高考数学一轮复习(北师大版文科)课时作业58
- 格式:doc
- 大小:426.00 KB
- 文档页数:6
2025年高考数学一轮复习课时作业-事件的独立性、条件概率与全概率公式【原卷版】(时间:45分钟分值:90分)【基础落实练】1.(5分)若P(AB)=19,P( )=23,P(B)=13,则事件A与B的关系是()A.互斥B.对立C.相互独立D.既互斥又相互独立2.(5分)(2024·泉州模拟)某运动员每次射击击中目标的概率均相等,若三次射击中,至少有一次击中目标的概率为6364,则射击一次,击中目标的概率为()A.78B.34C.14D.183.(5分)小王每天在6:30至6:50出发去上班,其中在6:30至6:40出发的概率为0.3,在该时间段出发上班迟到的概率为0.1;在6:40至6:50出发的概率为0.7,在该时间段出发上班迟到的概率为0.2,则小王某天在6:30至6:50出发上班迟到的概率为()A.0.13B.0.17C.0.21D.0.34.(5分)设甲乘汽车、动车前往目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为()A.0.78B.0.8C.0.82D.0.845.(5分)(多选题)甲罐中有5个红球、2个白球和3个黑球,乙罐中有4个红球、3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球、白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是()A.P(B)=25B.P(B|A1)=511C.事件B与事件A1相互独立D.A1,A2,A3是两两互斥的事件6.(5分)(多选题)(2024·湖南师大附中模拟)已知某数据库有视频a个、图片b张 , ∈N*, > >1,从中随机选出一个视频和一张图片,记“视频甲和图片乙入选”为事件A,“视频甲入选”为事件B,“图片乙入选”为事件C,则下列判断中正确的是()A.P(A)=P(B)+P(C)B.P(A)=P(B)·P(C)C.P( )>P( C)+P(B )D.P( C)<P(B )7.(5分)某医生一周(7天)晚上值2次班,在已知他周二晚上一定值班的条件下,他在周三晚上值班的概率为________.每次击中目标的概率为45,现连续射击两次.(1)已知第一次击中,则第二次击中的概率是________;(2)在仅击中一次的条件下,第二次击中的概率是________.9.(10分)(2024·苏州模拟)苏州某公司有甲、乙两个研发小组,开发芯片需要两道工序,第一道工序成功的概率分别为15和35.第二道工序成功的概率分别为12和23.根据生产需要现安排甲小组研发芯片A,乙小组研发芯片B,假设甲、乙两个小组的研发相互独立.(1)求两种芯片都研发成功的概率;(2)政府为了提高该公司研发的积极性,决定只要有芯片研发成功就奖励该公司500万元,求该公司获得政府奖励的概率.【能力提升练】10.(5分)(2024·南京模拟)在一段时间内,若甲去参观市博物馆的概率为0.6,乙去参观市博物馆的概率为0.5,且甲乙两人各自行动,则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.3B.0.32C.0.8D.0.8411.(5分)(2024·苏州模拟)杭州亚运会组委会将甲、乙、丙、丁4名志愿者随机派往黄龙体育中心、杭州奥体中心、浙江大学紫金港校区三座体育馆工作,每座体育馆至少派1名志愿者,A表示事件“志愿者甲派往黄龙体育中心”;B表示事件“志愿者乙派往黄龙体育中心”;C表示事件“志愿者乙派往杭州奥体中心”,则()A.事件A与B相互独立B.事件A与C为互斥事件C.P =13D.P =1612.(5分)(2024·泉州模拟)某中学为丰富学生的业余生活,举行“汉字听写大会”,老师要求参赛学生从星期一到星期四每天学习2个汉字及正确注释,每周五对一周内所学汉字随机抽取4个进行检测(一周所学的汉字每个被抽到的可能性相同),若已知抽取4个进行检测的字中至少有一个字是最后一天学习的,则所抽取的4个进行检测的字中恰有3个是后两天学习过的汉字的概率为________. 13.(5分)(2024·长春模拟)设A,B是一个随机试验中的两个事件,且P(A)=13,P(B)=34, P(A+ )=12,则P(A )=________,P(B|A)=__________.14.(10分)某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P1=110,P2=19,P3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽检.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.15.(10分)两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率.2025年高考数学一轮复习课时作业-事件的独立性、条件概率与全概率公式【解析版】(时间:45分钟分值:90分)【基础落实练】1.(5分)若P(AB)=19,P( )=23,P(B)=13,则事件A与B的关系是()A.互斥B.对立C.相互独立D.既互斥又相互独立【解析】选C.因为P(A)=1-P( )=1-23=13,所以P(A)P(B)=19,所以P(AB)=P(A)P(B)≠0,所以事件A与B相互独立,事件A与B不互斥也不对立.2.(5分)(2024·泉州模拟)某运动员每次射击击中目标的概率均相等,若三次射击中,至少有一次击中目标的概率为6364,则射击一次,击中目标的概率为() A.78B.34C.14D.18【解析】选B.设该运动员射击一次,击中目标的概率为p,若该运动员三次射击中,至少有一次击中目标的概率为1-1- 3=6364,解得p=34.3.(5分)小王每天在6:30至6:50出发去上班,其中在6:30至6:40出发的概率为0.3,在该时间段出发上班迟到的概率为0.1;在6:40至6:50出发的概率为0.7,在该时间段出发上班迟到的概率为0.2,则小王某天在6:30至6:50出发上班迟到的概率为()A.0.13B.0.17C.0.21D.0.3【解析】选B.由题意,在6:30至6:50出发上班迟到的概率为0.3×0.1+0.7×0.2=0.17.4.(5分)设甲乘汽车、动车前往目的地的概率分别为0.4,0.6,汽车和动车正点到达目的地的概率分别为0.7,0.9,则甲正点到达目的地的概率为()A.0.78B.0.8C.0.82D.0.84【解析】选C.设事件A表示“甲正点到达目的地”,事件B表示“甲乘动车到达目的地”,事件C表示“甲乘汽车到达目的地”,由题意知P(B)=0.6,P(C)=0.4,P(A|B)=0.9,P(A|C)=0.7.由全概率公式得P(A)=P(B)P(A|B)+P(C)P(A|C)=0.6×0.9+0.4×0.7=0.54+0.28=0.82.5.(5分)(多选题)甲罐中有5个红球、2个白球和3个黑球,乙罐中有4个红球、3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A1,A2和A3表示由甲罐取出的球是红球、白球和黑球的事件;再从乙罐中随机取出一球,以B表示由乙罐取出的球是红球的事件.则下列结论中正确的是()A.P(B)=25B.P(B|A1)=511C.事件B与事件A1相互独立D.A1,A2,A3是两两互斥的事件【解析】选BD.由题意知,A1,A2,A3是两两互斥的事件,故D正确;P(A1)=510=12,P(A2)=210=15,P(A3)=310,P(B|A1)=511,由此知,B正确;P(B|A2)=411,P(B|A3)=411;而P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=12×511+15×411+310×411=922,由此知A,C 不正确.6.(5分)(多选题)(2024·湖南师大附中模拟)已知某数据库有视频a个、图片b张 , ∈N*, > >1,从中随机选出一个视频和一张图片,记“视频甲和图片乙入选”为事件A,“视频甲入选”为事件B,“图片乙入选”为事件C,则下列判断中正确的是()A.P(A)=P(B)+P(C)B.P(A)=P(B)·P(C)C.P( )>P( C)+P(B )D.P( C)<P(B )【解析】选BC.