鲁奇气化工艺及设备原理概述共39页文档
- 格式:ppt
- 大小:4.40 MB
- 文档页数:39
鲁奇加压气化炉的运行与技术改造探讨鲁奇加压气化炉是一种用于生产工业原料和能源的设备,它可以将固体燃料,如煤、木材等,通过加压气化的方式转化为可燃气体,从而实现能源的高效利用。
随着能源需求的不断增加和环境保护意识的提高,对加压气化炉的运行和技术改造的探讨变得愈发重要。
本文将从加压气化炉的基本原理、运行情况以及技术改造方面展开讨论。
一、加压气化炉的基本原理鲁奇加压气化炉是一种通过给固体燃料施加高压,使其在高温下与氧气发生气化反应的设备。
其基本原理是将固体燃料加热至一定温度后,通过给予一定的高压使其与氧气发生气化反应,生成可燃气体和灰渣。
这种气化反应产生的可燃气体可以作为燃料供给燃烧设备,从而实现能源的利用。
二、加压气化炉的运行情况1. 原料选择:加压气化炉可以使用各种固体燃料,包括煤、木材、秸秆等。
在实际运行中,不同的原料会对气化反应的速度和产物的成分产生影响,因此在选择原料时需要进行综合考虑。
2. 气化反应:气化反应是加压气化炉的核心部分,其速度和效果对设备的运行效率和产物的质量有重要影响。
在实际操作中,需要控制气化反应的温度、压力和气体流速等参数,以保证气化反应的稳定和高效进行。
3. 清灰处理:加压气化炉在运行过程中会产生大量的灰渣,这些灰渣会对设备的正常运行产生影响。
需要定期进行清灰处理,确保设备的正常运行。
4. 安全管理:加压气化炉是一种高温高压设备,其运行安全至关重要。
在运行中需要加强对设备的监控和维护,确保设备的安全运行。
三、加压气化炉的技术改造随着科技的进步和能源需求的变化,对加压气化炉的技术改造变得愈发重要。
以下是一些可能的技术改造方向:1. 节能改造:通过提高设备的热效率和气化反应的效率,减少能源的消耗,从而实现节能降耗。
2. 环保改造:通过改进气化反应的参数控制和气体净化系统,降低气化过程中产生的有害气体排放,实现环保目标。
3. 自动化改造:通过引入自动控制系统,提高设备的稳定性和可靠性,减少人为操作的误差,提高生产效率。
鲁奇炉(Lurgi Gasifier)是一种用于煤炭气化的加压移动床反应器,它的主要工作原理可以概括如下:1.物料输入与预处理:o煤炭首先经过破碎和干燥处理,然后通过煤锁(Coal Lock)按批次定量送入炉体内部。
煤锁通过充气加压与炉内压力保持一致,防止气体泄漏。
2.炉体结构与过程分区:o鲁奇炉为立式圆筒形结构,炉体内壁有水夹套,可利用高温煤气产生的热量生产蒸汽。
煤炭自上而下通过炉膛,依次经过干燥区、干馏区、气化区、部分氧化区和燃烧区。
3.气化过程:o在炉内的不同高度,煤炭与气化剂(通常包括氧气、水蒸气以及其他可能的还原气体)逆流接触。
o干燥区去除煤炭中的水分;干馏区发生热解作用,释放挥发分;气化区煤炭在一定的温度和压力下与气化剂反应生成合成气(主要成分为氢气H2、一氧化碳CO以及其他烃类和惰性气体)。
o部分氧化区煤炭与氧气进一步反应,提供热量维持气化反应所需的高温条件;燃烧区则是剩余未完全反应的煤炭和气体被充分燃烧。
4.排渣过程:o固态排渣鲁奇炉中,煤灰在气化完成后形成固态灰渣,通过炉底的炉箅排出到灰斗。
o液态排渣鲁奇炉在下部增设了喷嘴,高速喷入氧气和蒸汽,使煤灰在高温下熔融形成液态渣,通过调整急冷室与炉缸的压力差,控制液态渣以适宜的速度排出,避免排渣口堵塞。
5.能量回收与环境保护:o鲁奇炉的设计考虑了能源的高效利用和环保要求,炉壁夹套产生的蒸汽可用于发电或者作为工艺蒸汽循环使用。
o产生的煤气经过冷却、净化处理,分离出的产品包括清洁煤气、硫磺等,同时对废水和废气进行处理,以达到环保排放标准。
总的来说,鲁奇炉通过一系列复杂的化学反应将固体煤炭转化为便于运输和使用的合成气,实现了煤炭资源的有效转化和利用,同时也是洁净煤技术的重要组成部分,在煤化工产业中具有重要地位。
一、Lurgi(鲁奇)加压气化炉鲁奇碎煤加压气化技术是20世纪30年代由联邦德国鲁奇公司开发的,属第一代煤气化工艺,技术成熟可靠,是目前世界上建厂数量最多的煤气化技术。
