩图。
【解】按外力偶矩公式计算出各轮上的外力偶矩从受力情况看出,轴在BC,CA,AD三段的扭矩各不相等。
现在用截面法,根据平衡方程计算各段的扭矩。
在BC段,以表示截面I-I上的扭矩,并任意地把的方向假设为如图4-5b所示。
由平衡方程,有得负号说明,实际扭矩转向与所设相反。
在BC段各截面上的扭矩不变,所以在这一段扭矩图为一水平线(图4-5e)。
工程力学教案【理、工科】
注:教案按授课次数填写,每次授课均应填写一份。
重复班授课可不另填写教案。
§4-1 扭转的概念和实例
工程上的轴是承受扭转变形的典型构件,如图4-1所示的攻丝丝锥,图4-2所示的桥式起重机的传动轴以及齿轮轴等。
扭转有如下特点:
1. 受力特点:
在杆件两端垂直于杆轴线的平面内作用一对大小相等,方向相反的外力偶--扭转力偶。
其相应内力分量称为扭矩。
2. 变形特点
横截面绕轴线发生相对转动,出现扭转变形。
若杆件横截面上只存在扭矩这一个内力分量则这种受力形式称为纯扭转。
§4-2 扭矩扭矩图
1.外力偶矩
如图4-3所示的传动机构,通常外力偶矩不是直接给出的,而是通过轴所传递的
功率和转速n计算得到的。
如轴在m作用下匀速转动角,则力偶做功为,由功率定义
角速度(单位:弧度/秒,rad/s)与转速n(单位:转/分,r/min)的关系为。
因此功率N的单位用千瓦(KW)时有关系,即
(4-1a)
式中:-传递功率(千瓦,KW),-转速(r/min)
如果功率单位是马力(PS),由于1KW =1000 N·m/s =1.36 PS,式(4-1a)成为
(4-1b)
式中:-传递功率(马力,PS)
-转速(r/min)
2. 扭矩
求出外力偶矩后,可进而用截面法求扭转内力--扭矩。
如图4-4所示圆轴,由,从而可得A-A截面上扭矩T
,
称为截面A-A上的扭矩;扭矩的正负号规定为:按右手螺旋法则,矢量离开截。