由相互独立事件的概率的乘法计算公式,可得A错误,B正确;事件 包含“视频甲未入选,图片乙入选”“视频甲入选,图片乙未入选”“视频甲、图片乙都未入选”三种情况,所以P( )=P( C)+P(B )+P( ),则P( )>P( C)+P(B ),所以C正确;由题可知,P( C)=1-·1 = -1 ,P(B )=1 ·1-= -1 ,因为a,b∈N*,a>b>1,所以 -1 > -1 ,即P( C)>P(B ),故D错误.7.(5分)某医生一周(7天)晚上值2次班,在已知他周二晚上一定值班的条件下,他在周三晚上值班的概率为________.【解析】设事件A 为“周二晚上值班”,事件B 为“周三晚上值班”,则P (A )=C 61C 72=27,P (AB )=1C 72=121,故P (B |A )= ( ) ( )=16.答案:168.(5分)某射击运动员每次击中目标的概率为45,现连续射击两次.(1)已知第一次击中,则第二次击中的概率是________;(2)在仅击中一次的条件下,第二次击中的概率是________.【解析】(1)设第一次击中为事件A ,第二次击中为事件B ,则P (A )=45,由题意知,第一次击中与否对第二次没有影响,因此已知第一次击中,则第二次击中的概率是45.(2)设仅击中一次为事件C ,则仅击中一次的概率为P (C )=C 21×45×15=825,在仅击中一次的条件下,第二次击中的概率是P (B |C )=15×45825=12.答案:(1)45(2)129.(10分)(2024·苏州模拟)苏州某公司有甲、乙两个研发小组,开发芯片需要两道工序,第一道工序成功的概率分别为15和35.第二道工序成功的概率分别为12和23.根据生产需要现安排甲小组研发芯片A ,乙小组研发芯片B ,假设甲、乙两个小组的研发相互独立.(1)求两种芯片都研发成功的概率;(2)政府为了提高该公司研发的积极性,决定只要有芯片研发成功就奖励该公司500万元,求该公司获得政府奖励的概率.【解析】(1)甲小组研发芯片A 成功的概率为p 1=15×12=110,乙小组研发芯片B 成功的概率为p 2=35×23=25,由于甲、乙两个小组的研发相互独立,所以A ,B 两种芯片都研发成功的概率P=p1·p2=110×25=125.(2)该公司获得政府奖励则需有芯片研发成功,根据对立事件可知获奖的概率: P=1-(1-p1)(1-p2)=1-(1-110)(1-25)=1-910×35=2350.【能力提升练】10.(5分)(2024·南京模拟)在一段时间内,若甲去参观市博物馆的概率为0.6,乙去参观市博物馆的概率为0.5,且甲乙两人各自行动,则在这段时间内,甲乙两人至少有一个去参观博物馆的概率是()A.0.3B.0.32C.0.8D.0.84【解析】选C.依题意,在这段时间内,甲乙都不去参观博物馆的概率为P1=1-0.6×1-0.5=0.2,所以在这段时间内,甲乙两人至少有一个去参观博物馆的概率是P=1-P1=1-0.2=0.8.11.(5分)(2024·苏州模拟)杭州亚运会组委会将甲、乙、丙、丁4名志愿者随机派往黄龙体育中心、杭州奥体中心、浙江大学紫金港校区三座体育馆工作,每座体育馆至少派1名志愿者,A表示事件“志愿者甲派往黄龙体育中心”;B表示事件“志愿者乙派往黄龙体育中心”;C表示事件“志愿者乙派往杭州奥体中心”,则()A.事件A与B相互独立B.事件A与C为互斥事件C.P =13D.P =16【解析】选D.将4名志愿者分配到三座体育馆,每座体育馆至少派1名志愿者,共有C42C21A22·A33=36种安排方案;志愿者甲派往黄龙体育中心、志愿者乙派往黄龙体育中心、志愿者乙派往杭州奥体中心,各有C32A22+A33=12种方案,所以P =P =P(C)=1236=13;志愿者甲、乙均派往黄龙体育中心,有A22=2种方案,所以P =236=118;志愿者甲派往黄龙体育中心且志愿者乙派往杭州奥体中心,有1+C21C21=5种方案,所以P =536;对于A,因为P ≠P P ,所以事件A与B不相互独立,A错误;对于B,因为P =536≠0,所以事件A与C不是互斥事件,B错误;对于C,P =53613=512,C错误;对于D,P =11813=16,D正确.12.(5分)(2024·泉州模拟)某中学为丰富学生的业余生活,举行“汉字听写大会”,老师要求参赛学生从星期一到星期四每天学习2个汉字及正确注释,每周五对一周内所学汉字随机抽取4个进行检测(一周所学的汉字每个被抽到的可能性相同),若已知抽取4个进行检测的字中至少有一个字是最后一天学习的,则所抽取的4个进行检测的字中恰有3个是后两天学习过的汉字的概率为________.【解析】设进行检测的4个汉字中至少有一个是最后一天学习的为事件A,恰有3个是后两天学习过的汉字为事件B,则事件A所包含的基本事件有n(A)=C21×C63+C62×C22=55,事件B所包含的基本事件有n(B)=C41×C43=16,所以P | = ( ) ( )= ( ) ( )=1655.答案:165513.(5分)(2024·长春模拟)设A,B是一个随机试验中的两个事件,且P(A)=13,P(B)=34, P(A+ )=12,则P(A )=________,P(B|A)=__________.【解析】由题知,P (A )=13,P (B )=34,P (A + )=P +P -P =12,即13+14-P =12,则P (A )=112.因为P +P P ,所以P =13-112=14,则P (B |A =1413=34.答案:1123414.(10分)某企业使用新技术对某款芯片进行试生产.在试产初期,该款芯片的生产有四道工序,前三道工序的生产互不影响,第四道是检测评估工序,包括智能自动检测与人工抽检.已知该款芯片在生产中,前三道工序的次品率分别为P 1=110,P 2=19,P 3=18.(1)求该款芯片生产在进入第四道工序前的次品率;(2)如果第四道工序中智能自动检测为次品的芯片会被自动淘汰,合格的芯片进入流水线并由工人进行人工抽检.在芯片智能自动检测显示合格率为90%的条件下,求工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率.【解析】(1)该款芯片生产在进入第四道工序前的次品率P =1-(1-110)(1-19)(1-18)=310.(2)设“该款芯片智能自动检测合格”为事件A ,“人工抽检合格”为事件B ,则P (A )=910,P (AB )=1-310=710,则工人在流水线进行人工抽检时,抽检一个芯片恰为合格品的概率P (B |A )= ( )( )=710910=79.15.(10分)两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率.【解析】设A i表示“第i台车床加工的零件(i=1,2)”,B表示“出现废品”,C表示“出现合格品”.(1)P(C)=P(A1C∪A2C)=P(A1C)+P(A2C)=P(A1)P(C|A1)+P(A2)P(C|A2)=23×(1-0.03)+13×(1-0.02)≈0.973. (2)P(A2|B)= ( 2 ) ( )= ( 2) ( | 2)( 1) ( | 1)+ ( 2) ( | 2)=13×0.0223×0.03+13×0.02=0.25.。