正在运行中的气化炉达数百台,主要用于生产城市煤气和合成原料气。
德国Lurgi加压气化炉压力2.5~4.0MPa,气化反应温度800~900℃,固态排渣,一小块煤(对入炉煤粒度要求是6mm以上,其中13mm以上占87%,6~13mm占13%)原料、蒸汽-氧连续送风制取中热值煤气。
气化床层自上而下分干燥、干馏、还原、氧化和灰渣等层,产品煤气经热回收和除油,含有约10%~12%的甲烷和不饱和烃,适宜作城市煤气。
粗煤气经烃类分离和蒸汽转化后可作合成气,但流程长,技术经济指标差,对低温焦油及含酚废水的处理难度较大,环保问题不易解决。
鲁奇炉的技术特点有以下几个方面:①鲁奇碎煤气化技术系固定床气化,固态排渣,适宜弱粘结性碎煤(5~50mm)。
②生产能力大。
自工业化以来,单炉生产能力持续增长。
例如,1954年在南非沙索尔建立的10台内径为3.72m的气化炉,其产气能力为1.53×104m3/(h·台);而1966年建设的3台,产气能力为2.36×104m3/(h·台);到1977年所建的13台气化炉,平均产气能力则达2.8×104m3/(h·台)。
这种持续增长,主要是靠操作的不断改进。
③气化炉结构复杂,炉内设有破黏和煤分布器、炉篦等转动设备,制造和维修费用大。
④入炉煤必须是块煤,原料来源受一定限制。
⑤出炉煤气中含焦油、酚等,污水处理和煤气净化工艺复杂、流程长、设备多,炉渣含碳5%左右。
至今世界上共建有107台炉子,通过扩大炉径和增设破黏装置后,提高了气化强度和煤种适应性。
煤种涉及到次烟煤、褐煤、贫煤,用途为F-T合成、天然气、城市煤气、合成氨,气化能力8000~100000m3/h,气化内径最大5.0m,装置总规模1100~11600t/d。
造气讲课稿一:造气车间的主要装置:备煤系统、碎煤加压气化、煤气冷却、煤气水分离、酚胺回收等。
备煤系统一、主要任务及设备:备煤系统的任务是为14台气化炉提供合格的原料煤以及5台锅炉合格的燃料煤;其范围是从汽车卸车槽卸煤开始至造气厂房气化炉顶储煤仓及锅炉系统的煤仓上部为止。
主要包括原料煤、燃料煤的卸车、上煤、储存、粉碎、筛分及运输任务。
备煤系统主要设备有:带式输送机54台,带式称重给料机48台,叶轮给煤机4台,驰张筛2台,圆振筛2台,环锤破碎机2台等,其中B60101AB两台驰张筛由德国进口,其余全部为国内配套。
二、主要工艺控制参数(1)供煤粒度要求a.进煤粒度≤50mm,允许最大粒度≤100mm,含量≤5%。
b.锅炉供煤≤30mm。
c.造气供煤≥6mm,≤50mm。
d.造气供煤粒度小于6mm含量≤5%。
(2)供煤内在控制指标a.煤中水份含量≤12%。
b.煤中不能含有其它杂物(如木棒、铁器、扫帚、皮带等)。
c.块煤中矸石<4%(3)锅炉每小时耗煤429吨,日耗煤9438吨。
锅炉煤仓总储煤6400吨,可供锅炉运行15个小时。
(4)造气炉每小时耗煤420吨,日耗煤10080吨。
气化炉煤仓总储煤2240吨,可供造气炉运行5个小时。
(5)1#~8#圆筒仓储原煤76000吨,1#、2#地槽储原煤3000吨,总储原煤79000吨,可供全厂运行4天。
(6)原煤单系列输煤能力1200吨/小时。
(7)造气单系列输煤能力750吨/小时。
(8)锅炉单系列输煤能力600吨/小时。
三、设备参数(四)工艺流程图造气系统一.主要任务及设备:造气系统的主要任务是向煤气冷却工号提供合格的粗煤气,经冷却工段冷却后提供给后序工段,以生产甲醇和二甲醚。
造气选用碎煤加压气化炉,其炉型为Mark-Ⅲ,是目前世界上使用最广泛的一种炉型。
其内径为¢3·8M,外径4·128M,炉体高12·5M,炉内燃料堆放高度4000毫米,炉体容积119M3,炉体总重量169.5(其中包括内件重量40吨),操作重量250吨,夹套宽度为46毫米,总容积为13M3,气化炉操作压力为3·05Mpa。
鲁奇加压煤气化冷却工段一、介绍鲁奇加压煤气化冷却工段是煤气化过程中的一个重要环节,用于将高温高压的煤气冷却至适宜的温度和压力,以便进一步处理和利用。
本文将对鲁奇加压煤气化冷却工段进行详细介绍。
