建筑供配电系统
- 格式:doc
- 大小:569.00 KB
- 文档页数:33
高层建筑供配电系统设计分析随着城市化的快速发展,高层建筑已经成为城市中不可或缺的一部分。
高层建筑通常拥有复杂的结构和庞大的能源需求,因此其供配电系统的设计显得尤为重要。
本文将对高层建筑供配电系统的设计进行分析,探讨其在安全性、可靠性和节能性方面的重要性。
1. 供配电系统的分类和特点高层建筑的供配电系统一般可以分为两类:主干式和分布式。
主干式供配电系统将来自电网的电能通过变压器升压后输送到大楼中央的主配电室,再经过主电缆和开关设备分别输送到各个楼层和房间。
而分布式供配电系统则将电能直接输送到各个楼层和房间,减少了主配电室对电能的集中控制。
由于高层建筑的结构复杂,供配电系统的设计也具有以下特点:电能输送距离远、负载变化大、对可靠性和安全性要求高、对节能性要求严格。
2. 安全性分析供配电系统的安全性是高层建筑设计中最为重要的一个方面,一旦供配电系统出现问题将会对建筑内外的生命安全和财产安全造成威胁。
在设计供配电系统时,必须考虑配电系统的过载和短路保护,确保电能在任何情况下都能够正常输送,并且在发生故障时迅速切断电源以防止事故扩大。
还应考虑供电可靠性,例如设计备用电源系统或者应急照明系统以应对电网故障或停电情况。
高层建筑的供配电系统可靠性要求高,一旦出现故障将会对建筑内外的生活和工作造成严重影响。
在设计供配电系统时,必须考虑系统的备份和冗余设计,确保在出现故障时系统能够自动切换至备用电源或冗余线路,维持建筑内的基本用电需求。
还应加强对配电设备的定期巡检和维护,确保系统的长期稳定运行。
高层建筑的节能要求也在不断提升,供配电系统的节能性设计成为了设计中的重要方面之一。
在设计供配电系统时,可以考虑采用高效节能的变压器和开关设备,减少电能的损耗。
还可以考虑采用智能化的供配电系统,通过实时监测和控制来优化电能的使用,进一步提高系统的节能性能。
5. 结语高层建筑供配电系统的设计具有复杂性和挑战性,需要综合考虑安全性、可靠性和节能性等多个方面的因素。
建筑设备-供配电系统课程简介建筑设备-供配电系统课程是一门针对建筑工程专业的必修课,旨在培养学生对建筑设备供配电系统的理论与应用的深入理解。
本课程将介绍供配电系统的基本知识、设计原理和实践应用,帮助学生掌握建筑设备供配电系统的设计、施工和维护等方面的技术。
课程目标本课程的主要目标是使学生具备以下能力:1.理解建筑供配电系统的基本原理和设计方法;2.掌握供配电系统的设备选型与布置;3.熟悉供配电系统的电路设计和负载计算方法;4.了解供配电系统的安装、调试和维护流程;5.掌握供配电系统的故障排除和应急处理方法。
课程大纲第一章:建筑供配电系统概述•建筑供配电系统的概念和作用•建筑供配电系统的组成部分•建筑供配电系统的分类和特点第二章:供电系统基本原理•电力系统的组成和基本概念•电力系统的单线图和接线图•供电系统的电能质量要求第三章:建筑电气负荷计算•建筑电气负荷计算的基本原理•常见电器设备的功率计算方法•建筑电气负荷的综合计算第四章:供配电设备及选型•断路器、开关器及保护器件的选型原则•变压器及发电机的选型原则•线路和电缆的选型原则第五章:供配电系统的设计原理•供配电系统的整体设计流程•供配电系统的主要设计参数和指标•供配电系统的常用设计工具和软件第六章:供配电系统的安装与调试•供配电系统的施工和安装流程•供配电系统的设备调试和电气接地测试•供配电系统的试运行和系统验收第七章:供配电系统的运维与管理•供配电系统的定期检测和维护要求•供配电系统的运行参数监测和记录•供配电系统的故障排除和应急处理授课方式本课程采用理论授课、案例分析和实践操作相结合的教学方式。