考点规范练二项分布与超几何分布1.若每次测量中出现正误差的概率都是12,则在5次测量中恰好出现2次正误差的概率是( ) A.516B.25C.58D.132,在5次测量中恰好出现2次正误差的概率为P=C 52×(12)2×(1-12)3=516. 2.已知一批产品共10件,次品率为20%,从中任取2件,则恰好取到1件次品的概率为( ) A.2845B.1145C.1745D.1645X,则X 服从超几何分布.由题意知10件产品中有2件次品, 故所求概率为P(X=1)=C 21C 81C 102=1645.3.设随机变量X~B (6,12),则P(X≤3)等于( )A.1132B.732C.2132D.764=C 60×(12)6+C 61×(12)6+C 62×(12)6+C 63×(12)6=2132. 4.(多选)在4件产品中,有一等品2件,二等品1件(一等品与二等品都是正品),次品1件,现从中任取2件,则下列说法正确的是( ) A.2件都是一等品的概率为13B.2件中有1件是次品的概率为12C.2件都是正品的概率为13D.2件中至少有1件是一等品的概率为56件都是一等品的概率为C 22C 42=16,故A 错误.2件中有1件是次品的概率为C 11C 31C 42=12,故B 正确.2件都是正品的概率为C 32C 42=12,故C 错误.2件中至少有1件是一等品的概率为C 21C 21+C 22C 42=56,故D 正确.5.高尔顿钉板是英国生物学家高尔顿设计的,如图,每一个黑点表示钉在板上的一颗钉子,上一层的每个钉子的水平位置恰好位于下一层的两颗钉子的正中间,从入口处放进一个直径略小于两颗钉子之间距离的小球,小球向下降落的过程中,首先碰到最上面的钉子,碰到钉子后皆以二分之一的概率向左或向右滚下,于是又碰到下一层钉子,如此继续下去,直到滚到底板的一个格子内为止.现从入口放进一个小球,则其落在第③个格子的概率为( )A.1128B.7128C.21128D.35128,小球从起点到第③个格子的过程中,要向左边滚动5次,向右边滚动2次,而每次向左或向右的概率均为12,故所求的概率为C 72×(12)2×(12)5=21128. 6.在等差数列{a n }中,a 4=2,a 7=-4.如果从{a n }的前10项中随机取数,每次取出一个数后放回,连续取3次,且每次取数互不影响,那么在这3次取数中,取出的数恰好为两个非负数和一个负数的概率为 .,等差数列的通项公式为a n =10-2n(n=1,2,3,…),其中a 1,a 2,a 3,a 4为正数,a 5=0,a 6,a 7,a 8,a 9,a 10为负数,所以从中取一个数为非负数的概率为510=12,取一个数为负数的概率为12.3次取数相当于一个3重伯努利试验.故取出的数恰为两个非负数和一个负数的概率为C 32×(12)2×12=38. 7.某高校设计了一个实验学科的考核方案:考生从8道备选题中一次性随机抽取3道题,按照题目要求独立完成全部实验操作.规定至少正确完成其中2道题的便可提交通过.已知在8道备选题中,考生甲有6道题能正确完成,2道题不能完成;考生乙每道题能正确完成的概率都是34,且每道题正确完成与否互不影响.(1)分别写出甲、乙两名考生正确完成题数的分布列,并计算均值; (2)试从两名考生正确完成题数的均值及至少正确完成2道题的概率分析比较两名考生的实验操作能力.设甲、乙两名考生正确完成题数分别为X,Y,则X 的所有可能取值为1,2,3,Y 的所有可能取值为0,1,2,3. 由题意可知P(X=1)=C 61C 22C 83=328,P(X=2)=C 62C 21C 83=1528, P(X=3)=C 63C 20C 83=514.故X 的分布列为E(X)=1×328+2×1528+3×514=94.P(Y=0)=C 30×(34)0×(1-34)3=164, P(Y=1)=C 31×34×(1-34)2=964, P(Y=2)=C 32×(34)2×(1-34)=2764, P(Y=3)=C 33×(34)3×(1-34)0=2764. 故Y 的分布列为E(Y)=3×34=94.(2)由(1)知E(X)=E(Y),P(X≥2)=1528+514=2528,P(Y≥2)=2764+2764=2732,所以P(X≥2)>P(Y≥2).故从正确完成题数的均值考察,两人水平相当;从至少正确完成2道题的概率考察,甲的概率大.因此可以判断甲的实验操作能力较强.。
课时作业(十一) 函数与方程A 级1.(2012·长沙模拟)已知函数f (x )的图像是连续不断的,有如下的x ,f (x )的对应表A .区间[1,2]和[2,3]B .区间[2,3]和[3,4]C .区间[2,3]、[3,4]和[4,5]D .区间[3,4]、[4,5]和[5,6]2.已知函数f (x )=⎩⎪⎨⎪⎧2x-1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B .-2,0 C.12D .03.(2012·天津模拟)函数f (x )=-1x +log 2x 的一个零点落在下列哪个区间( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)4.设f (x )=3x +3x -8,用二分法求方程3x +3x -8=0在x ∈[1,2]上近似解的过程中,计算得到f (1)<0,f (1.5)>0,f (1.25)<0,则方程的解所在的区间为( )A .[1,1.25]B .[1.25,1.5]C .[1.5,2]D .不能确定5.已知a 是函数f (x )=ln x -log 12x 的零点,若0<x 0<a ,则( )A .f (x 0)=0B .f (x 0)>0C .f (x 0)<0D .f (x 0)的符号不确定6.用二分法研究函数f (x )=x 3+3x -1的零点时,第一次经计算f (0)<0,f (0.5)>0可得其中一个零点x 0∈________,第二次应计算________.7.若函数f (x )=log 2(x +1)-1的零点是抛物线y 2=ax 的焦点的横坐标,则a =________. 8.下列是函数f (x )在区间[1,2]上一些点的函数值.有效数字)9.若函数y =f (x )(x ∈R )满足f (x +2)=f (x )且x ∈[-1,1]时,f (x )=1-x 2,函数g (x )=⎩⎪⎨⎪⎧lg x (x >0),-1x(x <0),则函数h (x )=f (x )-g (x )在区间[-5,5]内的零点为______个. 10.已知函数f (x )=x 3-x 2+x 2+14.证明:存在x 0∈⎝⎛⎭⎫0,12,使f (x 0)=x 0.11.若A ={a,0,-1},B =⎩⎨⎧⎭⎬⎫c +b ,1b +a ,1,且A =B ,f (x )=ax 2+bx +c .(1)求f (x )零点的个数;(2)当x ∈[-1,2]时,求f (x )的值域;(3)若x ∈[1,m ]时,f (x )∈[1,m ],求m 的值.B 级1.(2012·山东潍坊高考模拟)若直角坐标平面内的两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图像上;②P ,Q 关于原点对称.则称点对[P ,Q ]是函数y =f (x )的一对“友好点对”(点对[P ,Q ]与[Q ,P ]看作同一对“友好点对”).已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-x 2-4x ,x ≤0,则此函数的“友好点对”有( )A .0对B .1对C .2对D .3对2.若函数f (x )=ax 2-x -1仅有一个零点,则实数a 的取值范围是________. 3.已知二次函数f (x )=x 2+(2a -1)x +1-2a(1)判断命题“对于任意的a ∈R (R 为实数集),方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及⎝⎛⎭⎫0,12内各有一个零点,求实数a 的范围. 答案课时作业(十一)A 级1.C 因为f (2)>0,f (3)<0,f (4)>0,f (5)<0,所以在区间[2,3],[3,4],[4,5]内有零点. 2.D 当x ≤1时,由f (x )=2x -1=0,解得x =0; 当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解. 综上函数f (x )的零点只有0,故选D.3.B ∵f (1)=-1+log 21=-1<0,f (2)=-12+log 22=12>0,∴f (1)·f (2)<0,故选B.4.B 由于f (1)<0,f (1.5)>0,则第一步计算中点值f (1.25)<0, 又f (1.5)>0,则确定区间为[1.25,1.5],故选B.5.C 易知f (a )=0,函数f (x )=ln x -log 12x 在(0,+∞)上单调递增,因为0<x 0<a ,所以f (x 0)<f (a )=0.6.解析: ∵f (x )=x 3+3x -1是R 上的连续函数,且f (0)<0,f (0.5)>0,则f (x )在x ∈(0,0.5)上存在零点,且第二次验证时需验证f (0.25)的符号.答案: (0,0.5) f (0.25)7.解析: 令f (x )=log 2(x +1)-1=0,得函数f (x )的零点为x =1,于是抛物线y 2=ax 的焦点的坐标是(1,0),即⎩⎪⎨⎪⎧a >014a =1,解得a =4.答案: 48.解析: ∵f (1.438)·f (1.406 5)<0,且|1.438-1.406 5| =0.031 5<0.1,∴f (x )=0的一个近似解为1.4. 