具体安排如下:1.理论授课(40%):通过讲解理论知识,引导学生了解建筑供配电系统的基本概念、原理和设计方法。
2.案例分析(30%):通过分析实际建筑项目中的供配电系统设计案例,培养学生解决实际问题的能力。
3.实践操作(30%):组织学生进行供配电系统设计和实施的实践操作,加强学生的动手能力和实践操作经验。
建筑供配电系统建筑供配电系统在建筑工程中起着关键的作用,它负责将电能供应到建筑物的各个部分以满足电力需求。
一个高效可靠的供配电系统可以确保建筑的正常运行,并保障人们的安全。
本文将介绍建筑供配电系统的基本组成和工作原理,并探讨近年来的发展趋势。
一、建筑供配电系统的基本组成建筑供配电系统由多个组成部分组成,包括电源入户装置、主配电室、次配电器室以及电缆线路等。
电源入户装置是建筑与外部电源之间的接口,它负责将电能从公共电网引入建筑,通常包括断路器和电能计量装置等。
主配电室是供配电系统的核心部分,它负责接受电源入户装置引入的电能,并将其分配到不同的次级配电装置。
次配电器室是主配电室的延伸,它进一步将电能分配到建筑的各个区域或者设备。
二、建筑供配电系统的工作原理建筑供配电系统的工作原理是基于电能的传输和分配。
电能从电源入户装置通过电缆线路输入到主配电室,然后通过主配电室的断路器或开关进一步分配到次级配电器室。
每个配电器室通过对应的电缆线路将电能传输到具体的用电设备上。
为了确保电能的安全和稳定传输,建筑供配电系统通常会采用多层次的过载保护和短路保护。
三、建筑供配电系统的发展趋势随着科技的进步和人们对电力需求不断增长,建筑供配电系统也在不断发展和改进。
以下是几个近年来的发展趋势:1. 智能化:建筑供配电系统正在向更加智能化的方向发展,通过引入自动化控制系统和智能传感器,可以实现对电能的精确监测和控制。
这不仅可以提高能效和安全性,还可以减少电力浪费和环境污染。
2. 新能源:随着可再生能源的快速发展,建筑供配电系统也在逐渐引入新能源技术,如太阳能光伏发电系统和风力发电系统。
这些新能源技术可以为建筑提供可持续、高效的电力供应,减少对传统能源的依赖。
3. 节能环保:建筑供配电系统在设计和运行中越来越注重节能和环保。
通过采用高效的电气设备和控制策略,可以降低能耗和排放。
此外,建筑供配电系统也在积极推广能量回收和电能负荷调整技术,以实现更加节能环保的运行模式。
建筑供配电系统相关知识1. 概述建筑供配电系统是指为建筑提供电力供应和配电,确保安全和稳定供电的系统。
它包括供电系统、配电系统、接地系统等多个组成部分。
本文将介绍建筑供配电系统的基本知识,包括供电方式、配电设备、接地系统等内容。
2. 供电方式建筑供配电系统可以采用以下几种供电方式:2.1 单相供电单相供电是指通过单一的相线和中性线提供电力。
它一般适用于小型建筑,如住宅和商业建筑。
单相供电系统具有成本低、安装方便的优点,但功率容量较小,不适用于大型建筑。
2.2 三相供电三相供电是指通过三根相线和一个中性线提供电力。
它适用于大型建筑,如工厂和商业大楼。
三相供电系统具有功率容量大、电流平衡的优点,能够满足大量电力需求。
3. 配电设备建筑供配电系统的配电设备包括断路器、开关、电表等。
下面分别介绍这些设备的作用和特点:3.1 断路器断路器是一种用于保护电路的开关装置,当电路发生故障时,它能够迅速切断电流,防止电路过载或短路。
断路器分为低压断路器和高压断路器两种,分别适用于低压和高压供电系统。