答案: 1.49.解析: 如图所示,因为函数h (x )=f (x )-g (x )在区间[-5,5]内的零点的个数为方程f (x )-g (x )=0根的个数,即函数f (x )和g (x )图像交点的个数,所以画出图像可知有8个交点.答案: 810.证明: 令g (x )=f (x )-x . ∵g (0)=14,g ⎝⎛⎭⎫12=f ⎝⎛⎭⎫12-12=-18,∴g (0)·g ⎝⎛⎭⎫12<0.又函数g (x )在⎣⎡⎦⎤0,12上连续, ∴存在x 0∈⎝⎛⎭⎫0,12,使g (x 0)=0.即f (x 0)=x 0. 11.解析: (1)∵A =B ,∴⎩⎪⎨⎪⎧a =10=c +b-1=1b +a ,∴⎩⎪⎨⎪⎧a =1b =-2,c =2∴f (x )=x 2-2x +2.又Δ=4-4×2=-4<0,所以f (x )没有零点. (或因为f (x )=(x -1)2+1>0,所以f (x )没有零点.) (2)∵f (x )的对称轴x =1,∴当x ∈[-1,2]时,f (x )min =f (1)=1,f (x )max =f (-1)=5, ∴f (x )∈[1,5].(3)∵f (x )在x ∈[1,m ]上为增函数,∴⎩⎪⎨⎪⎧ f (1)=1f (m )=m ⇒⎩⎪⎨⎪⎧1=1m 2-2m +2=m, ∴m =1或m =2,m =1不成立,则m =2.B 级1.C 函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-x 2-4x ,x ≤0的图像及函数f (x )=-x 2-4x (x ≤0)的图像关于原点对称的图像如图所示,则A ,B 两点关于原点的对称点一定在函数f (x )=-x 2-4x (x ≤0)的图像上,故函数f (x )的“友好点对”有2对,选C.2.解析: 当a =0时,则f (x )=-x -1,易知函数只有一个零点.当a ≠0时,则函数为二次函数,仅有一个零点,即Δ=1+4a =0,∴a =-14,综上,当a =0或a =-14时,函数只有一个零点.答案: ⎩⎨⎧⎭⎬⎫a | a =0或-143.解析: (1)“对于任意的a ∈R (R 为实数集),方程f (x )=1必有实数根”是真命题. 依题意:f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根,∵Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R (R 为实数集)恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.(2)依题意:要使y =f (x )在区间(-1,0)及⎝⎛⎭⎫0,12内各有一个零点, 只需⎩⎪⎨⎪⎧ f (-1)>0f (0)<0f ⎝⎛⎭⎫12>0即⎩⎪⎨⎪⎧3-4a >01-2a <034-a >0,解得12<a <34.。
课时作业(五十八) [第58讲 几何概型][时间:35分钟 分值:80分]基础热身1.在集合{1,2,3,4,5,6,7,8,9}中产生一个均匀随机数,则得到数字8的概率是( ) A.19 B.89 C.13 D.122.容量为400 ml 的培养皿里装满培养液,里面有1个细菌,从中倒出20 ml 的培养液,则细菌被倒出的概率是( )A.1200B.120C.1400D.1403.点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为( )A.π4B.34C.23D.134.[2011·山西联考] 在边长为1的正方形ABCD 内随机选一点M ,则点M 到点D 的距离小于正方形的边长的概率是________.能力提升5.在等腰Rt △ABC 中,在斜边AB 上任取一点M ,则AM 的长小于AC 的长的概率是( ) A.23 B.24 C.22 D.126.[2011·肇庆二模] 在区间(0,π]上随机取一个数x ,则事件“sin x +3cos x ≤1”发生的概率为( ) A.14 B.13 C.12 D.23图K58-17.[2011·三明联考] 如图K58-1所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为a 2的圆弧围成的,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是( ) A.π4 B .1-π4C .1-π8D .与a 的取值有关 8.[2011·福州质检] 在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π2有零点的概率为( )A .1-π8B .1-π4C .1-π2D .1-3π49.将一条4米长的绳子随机地截成两条,用A 表示所截两段绳子都不短于1米的事件,则事件A 发生的概率是________.10.一只蚂蚁在边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率是________.11.某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,则此人等车时间不多于10分钟的概率为________.12.(13分)[2011·东莞一模] 某班主任统计本班50名学生放学回家后学习时间的数据,用条形图表示(如图K58-2).(1)求该班学生每天在家学习时间的平均值;(2)该班主任用分层抽样方法(按学习时间分五层)选出10个学生谈话,求在学习时间为1个小时的学生中选出的人数;(3)假设学生每天在家学习时间为18时至23时,已知甲每天连续学习2小时,乙每天连续学习3小时,求22难点突破13.(12分)天气预报说,在今后的三天中,每一天下雨的概率均为40%,你能设计一种随机模拟的方法,近似计算这三天恰有两天下雨的概率是多少吗?课时作业(五十八)【基础热身】1.A [解析] 依据均匀随机数的概念知,在该集合内得到任何一个整数的概率都是19.故选A. 2.B [解析] 细菌被倒出的概率为P =20400=120,故选B. 3.C [解析] 点B 可以在点A 的两侧来取,距离点A 的最远处时,AB 的弧长为1,根据几何概率可知其整体事件是其周长3,则其概率是23.故选C.4.π4[解析] 如图,点M 落在阴影区域内时,点M 到点D 的距离小于正方形的边长,所以概率为阴影部分的面积与正方形面积的比值,即π4. 【能力提升】5.C [解析] 在AB 上截取AC ′=AC ,于是P (AM <AC )=P (AM <AC ′)=AC ′AB =AC AB=22.故选C. 6.C [解析] 由sin x +3cos x ≤1得sin ⎝⎛⎭⎫x +π3≤12,当x ∈(0,π]时,解得π2≤x ≤π,所以所求概率为P =π-π2π-0=12.故选C. 7.B [解析] 阴影部分的面积是边长为a 正方形面积减去一个半径为a 2的圆的面积,所以概率为a 2-a 24πa 2=1-π4. 8.B [解析] 由已知,有-π≤a ≤π,-π≤b ≤π.函数有零点,则Δ=4a 2+4b 2-4π2≥0,即a 2+b 2≥π2,如图,当两数a ,b 落在正方形内,圆外的四个空白区域内时,满足题设条件,所以概率为P =4π2-π·π24π2=1-π4.故选B.9.12[解析] 要满足所截两段都不短于1米,则截点在绳子的中间2米的区域内,所以概率为P (A )=24=12. 10.12[解析] 以三角形的三个顶点为圆心,1为半径画圆,三角形的三边上在圆外的三条线段上的点到三角形三个顶点的距离都超过1,这三条线段的长度之和为6,所以概率为p =612=12. 11.16[解析] 设“等待的时间不多于10分钟”为事件A ,当事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,则此人等车时间不多于10分钟,因此由几何概型的概率公式得P (A )=60-5060=16,即此人等车时间不多于10分钟的概率为16. 12.[解答] (1)平均学习时间为20×1+10×2+10×3+5×450=1.8(小时). (2)20×1050=4. (3)设甲开始学习的时刻为x ,乙开始学习的时刻为y ,试验的全部结果所构成的区域为Ω={(x ,y )|18≤x ≤21,18≤y ≤20},面积S Ω=2×3=6.