3.2 开关开关是用于控制电路的通断的装置。
它可以手动或自动控制电流的流动,实现灯光、电器设备等的开关操作。
3.3 电表电表是用于测量电能消耗的装置。
它可以记录建筑用电量,方便管理和计费。
电表分为电动式电表和静电式电表两种,分别适用于不同的用电场景。
4. 接地系统接地系统是建筑供配电系统中非常重要的一部分。
它可以保护人身安全,防止电气事故发生。
接地系统通常包括建筑物接地网和设备接地。
建筑物接地网是将建筑物与大地之间建立良好的导电接触,通常采用埋地导体或接地网等形式。
设备接地是将电气设备与建筑物接地网相连接,确保设备在正常工作时不产生对人体的电击危险。
5. 安全注意事项在建筑供配电系统的设计和使用过程中,需要注意以下安全事项:•确保供电设备符合国家标准,并定期进行检测和维护;•配电系统应有保护措施,如过载保护、短路保护等,以确保电路的安全运行;•供配电系统应有完善的接地系统,确保设备和人员的安全;•使用专业人员进行建筑供配电系统的设计和安装,确保系统的可靠性和安全性。
高层建筑电气工程供配电系统设计的分析在如今城市的高楼大厦中,电气工程供配电系统的设计显得尤为重要。
供配电系统是为高楼建筑提供电力和保证电力传输的重要组成部分,因此其设计和规划决定了整栋建筑的电力安全和稳定。
本文将对高层建筑的电气工程供配电系统进行深入分析,探讨其设计原则和技术难点。
一、电力供应系统在高层建筑中,电力供应系统通常采用双回路供电,即两个独立的供电系统同时为建筑提供电力。
这种设计可以确保在任何情况下都能有备用电力系统,保证建筑的电力供应不会中断。
高楼建筑的电力需求较大,为了保证可靠的供电,常常需要与电力公司签订专用供电协议,确保有足够的电力供应能够满足建筑的需求。
二、配电系统设计在高层建筑中,配电系统设计需要考虑建筑的用电负荷、线路布置、配电盘的设置等多个方面。
需要根据建筑的用电负荷合理设计配电线路,确保电力能够稳定地供应给各个部分。
需要合理设置配电盘,根据用电设备的功率和位置进行布置,便于进行管理和维护,同时也要考虑到安全因素,避免发生短路和漏电等问题。
配电系统的设计还需要考虑用电设备的保护和控制,比如安装熔断器、断路器等保护设备,确保电力系统在发生故障时能够及时切断电源,避免安全事故的发生。
还需要考虑到配电线路的敷设和绝缘等技术要求,确保电力传输的安全稳定。
三、智能化控制系统随着科技的发展,智能化控制系统在高层建筑的电气工程中也扮演着越来越重要的角色。
智能化控制系统可以实现对建筑用电的实时监测和控制,提高了电气设备的利用率,降低了能耗和维护成本。
通过智能化控制系统,可以实现对用电设备的远程监控和管理,及时发现并解决电力故障,提高了建筑的电力安全性。
智能化控制系统还可以与建筑的安防系统、空调系统等进行无缝对接,实现电力、安全和舒适性的整合控制,提升了建筑的整体管理水平和用户体验。
四、技术难点在高层建筑的电气工程供配电系统设计中,存在着一些技术难点需要克服。
是供配电系统的稳定性和可靠性问题。
一、电力系统简介由各种电压的电力线路将发电厂、变电所和电力用户联系起来的一个发电、输电、变电、配电和用电的整体,统称电力系统。
电力系统由电源、电力网、电力用户组成。
1.电源电源按其利用能源不同分为:水利发电、火力发电、核能发电、风力发电、地热发电、潮汐发电、太阳能发电。
其能量转换过程基本都是:各原能源一机械能一电能。
电力系统中的电源主要指发电厂。
2.电力网⑴标准电压等级:标准电压包括:0.4、3、6、10、35、66、110、220、330、500、750kV。
*就整个电力网而言,0.4kV作为低压配电电压,3、6、10kV作为中压配电电压,3 5、66、110kV作为高压配电电压,220、330、500kV作为高压输电电压,750kV及以上作为超高压输电电压。
*对于建筑电气而言,电压大于1kV都称高压,小于1kV称为低压。
*我国电力网目前一般采用五级电压,即0.4、10、35、110、220或330kV。
⑵电网设施电网设施包括整个输配电环节上的各级变电站所、开闭所、电力线等。
其中电力线包括架空线路和埋地电缆线路,对于35kV及以上的架空线路需要考虑高压电力线走廊的位置和宽度。
⑶接线方式电力网中线路的接线方式有放射型、环型、网孔型等。
二、建筑配供电系统基本概念建筑供配电系统包括从电源进户起到用电设备的输入端止的整个电路,主要功能是完成在建筑内接受电能、变换电压、分配电能、输送电能的任务。
1.负荷分级及供电电源要求根据电力负荷供电可靠性及中断供电在政治上造成影响或在经济上造成损失的程度,分为一级负荷、二级负荷和三级负荷。
1)一级负荷①中断供电将造成人身伤亡者。
②中断供电将造成重大政治影响者。
③中断供电将造成重大经济损失者。
④中断供电将造成公共场所秩序严重混乱者。
*一级负荷应由两个电源供电,特别重要负荷的供电还必须增设应急电源,并严禁将其他负荷接入应急供电系统。
2)二级负荷①中断供电将造成较大政治影响者。
建筑供配电分类建筑供配电是指建筑物内电力供应系统的组成部分,它包括电力进口、配电设备、配电线路、配电盘、终端插座以及其他电气设备等。
建筑供配电的分类主要分为以下几个方面:1. 按用电类型分类根据建筑物内不同用电设备的类型,建筑供配电可以分为照明电力、动力电力、特殊电力等。
照明电力是指供应建筑物内各种照明设备的电力,包括室内、室外照明。
动力电力是指供应建筑物内各种动力设备的电力,包括电梯、空调、风扇等。
特殊电力是指供应建筑物内某些特殊用途设备的电力,例如安防系统、监控系统、交通信号灯等。
2. 按电压等级分类根据建筑物内电力用电设备的电压等级,建筑供配电可以分为低压配电和高压配电。
低压配电一般指电压不大于1000V的供配电系统,主要用于建筑物内的照明、动力、特殊设备等用电。
高压配电一般指电压大于1000V 的供配电系统,主要用于建筑物内的大型电力设备,例如电梯、空调、变压器等。
3. 按供电方式分类根据电力供应的方式,建筑供配电可以分为自备电源供电和公共电网供电。
自备电源供电一般指建筑物内自己配备发电机的供电方式,主要用于应对突发情况或是电网故障。
公共电网供电则是指建筑物内从公共电网获取电力供应的方式,这是建筑物内通常采用的主要供电方式。
4. 按供电容量分类根据建筑物内的电力用电设备的总容量,建筑供配电可以分为小功率配电、中功率配电和大功率配电。
小功率配电一般指容量小于100KW的供电系统,主要用于住宅、小型商铺等。
中功率配电一般指容量在100KW-500KW之间的供电系统,主要用于中型商铺、办公室等。
大功率配电则是指容量大于500KW的供电系统,主要用于大型商场、超市、机场等。
在建筑物供配电的设计和施工中,应根据实际情况选择合适的供配电方式和设备,以确保供电安全、可靠、经济、高效。
建筑供配电系统简介建筑供配电系统是指为建筑物提供电力供应和配电服务的系统。
它包括电力输电、配电、电力控制及保护等构成部分,是建筑物正常运行所必需的基础设施。
本文将介绍建筑供配电系统的组成部分、工作原理和常见问题解决方法。
组成部分输电系统输电系统是建筑供配电系统的起始部分,其主要功能是将电力从电网输送到建筑内部。
输电系统由电源接入装置、电缆或导线、变压器等组成。