事件A 表示“22时甲、乙正在学习”,所构成的区域为A ={(x ,y )|20≤x ≤21,19≤y ≤20},面积为S A =1×1=1,这是一个几何概型,所以P (A )=S A S Ω=16. [点评] 根据以上的解法,我们把此类问题的解决总结为以下四步:(1)构设变量.从问题情景中,发现哪两个量是随机的,从而构设为变量x 、y .(2)集合表示.用(x ,y )表示每次试验结果,则可用相应的集合分别表示出试验全部结果Ω和事件A 所包含试验结果.一般来说,两个集合都是几个二元一次不等式的交集.(3)作出区域.把以上集合所表示的平面区域作出来,先作不等式对应的直线,然后取一特殊点验证哪侧是符合条件的区域.计算求解.根据几何概型的概率公式,易从平面图形中两个面积的比求得.【难点突破】13.[解答] 我们通过设计模拟试验的方法来解决问题,利用计算器或计算机可以产生0到9这十个数字的随机数,我们用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨,这样可以体现下雨的概率是40%.因为是3天,所以每三个随机数作为一组.例如,产生20组随机数:907 966 191 925 271 932 812 458 569 683257393027556488730113537989431就相当于做了20次试验.在这组数中,如果恰有两个数在1,2,3,4中,则表示恰有两天下雨,它们分别是191,271,932,812,393,即共有5个数.我们得到三天中恰有两天下雨的概率近似值为520=25%.。
2025年高考数学一轮复习课时作业-余弦定理、正弦定理【原卷版】(时间:45分钟分值:85分)【基础落实练】1.(5分)在△ABC中,sin2A=sin2B+sin2C+sin B sin C,则cos A=()A.12B.-12C.32D.-322.(5分)(2023·连云港模拟)在△ABC中,a=5,c=3,cos A=23,则b=()A.1B.2C.3D.43.(5分)在△ABC中,a=2,b=3,cos B=74,则A=()A.π6B.π3C.5π6D.π6或5π64.(5分)(2023·丰台模拟)在△ABC中,(a-c)(sin A+sin C)=(a+b)cos(π2+B),则C=()A.π6B.π3C.2π3D.5π65.(5分)在△ABC中,A,B,C所对的边分别为a,b,c,若a2-b2=c2-2bc且b cos C=a sin B,则△ABC是()A.等腰直角三角形B.等边三角形C.等腰三角形D.直角三角形6.(5分)(多选题)在△ABC中,已知c2=3(a2-b2),tan C=3,则下列结论正确的是()A.cos B=2 3B.tan A=2tan BC.tan B=-12D.B=45°7.(5分)已知△ABC中,角A,B,C的对边分别为a,b=2,c=3,A=2B,则a=.8.(5分)(2022·上海高考)已知在△ABC中,A=π3,AB=2,AC=3,则△ABC的外接圆半径为.9.(5分)(2023·潍坊质检)已知△ABC的内角A,B,C的对边分别是a,b,c,且b=3,a-c=2,A=2π3,则△ABC的面积为.10.(10分)已知△ABC的内角A,B,C的对边分别为a,b,c,c=3a sin C-c cos A.(1)求角A;(2)若a=7,b+c=19,求△ABC的面积S.11.(10分)△ABC的内角A,B,C的对边分别为a,b,c,已知cos2(π2+A)+cos A=54.(1)求A;(2)若b-c=33a,证明:△ABC是直角三角形.【能力提升练】12.(5分)在△ABC中,∠B=45°,c=4,只需添加一个条件,即可使△ABC存在且唯一.在条件:①a=32;②b=25;③cos C=-45中,所有可以选择的条件的序号为() A.① B.①②C.②③D.①②③13.(5分)(多选题)东汉末年的数学家赵爽在《周髀算经》中利用一幅“弦图”,根据面积关系给出了勾股定理的证明,后人称其为“赵爽弦图”.如图1,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.我们通过类比得到图2,它是由三个全等的钝角三角形与一个小等边三角形A'B'C'拼成的一个大等边三角形ABC,对于图2,下列结论正确的是()A.这三个全等的钝角三角形不可能是等腰三角形B.若BB'=3,sin∠ABB'=5314,则A'B'=2C.若AB=2A'B',则AB'=5BB'D.若A'是AB'的中点,则三角形ABC的面积是三角形A'B'C'面积的7倍14.(10分)在锐角三角形ABC中,角A,B,C所对的边分别是a,b,c,且c=23,2sin(2C-π3)=3.(1)若a=22,求角A;(2)求△ABC面积的最大值.2025年高考数学一轮复习课时作业-余弦定理、正弦定理【解析版】(时间:45分钟分值:85分)【基础落实练】1.(5分)在△ABC中,sin2A=sin2B+sin2C+sin B sin C,则cos A=()A.12B.-12C.32D.-32【解析】选B.因为sin2A=sin2B+sin2C+sin B sin C,所以由正弦定理得a2=b2+c2+bc,则cos A= 2+ 2- 22 =-12.2.(5分)(2023·连云港模拟)在△ABC中,a=5,c=3,cos A=23,则b=()A.1B.2C.3D.4【解析】选B.由余弦定理可得,a2=b2+c2-2bc cos A=b2+9-4b=5,即b2-4b+4=0,解得b=2.3.(5分)在△ABC中,a=2,b=3,cos B=74,则A=()A.π6B.π3C.5π6D.π6或5π6【解析】选A.因为a=2,b=3,cos B=74,所以sin B=1-cos2 =34,因为由正弦定理可得 sin = sin ,所以sin A= ·sin =2×343=12,又b>a,可得A为锐角,所以A=π6.4.(5分)(2023·丰台模拟)在△ABC中,(a-c)(sin A+sin C)=(a+b)cos(π2+B),则C=()A.π6B.π3C.2π3D.5π6【解析】选C.在△ABC中,(a-c)(sin A+sin C)=(a+b)cos(π2+B),则(a-c)(sin A+sin C)=-(a+b)sin B,由正弦定理可得(a-c)(a+c)=-(a+b)b,所以a2+b2-c2=-ab,则cos C= 2+ 2- 22 =-12,由于C∈(0,π),故C=2π3.5.(5分)在△ABC中,A,B,C所对的边分别为a,b,c,若a2-b2=c2-2bc且b cos C=a sin B,则△ABC是()A.等腰直角三角形B.等边三角形C.等腰三角形D.直角三角形【解析】选A.因为a2-b2=c2-2bc,即b2+c2-a2=2bc,所以cos A= 2+ 2- 22 =2 2 =22,又A∈(0,π),所以A=π4,因为b cos C=a sin B,利用正弦定理可得sin B cos C=sin A sin B,由sin B≠0,可得cos C=sin A=22,又C∈(0,π),所以C=π4,B=π-A-C=π2,则△ABC是等腰直角三角形.6.(5分)(多选题)在△ABC中,已知c2=3(a2-b2),tan C=3,则下列结论正确的是()A.cos B=2 3B.tan A=2tan BC.tan B=-12D.B=45°【解析】选ABD.因为c2=3(a2-b2),所以b2=a2- 23,所以cos B= 2+ 2- 22 = 2+ 2-( 2- 23)2 =23 ,故A正确;由cos B=2 3 可得3a cos B=2c,所以3sin A cos B=2sin(A+B),3sin A cos B=2sin A cos B+2cos A sin B,sin A cos B=2cos A sin B,所以tan A=2tan B,故B正确;因为tan C=3,所以tan(A+B)=tan +tan1-2tan2 =3tan 1-2tan2 =-3,1-tan tan =2tan +tan得tan B=-12或tan B=1.因为cos B=2 3 >0,所以B为锐角,tan B=1,B=45°,故C错误,D正确.7.(5分)已知△ABC中,角A,B,C的对边分别为a,b=2,c=3,A=2B,则a=.【解析】因为A=2B,所以sin A=sin2B,故sin A=2sin B cos B,由正弦定理得a=2b cos B,又由余弦定理得a=2b· 2+ 2- 22 ,代入b=2,c=3,可得a2=10,故a=10.