电源接入装置将电力引入建筑物,而电缆或导线将电力传送到不同的用电设备,变压器则用于调整电压等级。
配电系统是建筑供配电系统的核心部分,它将输送到建筑物的电力进行分配,以满足不同用电设备的需求。
配电系统包括开关设备、保护装置、配电板等。
开关设备用于控制电力接通和切断,保护装置用于保护电路免受过载、短路和地电流等异常情况的影响,配电板则起到集中控制和分配电力的作用。
电力控制及保护系统电力控制及保护系统是建筑供配电系统中的重要组成部分,它主要负责对电力进行控制和保护。
电力控制系统包括电力计量、电力调节、电力监测等设备,用于实现电力的精确测量、调节和监控。
电力保护系统包括过载保护、短路保护、接地保护等设备,用于保护电路和设备免受异常情况的损害。
建筑供配电系统的工作原理是将来自电网的交流电转换为建筑内部用电设备需要的电能,并通过配电系统进行分配和控制。
具体工作流程如下:1.电力输送:电力从电网通过输电线路输送到建筑物的接入装置。
2.变压处理:输送到建筑物的电力经过变压器进行变压,将电压调整为适合建筑内部用电设备的电压等级。
3.电力分配:变压后的电力通过配电系统进行分配,通过开关设备控制电力的接通和切断。
4.电力调节:电力分配到各个用电设备后,通过电力调节设备进行调节和控制,以满足不同用电设备的需求。
5.电力保护:建筑供配电系统中的保护装置对电力进行保护,保护电路免受异常情况的损害。
6.电力计量:电力计量设备用于对电力进行测量,记录用电量和功率等信息。
常见问题解决方法电力负荷过大问题描述:建筑供配电系统承载的电力负荷过大,容易导致设备过载,严重情况下可能引发火灾等安全事故。
建筑供配电分类建筑供配电是建筑物中重要的一环,它负责将电力从电网传输到建筑物内各个电器设备中,以供电器设备正常运行。
建筑供配电可以分为室内供电和室外供电两个方面。
室内供电是指建筑物内部的电力供应系统。
在建筑物内,首先需要安装主配电柜,该柜作为电力进入建筑物的主要分配点,将电力分配到不同的电路中。
同时,还需要设置配电箱,将电力进一步分配到各个具体的用电设备上。
在室内供电系统中,还需要安装接地系统,以确保人身安全,并防止电气设备损坏。
此外,还需要安装漏电保护器,以及过载保护器等设备,以确保电力供应的安全和可靠。
室外供电是指建筑物外部的电力供应系统。
它包括电力进户线路和变压器等设备。
电力进户线路是将电力从电网引入到建筑物内部的电缆或电线,通常需要经过电表计量电能使用情况。
变压器负责将电网中的高电压转换为建筑物内部需要的低电压。
在室外供电系统中,还需要考虑电力维护和安全问题,例如设置防雷装置和防水措施,以确保供电系统的稳定性和可靠性。
建筑供配电分类还可以根据电力使用的性质进行划分,例如常规供电和备用供电。
常规供电是指建筑物正常运行时所使用的电力供应系统,它通常由电力公司提供。
备用供电是指在常规供电系统发生故障或停电时,为建筑物提供紧急电力的备份供电系统。
备用供电系统通常由发电机组成,可以通过自动切换装置在常规供电中断时自动启动,以保证建筑物内关键设备的正常运行。
建筑供配电分类还可以根据电力使用的范围进行划分,例如一般供电和特殊供电。
一般供电是指建筑物内常规用电设备的供电系统,例如照明、插座、电梯等。
特殊供电是指供电系统需要满足特殊要求的设备或区域,例如医疗设备、防火设备等。
特殊供电系统通常需要额外的设备和保护措施,以确保供电的安全和可靠。
建筑供配电是建筑物中至关重要的一环。
它涉及到室内供电和室外供电两个方面,根据电力使用的性质和范围可以进行分类。
在建筑供配电的设计和安装中,需要考虑电力供应的安全、可靠性和稳定性,以满足建筑物内各种电器设备的正常运行需求。
建筑供配电系统内容提要及学习要求:现代工农业及整个社会生活中电力应用非常广泛,一般建筑采用低压供电,高层建筑通常10kV电压供电。
建筑供配电是建筑电气的重要内容,为更好的理解建筑供配电系统,本章着重介绍了电力系统和电力网、高低压供电配电系统、电力负荷计算。
通过学习要求掌握高低压供配电系统的主要设备、电力负荷计算、导线和供配电设备的选择等主要内容。
2.1 电力系统及电力负荷电力是工农业生产、国防及民用建筑中的主要动力,在现代社会中得到了广泛的应用。
对于从事建筑工程的技术人员了解如何安全可靠地获得电力资源,合理、经济地利用国家的电力资源是十分必要的。
2.1.1电力系统概念在电力系统中,如果每个发电厂孤立地向用户供电,其可靠性不高。
如当某个电厂发生故障或停机检修时,该地区将被迫停电,因此为了提高供电的安全性、可靠性、连续性、运行的经济性,并提高设备的利用率,减少整个地区的总备用容量,常将许多的发电厂、电力网和电力用户连成一个整体。
这里由发电厂、电力网和电力用户组成的统一整体称为电力系统。
典型电力系统示意图如图2.1所示。
图2.1 电力系统示意图1.发电厂发电厂是将一次能源(如水力、火力、风力、原子能等)转换成二次能源(电能)的场所。
我国目前主要以火力和水力发电为主,近年来在原子能发电能力上也有很大提高,相继建成了广东大亚湾、浙江秦山等核电站。
2.电力网电力网是电力系统的有机组成部分,它包括变电所、配电所及各种电压等级的电力线路。
变电所与配电所是为了实现电能的经济输送和满足用电设备对供电质量的要求,需要对发电机的端电压进行多次变换。
变电所是接受电能、变换电压和分配电能的场所,可分为升压变电所和降压变电所两大类。
配电所不具有电压变换能力。
电力线路是输送电能的通道。
由于发电厂与电能用户相距较远,所以要用各种不同电压等级的电力线路将发电厂、变电所与电能用户之间联系起来,使电能输送到用户。
一般将发电厂生产的电能直接分配给用户或由降压变电所分配给用户的10kV及以下的电力线路称为配电线路,而把电压在35kV及以上的高压电力线路称为送电线路。
3.电力用户电力用户也称电力负荷。
在电力系统中,一切消费电能的用电设备均称为电力用户。
电力用户按其用途可分为:动力用电设备、工艺用电设备、电热用电设备、照明用电设备等,它们分别将电能转换为机械能、热能和光能等不同形式,适应生产和生活的需要。
2.1.2我国电网电压等级电力网的电压等级比较多,从输电的角度来讲,电压越高则输送的距离就越远,传输的容量越大,但电压越高,要求绝缘水平也相应提高,因而造价也越高。
目前,我国根据国民经济发展的需要,技术经济上的合理性及电机电器制造工业的水平等因素,由国家颁布制定了我国电力网的电压等级主要有0.22、0.38、3、6、10、35、110、220、330、550kV等10级。
其中电网电压在1kV及以上的称为高压,1kV以下的电压称为低压。
2.1.3电力负荷分级及供电要求在电力系统上的用电设备所消耗的功率称为用电负荷或电力负荷。
根据电力负荷对供电可靠性的要求及中断供电在政治、经济上所造成的损失或影响的程度,分为三级。
1.一级负荷指中断供电将造成人身伤亡者,造成重大政治影响和经济损失,或造成公共场所秩序严重混乱的电力负荷,属于一级负荷。
如国家级的大会堂、国际候机厅、医院手术室、省级以上体育场(馆)等建筑的电力负荷。