答案:108.(5分)(2022·上海高考)已知在△ABC中,A=π3,AB=2,AC=3,则△ABC的外接圆半径为.【解析】在△ABC中,A=π3,AB=2,AC=3,利用余弦定理BC2=AC2+AB2-2AB·AC·cos A,整理得BC=7,所以 sin =2R,解得R=213.答案:2139.(5分)(2023·潍坊质检)已知△ABC的内角A,B,C的对边分别是a,b,c,且b=3,a-c=2,A=2π3,则△ABC的面积为.【解析】由余弦定理得a2=b2+c2-2bc cos A,因为b=3,a-c=2,A=2π3,所以(c+2)2=32+c2-2×3c×(-12),解得c=5,则△ABC的面积为S=12bc sin A=12×3×5×32=1534.答案:153410.(10分)已知△ABC的内角A,B,C的对边分别为a,b,c,c=3a sin C-c cos A.(1)求角A;(2)若a=7,b+c=19,求△ABC的面积S.【解析】(1)因为c=3a sin C-c cos A,所以sin C=3sin A sin C-sin C cos A,又sin C≠0,所以1=3sin A-cos A,即sin(A-π6)=12.又A∈(0,π),所以A=π3.(2)因为a=7,b+c=19,A=π3,所以由a2=b2+c2-2bc cos A,得7=b2+c2-bc,即7=(b+c)2-3bc,解得bc=4.所以S=12bc sin A=3.11.(10分)△ABC的内角A,B,C的对边分别为a,b,c,已知cos2(π2+A)+cos A=54.(1)求A;(2)若b-c=33a,证明:△ABC是直角三角形.【解析】(1)因为cos2(π2+A)+cos A=54,所以sin2A+cos A=54,即1-cos2A+cos A=54,解得cos A=12.又0<A<π,所以A=π3.(2)因为A=π3,所以cos A= 2+ 2- 22 =12,即b2+c2-a2=bc.①又b-c=33a,②将②代入①,得b2+c2-3(b-c)2=bc,即2b2+2c2-5bc=0,而b>c,解得b=2c,所以a=3c.所以b2=a2+c2,即△ABC是直角三角形.【能力提升练】12.(5分)在△ABC中,∠B=45°,c=4,只需添加一个条件,即可使△ABC存在且唯一.在条件:①a=32;②b=25;③cos C=-45中,所有可以选择的条件的序号为() A.① B.①②C.②③D.①②③【解析】选B.在△ABC中,∠B=45°,c=4,若添加条件①,则由余弦定理可得b2=a2+c2-2ac cos B=10,即b=10,即△ABC存在且唯一;若添加条件②,则由余弦定理b2=a2+c2-2ac cos B,可得:a2-42a-4=0,解得a=2(2+3),即△ABC存在且唯一;若添加条件③,则由-45<-22,得C>135°,则B+C>45°+135°=180°,即△ABC不存在,即可以选择的条件的序号为①②.13.(5分)(多选题)东汉末年的数学家赵爽在《周髀算经》中利用一幅“弦图”,根据面积关系给出了勾股定理的证明,后人称其为“赵爽弦图”.如图1,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.我们通过类比得到图2,它是由三个全等的钝角三角形与一个小等边三角形A'B'C'拼成的一个大等边三角形ABC,对于图2,下列结论正确的是()A.这三个全等的钝角三角形不可能是等腰三角形B.若BB'=3,sin∠ABB'=5314,则A'B'=2C.若AB=2A'B',则AB'=5BB'D.若A'是AB'的中点,则三角形ABC的面积是三角形A'B'C'面积的7倍【解析】选ABD.由图可知AA'=BB',所以BB'<AB',故A正确;在△ABB'中,sin∠ABB'=5314,而∠AB'B=120°,所以cos∠ABB'=1-sin2∠ '=1114,sin∠BAB'=sin(60°-∠ABB')=sin60°cos∠ABB'-cos60°sin∠ABB'=3314.由正弦定理得 'sin∠ '= 'sin∠ ',解得AB'=5.又因为AA'=BB'=3,所以A'B'=AB'-AA'=2,故B正确;不妨设AB=2A'B'=2,BB'=x,由余弦定理得AB2=BB'2+AB'2-2BB'·AB'cos120°,解得x=5-12,所以 ' '=1+ =5+1故C错误;若A'是AB'的中点,则S△ABB'=12BB'·AB'sin120°=B'C'·A'B'sin60°=2S△A'B'C',所以S △ABC =7S △A'B'C',故D 正确.14.(10分)在锐角三角形ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且c =23,2sin(2C -π3)=3.(1)若a =22,求角A ;(2)求△ABC 面积的最大值.【解析】(1)由2sin(2C -π3)=3,得sin(2C -π3)=32,因为△ABC 为锐角三角形,所以C ∈(0,π2),则2C -π3∈(-π3,2π3),所以2C -π3=π3,得C =π3.由正弦定理得 sin = sin ,22sin =23sin π3,得sin A =22,因为A ∈(0,π2),所以A =π4;(2)由(1)可知C =π3,在锐角三角形ABC 中,c =23,C =π3,则由余弦定理得,c 2=a 2+b 2-2ab cos C ,12=a 2+b 2-2ab cos π3=a 2+b 2-ab ≥2ab -ab =ab ,当且仅当a =b 时取等号,所以ab 的最大值为12,所以12ab sin C ≤12×12×32=33,当且仅当a =b 时取等号,所以△ABC 面积的最大值为33.。
课时作业58相关性、最小二乘法估计与统计案例一、选择题(每小题5分,共40分)1.(2014·长春调研)已知x,y取值如下表:=0.95x+a,则a=()A.1.30B.1.45C.1.65 D.1.80解析:依题意得,x-=16×(0+1+4+5+6+8)=4,y-=16×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25.又直线y=0.95x+a必过样本中心点(x-,y-),即点(4,5.25),于是有5.25=0.95×4+a,由此解得a=1.45,选B.答案:B2.(2014·山东聊城4月,10)判断两个分类变量是彼此相关还是相互独立的常用方法中,最为精确的是()A.三维柱形图B.二维条形图C.等高条形图D.独立性检验解析:前三种方法只能直观地看出两个分类变量x与y是否相关,但看不出相关的程度.独立性检验通过计算得出相关的可能性,较为准确.答案:D3.设(x1,y1),(x2,y2),…,(x n,y n)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是()A.直线l过点(x,y)B.x和y的相关系数为直线l的斜率C.x和y的相关系数在0到1之间D.当n为偶数时,分布在l两侧的样本点的个数一定相同解析:∵回归直线方程y^=a^+b^x中a^=y--b^x-,∴y^=y--b^x-+b^x,当x=x-时,y^=y-,∴直线l过定点(x-,y-).答案:A4.(2012·湖南理,4)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y^=0.85x-85.71,则下列结论中不正..确.的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(x-,y-)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg 解析:D项中身高为170cm时,体重“约为”58.79,而不是“确定”,回归方程只能作出“估计”,而非确定“线性”关系.答案:D5.(2012·北京理,8)某棵果树前n年的总产量S n与n之间的关系如图所示,从目前记录的结果看,前m年的年平均产量最高,m值为()A.5 B.7C.9 D.11解析:由于目的是使平均产量最高,就需要随着n增大,变化超过平均值的加入,随着n的增大,变化不足值就舍去.由图可知6、7、8、9这几年增长最快,超出平均值,所以应该加入,故选C.答案:C6.(2014·泉州一模,3)为了考查两个变量x和y之间的线性相关性,甲、乙两位同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人所得的试验数据中,变量x和y的数据的平均值都相等,且分别是s,t,那么下列说法正确的是()A.直线l1和l2一定有公共点(s,t)B.直线l1和l2相交,但交点不一定是(s,t)C.必有l1∥l2D.l1与l2必定重合解析:线性回归方程为y^=b^x+a^,a^=y--b^x-,即a^=t-b^s,t=b^ s+a^,∴(s,t)在回归直线上,∴直线l1和l2一定有公共点(s,t).答案:A7.甲、乙、丙、丁四位同学各自对A,B两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r与残差平方和m如下表:() A.甲同学B.乙同学C.丙同学D.丁同学解析:根据“相关系数越接近1,线性相关程度越高;残差平方和越小,表明两个变量数据拟合程度越好”可以判断,丁同学的试验数据有较强的线性相关性.答案:D8.(2014·北京通州一模,9)对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(x n,y n),则下列说法中不正确的是()A.由样本数据得到的回归方程y^=b^x+a^必过样本点的中心(x-,y-)B.残差平方和越小的模型,拟合的效果越好C.用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好D.若变量y和x之间的相关系数为r=-0.936 2,则变量y与x 之间具有线性相关关系解析:R2的值越大,说明残差平方和越小,也就是说模型的拟合效果越好,故选C.答案:C二、填空题(每小题5分,共20分)9.已知施化肥量x与水稻产量y的试验数据如下表,则变量x与变量y是________相关(填“正”或“负”).施化肥量x 15202530354045水稻产量y 330345365405445450455所以画出散点图如图所示:通过观察图像可知变量x与变量y是正相关.答案:正10.(2014·唐山统一考试)考古学家通过始祖鸟化石标本发现:其股骨长度x(cm)与肱骨长度y(cm)的线性回归方程为y^=1.197x-3.660,由此估计,当股骨长度为50cm时,肱骨长度的估计值为________cm.解析:根据线性回归方程y=1.197x-3.660,将x=50代入得y =56.19,则肱骨长度的估计值为56.19 cm.答案:56.1911.某市居民2005~2009年家庭年平均收入x(单位:万元)与年平均支出Y(单位:万元)的统计资料如下表所示:,家庭年平均收入与年平均支出有__________线性相关关系.解析:中位数的定义的考查,奇数个时按大小顺序排列后中间一个是中位数,而偶数个时须取中间两数的平均数,r≈0.97,正相关.答案:13正12.(2014·东北四校联考)某小卖部为了了解热茶销售量y(杯)与气温x(℃)之间的关系,随机统计了某4天卖出的热茶的杯数与当天气温,并制作了对照表:由表中数据算得线性回归方程y=bx+a中的b≈-2,预测当气温为-5℃时,热茶销售量为________杯(已知回归系数b=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a =y -b x ).解析:根据表格中的数据可求得x =14×(18+13+10-1)=10,y =14×(24+34+38+64)=40(杯).∴a =y --b x -=40-(-2)×10=60,∴y ^=-2x +60, 当x =-5时,y ^=-2×(-5)+60=70(杯). 答案:70三、解答题(共2小题,每小题20分,共40分。
课时作业(六十) [第60讲 基本算法语句] [时间:45分钟 分值:100分] 1.下列赋值能使y的值为4的是( ) A.y-2=6 B.2].4=y D.y=2] 2.在程序中,当i=i+1时,执行完Loop While i≤10后,i的值变为( ) A.9 B.10 C.11 D.12 3.如下所示算法,若输入的x的值为2012,则算法执行后的输出结果是( ) A.2011 B.2012 C.0 D.2 4.写出下边程序运行的结果________. 5.下列问题可以设计成循环语句的有( ) 求1+3+32+…+39的和;比较a,b两个数的大小;对于分段函数,要求输入自变量,输出函数值;用二分法算法求方程的近似解. A.0个 B.1个 C.2个 D.3个 6.下面是一个求20个数的平均数的程序,在横线上应该填充的语句为( ) A.i>20 B.i=20 D.i<=20 7.根据下列程序,可知输出结果S为( ) i=1 Do i=i+2 S=2] A.17 B.19 C.21 D.23 8.为了得到输出结果为2010,则输入的x应该是( ) 输入x If x<0 Then y=2] A.-1004 B.1006 C.-1004或1006 D.-1004或1005 9.设计一个计算1×3×5×7×9×11×13的算法.下面给出了程序的一部分,则在横线上不能填入下面的哪一个数( ) A.13 B.13.5 C.14 D.14.5 10.下面求1+4+7+…+2008的值的程序中,正整数m的最大值为________. 11.阅读下面用For语句写出的算法,说明该算法的处理功能是________________. s=0 m=5 For i=1 To 6 s=s+m m=5+10] 12.当x=2时,下边的程序段输出的结果是________. 13.已知有下面程序,如果程序执行后输出的结果是11880,那么在“While”后面的“条件”应为________. 14.(10分)分别用For语句和Do Loop语句编写计算12+32+52+…+992的算法. 15.(13分)[2011·吉林检测] 给出如下程序(其中x满足:0<x0 And x2012,所以执行Else后面的语句,即执行y=(x-2011)0+1=2,所以选D. 4.12 [解析] 这个算法处理的是a=2+2+2+…的问题,循环终止的条件为a>10,所以最后运行的结果是2+2+2+2+2+2=12. 【能力提升】 5.C [解析] 是由条件语句来实现的,都可以由循环语句实现. 6.D [解析] Do Loop语句要求条件为真时才进行循环,否则跳出循环,所以要填写满足循环的条件,为i≤20. 7.C [解析] i=9时,跳出循环,所以S=2×9+3=21. 8.C [解析] 本题算法是输入一个x的值,求y=的值,当x8 [解析] 11880=12×11×10×9. 14.[解答] 用For语句编写的算法: 用Do Loop语句编写的算法: 15.[解答] (1)函数关系式为 y= 【难点突破】 16.[解答] (1)该算法使用了循环结构.因为是求30个数的和,故循环体应执行30次,其中i是计数变量,因此判断框内的条件就是限制计数变量i的,故应为i≤30. (2)根据以上流程图,算法语句如下:(下图(1)所示)或用For语句表示算法:(下图(2)所示) 图(1) 图(2)。
课时作业(五十八) 算法初步与框图
A 级
1.(2012·北京卷)执行如图所示的程序框图,输出的S 值为( ) A .2 B .4 C .8
D .16
1题图 2题图
2.如图,在程序框图中,若输入x 为-5,则输出的值是( ) A.13 B.12 C .1
D .2
3.(2012·山东卷)执行下面的程序框图,如果输入a =4,那么输出的n 的值为( ) A .2 B .3 C .4
D .5
3题图 4题图
4.(2012·北京海淀一模)执行如图所示的程序框图,输出的k 值是( ) A .4 B .5 C .6
D .7
5.(2012·西安长安一中质检)按如图所示的算法流程图运算,若输出k =2,则输入x 的取值范围是( )
A.19≤x<200 B.x<19
C.19<x<200 D.x≥200
6.某程序框图如图所示
如果上述程序输出的S的值比2 013小,若使输出的S最大,那么判断框中应填入() A.K≤10 B.K≥10
C.K≤9 D.K≥9
7.(2012·豫西五校联考)执行如图所示的程序框图,则输出的λ是()
A.-4 B.-2
C.0 D.-2或0
7题图8题图
8.如图所示的程序框图,当x1=3,x2=5,x3=-1时,输出的p值为________.9.阅读如图所示的程序框图,运行相应的程序,输出的结果s=________.