对于某些特等建筑,如重要的交通枢纽、重要的通信枢纽、国宾馆、国家级及承担重大国事活动的会堂、国家级大型体育中心,以及经常用于重要国际活动的大量人员集中的公共场所等的一级负荷,为特别重要负荷。
一级负荷应由两个电源供电,一用一备,当一个电源发生故障时,另一个电源应不致同时受到损坏。
一级负荷中的特别重要负荷,除上述两个电源外,还必须增设应急电源。
为保证对特别重要负荷的供电,禁止将其他负荷接入应急供电系统。
常用的应急电源可有以下几种:独立于正常电源的发电机组、供电网络中有效地独立于正常电源的专门馈电线路、蓄电池。
2.二级负荷当中断供电将造成较大政治影响、较大经济损失或将造成公共场所秩序混乱的电力负荷,属于二级负荷。
如省部级的办公楼、甲等电影院、市级体育场馆、高层普通住宅、高层宿舍等建筑的照明负荷。
对于二级负荷,要求采用两个电源供电,一用一备,两个电源应做到当发生电力变压器故障或线路常见故障时不致中断供电(或中断供电后能迅速恢复)。
在负荷较小或地区供电条件困难时,二级负荷可由一路6KV及以上的专用架空线供电。
3.三级负荷不属于一级和二级负荷的一般电力负荷,均属于三级负荷。
三级负荷对供电电源无要求,一般为一路电源供电即可,但在可能的情况下,也应提高其供电的可靠性。
2.2 10kV变(配)电所及高压设备变(配)电所是联系发电厂与用户的中间环节,它起着变换与分配电能的作用。
本节仅介绍常见的10kV变电所。
10kV变电所主要由变压器、高压开关柜(断路器)、低压开关柜(隔离开关、空气开关、电流互感器、计量仪表)、母线等组成。
2.2.1变(配)电所位置的选择原则一般来讲,变(配)电所位置选择应考虑下列条件来综合确定:(1)接近负荷中心,这样可降低电能损耗,节约输电线用量。
(2)进出线方便。
(3)接近电源侧。
(4)设备吊装、运输方便。
(5)不应设在有剧烈振动的场所。
(6)不宜设在多尘、水雾(如大型冷却塔)或有腐蚀性气体的场所,如无法远离时,不应设在污染源的下风侧。
(7)不应设在厕所、浴室或其他经常积水场所的正下方或贴邻。
(8)变(配)电所为独立建筑物时,不宜设在地势低洼和可能积水的场所。
(9)高层建筑地下层变(配)电所的位置,宜选择在通风、散热条件较好的场所。
(10)变(配)电所位于高层(或其他地下建筑)的地下室时,不宜设在最底层。
当地下仅有一层时,应采取适当抬高该所地面等防水措施。
并应避免洪水或积水从其他渠道淹渍变(配)电所的可能性。
2.2.2主结线的方式及特点变(配)电所的主结线(一次接线)是指由各种开关电器、电力变压器、互感器、母线、电力电缆、并联电容器等电气设备按一定次序连接的接受和分配电能的电路。
它是电气设备选择及确定配电装置安装方式的依据,也是运行人员进行各种倒闸操作和事故处理的重要依据。
用图形符号表示主要电气设备在电路中连接的相互关系,称为电气主结线图。
电气主结线图通常以单线图形式表示。
主结线的基本形式有单母线接线、双母线接线、桥式接线等多种,本书只介绍建筑电气中常见的单母线接线。
1.单母线不分段主结线这种接线的优点是线路简单,使用设备少,造价低;缺点是供电的可靠性和灵活性差,母线故障检修时将造成所有用户停电。
因此,它适应于容量较小、对供电可靠性要求不高的场合。
单母线不分段主结线如图2.2所示。
图2.2 单母线不分段主接线2.单母线分段主结线它在每一段接一个或两个电源,在母线中间用隔离开关或断路器来分段。
引出的各支路分别接到各段母线上。
这种接线的优点是供电可靠性较高,灵活性增强,可以分段检修。
缺点是线路相对复杂,当母线故障时,该段母线的用户停电。
采用断路器连接分段的单母线,可适用于一、二级负荷。
采用这种供电方式注意保证两路电源不并联运行。
单母线分段主结线如图2.3所示。
图2.3 单母线分段主接线2.2.3变电所的形式和布置1.变电所的形式变电所的形式有独立式、附设式、杆上式或高台式、成套式变电所。
附设式又分为内附式和外附式。
2.变电所的布置10kV变电所一般由高压配电室、变压器室和低压配电室三部分组成。
(1)高压配电室高压配电室内设置高压开关柜,柜内设置断路器、隔离开关、电压互感器、母线等。
高压配电室的面积取决于高压开关的数量和柜的尺寸。
高压配电一般设有高压进线柜、计量柜、电容补偿柜、馈线柜等。
高压柜前留有巡检操作通道,应大于 1.8m。
柜后及两端应留有检修通道,应大于1m。
高压配电室的高度应大于2.5m。
高压配电室的门应大于设备的宽度,应向外开。
(2)变压器室当采用油浸变压器时,为使变压器与高、低压开关柜等设备隔离应单独设置变压器室。
变压器室要求通风良好,进出风口面积应达到0.5~0.6m2。
对于设在地下室内的变电所,可采用机械通风。
变压器室的面积取决于变压器台数、体积,还要考虑周围的维护通道。
10kV 以下的高压裸导线距地高度大于2.5m。
而低压裸导线要求距地高度大于2.2m。
(3)低压配电室低压配电室应靠近变压器室,低压裸导线(铜母排)架空穿墙引入。
低压配电室有进线柜、仪表柜、配出柜、低压补偿柜(采用高压电容补偿的可不设)等。
低压配出回路多,低压开关数量也多。
低压配电室的面积取决于低压开关柜数量,柜前应留有巡检通道(大于1.8m),柜后维修通道(大于0.8m)。
低压开关柜有单列布置和双列布置(柜数量较多时采用)等。
变电所的建设还应满足以下条件:①变电所应保持室内干燥、严防雨水进入。
②变电所应考虑通风良好,使电气设备正常工作。
③变电所的高度应大于4m,应设置便于大型设备进出的大门和人员出入的门,且所有的门应向外开。
④变电所的容量较大时,应单设值班室、设备维修室、设备库房等。
变电所的平面布置如图2.4所示。
图2.4 变电所平面布置图2.2.4常用高压设备常用的高压一次电气设备有:高压熔断器、高压隔离开关、高压负荷开关、高压断路器、高压开关柜、高压避雷器和互感器等。
1.高压隔离开关高压隔离开关的作用主要是隔断高压电源,并造成明显的断开点,以保证其他电气设备安全进行检修。
因为高压隔离开关没有专门的灭弧装置,所以不允许带负荷分闸和合闸。
但是激磁电流不超过2A的空载变压器、电容电流不超过5A的空载线路及电压互感器和避雷器等,可以用高压隔离开关切断。
按安装地点高压隔离开关分为户内式和户外式两大类。
GN19—10/600型户内高压隔离开关的外型如图2.5所示。
它的型号含义如下:G——隔离开关;N ——户内式;19——设计序号;10——额定电压(kV);600——额定电流(A)。
图2.5 GN19-10/600型高压隔离开关1—连接板;2—静触头;3—接触条;4—夹紧弹簧;5—支持瓷瓶;6—镀锌钢片;7—拉杠绝缘子;8—支持瓷瓶;9—传动主轴;10—底架2.高压断路器具有相当完善的灭弧结构和足够的断流能力。
它的作用是接通和切断高压负荷电流,并在严重的过载和短路时自动跳闸,切断过载电流和短路电流。
按高压断路器采用的灭弧介质不同,分为油断器、气体断路器(如SF6)和真空断路器等。
常用的高压油断路器,按用油量分类,又有高压少油断路器和高压多油断路器两类。
少油断路器的油量很少,只有几公斤,它的油只用来灭弧,不是用来绝缘的,所以外壳一般是带电的;多油断路器的油量多,它的油除了用来灭弧外,还要用作相对地(外壳)甚至相与相之间的绝缘的,外壳是不带电的。