10.如图是某算法的程序框图,则程序运行后输出的结果是________.
11.(2012·江苏卷)下图是一个算法流程图,则输出的k的值是________.
12.若输入8时,则下列程序执行后输出的结果是________.
B级
1.(2012·长春第二次调研)利用如图所示的程序框图在直角坐标平面上打印一系列点,则打印的点落在坐标轴上的个数是()
A.0 B.1
C.2 D.3
1题图 2题图
2.(2012·河南模拟)某程序框图如图所示,则该程序运行后输出的S 的值为( ) A .1 B.12 C.14
D.18
3.如图所示,程序框图(算法流程图)的输出值x =________.
4.(2012·江西八所高中模拟)已知如图所示的程序框图(未完成),设当箭头a 指向①时,输出的结果为S =m ,当箭头a 指向②时,输出的结果为S =n ,则m +n 的值为________.
答案
课时作业(五十八)
A 级
1.C 当k =0时,满足k <3,因此S =1×20=1; 当k =1时,满足k <3,因此S =1×21=2; 当k =2时,满足k <3,因此S =2×22=8; 当k =3时,不满足k <3,因此输出S =8.
2.A 依题意得,当输入x =-5时,注意到-5+2×3=1≤1,且-5+2×4=3>1,故运行此程序后输出的y 值为3-
1=13
,选A.
3.B a =4,P =0,Q =1,n =0时, P ≤Q ,P =0+40=1,Q =2×1+1=3,n =1; P ≤Q ,P =1+41=5,Q =2×3+1=7,n =2; P ≤Q ,P =5+42=21,Q =2×7+1=15,n =3; P ≤Q 不成立,输出n =3.
4.B 该程序框图的执行步骤为:n =3×5+1=16,k =0+1=1;n =16×1
2,k =1+1
=2;…,n =2×1
2
=1,k =5.故选B.
5.A 由流程图可知,输出k =2,需满足⎩
⎪⎨⎪⎧
10x +10<2 010,
10(10x +10)+10≥2 010,
解得19≤x <200,故选A.
6.C 第一次循环:S =1×12=12,K =12-1=11;第二次循环:S =12×11=132,K =11-1=10;第三次循环:S =132×10=1 320,K =10-1=9.若再循环一次.显然S >2 013,不符合题意,故应循环了三次.因此,循环三次后必须终止,所以判断框中应填入“K ≤9”.
7.B 依题意,若λa +b 与b 垂直,则有(λa +b )·b =4(λ+4)-2(-3λ-2)=0,解得λ=-2;若λa +b 与b 平行,则有-2(λ+4)=4(-3λ-2),解得λ=0.结合题中的程序框图,输出的λ是-2,选B.
8.解析: 依题意得,当x 1=3,x 2=5,x 3=-1时,|x 1-x 2|<|x 2-x 3|,p =x 1+x 2
2
=4,因此输出的p 值是4.
答案: 4
9.解析: 当n =1时,s =1,a =3;当n =2时,s =1+3=4,a =5;当n =3时,s =4+5=9,a =7,所以输出s =9.
答案: 9
10.解析: 依题意得,题中的程序框图运行后输出的结果是数列{(-1)n +n }的前n
项和大于9时的最小值.由于数列{(-1)n
+n }的前n 项和等于-[1-(-1)n ]1-(-1)
+n (n +1)
2=
(-1)n +n (n +1)-12,且(-1)3+3(3+1)-12=5<9,(-1)4+4(4+1)-1
2
=10>9,
因此程序运行后输出的结果是10. 答案: 10
11.解析: 第一步,当k =1时,k 2-5k +4=1-5+4=0;第二步,当k =2时,k 2
-5k +4=4-10+4=-2<0;第三步,当k =3时,k 2-5k +4=9-15+4=-2<0;第四步,当k =4时,k 2-5k +4=16-20+4=0;第五步,当k =5时,k 2-5k +4=25-25+4>0,结束循环,输出k =5.
答案: 5
12.解析: 当t =8时,c =0.2+0.1×(8-3)=0.7. 答案: 0.7
B 级
1.B 依题意得,当i =3时,打印的点是(-2,6),x =-1,y =5,i =3-1=2;当i =2时,打印的点是(-1,5),x =0,y =4,i =2-1=1;当i =1时,打印的点是(0,4),x =1,y =3,i =1-1=0,此时0不大于0,所以结束,故选B.
2.A 依题意得,运行程序后输出的是数列{a n }的第2 013项,其中数列{a n }满足:a 1
=1,a n +1=⎩⎪⎨⎪⎧
2a n ,a n <118a n ,a n ≥1
.注意到a 2=18,a 3=14,a 4=12,a 5=1,a 6=1
8
,…,
该数列中的项以4为周期重复性地出现,且2 013=4×503+1,因此a 2 013=a 1=1,运行程序后输出的S 的值为1.
3.解析: 输入x =1时,执行x =x +1后x =2;当x =2时,执行x =x +2后x =4,再执行x =x +1后x =5;当x =5时,执行x =x +1后x =6;当x =6时,执行x =x +2后x =8,再执行x =x +1后x =9;当x =9时,执行x =x +1后x =10;当x =10时,执行x =x +2后x =12,此时12>8,因此输出12.
答案: 12
4.解析: 当箭头a 指向①时:i =1,S =1;i =2,S =2,i =3,S =3;i =4,S =4;i =5,S =5;i =6,结束循环,输出结果S =m =5;当箭头a 指向②时:i =1,S =1;i =2,S =1+2;i =3,S =1+2+3;i =4,S =1+2+3+4;i =5,S =1+2+3+4+5;i =6,结束循环,输出结果S =n =1+2+3+4+5=15,故m +n =20.
答案: 20。