二、工艺原理鲁奇加压煤气化冷却工段采用了一种特殊的冷却方式,即水煤气换热器(Water-Gas Shift Heater,简称WGSH)和冷却器的组合。
其工艺原理如下:1.煤气进入水煤气换热器,与高温高压的水蒸汽进行换热,使煤气温度降低,同时水蒸汽被加热,进一步增加其压力和温度。
2.经过水煤气换热器后的煤气进入冷却器,在冷却器中与冷却介质进行换热,使煤气进一步降温,同时冷却介质被加热。
3.冷却后的煤气通过分离器分离出液体和气体两相,液体部分可进一步提取有价值的化合物,气体部分则进入下一工段进行进一步处理。
三、工段设备鲁奇加压煤气化冷却工段包括以下主要设备:1. 水煤气换热器(WGSH)水煤气换热器是鲁奇加压煤气化冷却工段的关键设备之一。
其主要功能是将高温高压的煤气与水蒸汽进行换热,使煤气温度降低,同时水蒸汽被加热。
水煤气换热器通常采用管壳式结构,煤气在管内流动,水蒸汽在壳侧流动,通过壳程和管程之间的传热来实现换热效果。
2. 冷却器冷却器是鲁奇加压煤气化冷却工段的另一个关键设备。
其主要功能是将经过水煤气换热器后的煤气与冷却介质进行换热,进一步降低煤气温度。
冷却器通常采用管壳式结构,煤气在管内流动,冷却介质在壳侧流动,通过壳程和管程之间的传热来实现换热效果。
3. 分离器分离器用于将冷却后的煤气分离成液体和气体两相。
液体部分可进一步提取有价值的化合物,气体部分则进入下一工段进行进一步处理。
分离器通常采用垂直圆筒形结构,通过重力和分离器内部的分离装置将液体和气体进行有效分离。
四、工段操作鲁奇加压煤气化冷却工段的操作流程如下:1.打开水蒸汽供应系统,将水蒸汽引入水煤气换热器,与高温高压的煤气进行换热。
2.调节水煤气换热器的进出口温度和压力,以达到预定的换热效果。
鲁奇碎煤加压气化技术探索摘要:本文从鲁奇加压气化特点入手,阐述了鲁奇加压气化原理,分析了鲁奇加压气化操作工艺条件。
关键词:鲁奇加压气化技术;原理;工艺常压固定(移动)床气化炉生产的煤气热值低,煤气中二氧化碳含量高,气化强度低,生产能力小,不能满足合成气的质量要求。
为解决上述问题,人们研究发展加压固定(移动)床气化技术。
在加压固定(移动)床气化技术中,最著名的为鲁奇加压气化技术。
一、鲁奇加压气化概述鲁奇加压气化采用的原料粒度为5~50mm,气化剂采用水蒸汽与纯氧,加压连续气化。
随着气化压力的提高,气化强度大幅提高,单炉制气能力可达75000~100000m2/h以上,而且煤气的热值增加。
鲁奇加压气化在制取合成气和城市煤气生产方面受到广泛重视。
1、鲁奇加压气化特点鲁奇加压气化有以下优点。
(1)原料适应性①原料适应范围广。
除粘结性较强的烟煤外,从褐煤到无烟煤均可气化。
②由于气化压力较高。
气流速度低,可气化较小粒度的碎煤。
③可气化水分、灰分较高的劣质煤。
(2)生产过程①单炉生产能力大,最高可达100000m2/h(干基)。
②气化过程是连续进行的,有利于实现自动控制。
③气化压力高,可缩小设备和管道尺寸,大幅度提高气化炉的生产能力,并能改善煤气的质量;利用气化后的余压可以节省合成气加压能耗和进行长距离输送。
④气化较年轻的煤时,可以得到各种有价值的焦油、轻质油及粗酚等多种副产品;⑤通过改变压力和后续工艺流程,可以制得H2/CO各种不同比例的化工合成原料气,拓宽了加压气化的应用范围。
2、鲁奇加压气化的缺点如下。
①蒸汽分解率低。
对于固态排渣气化炉,一般蒸汽分解率约为40%,蒸汽消耗较大,未分解的蒸汽在后序工段冷却,造成气化废水较多,废水处理工序流程长,投资高。
②需要配套相应的制氧装置,一次性投资较大。
二、鲁奇加压气化原理1、化学反应在气化炉内,在高温、高压下,煤受氧、水蒸汽、二氧化碳的作用,发生如下各种反应。
2、加压气化的实际过程(1)气化过程热工特性在实际的加压气化过程中,原料煤从气化炉的上部加入,在炉内从上至下依次经过干燥、干馏、半焦气化、残焦燃烧、灰渣排出等物理化学过程。
工艺技术知识煤炭气化是用于描述把煤炭转化成煤气的一个广义的术语,可定义为:煤炭在高温条件下,与气化剂进行热化学制得反应煤气的过程。
进行煤炭气化的设备叫气化炉(煤气发生炉)。
煤气化生产工艺包括煤的气化、粗煤气的净化、煤气组成的调整。
气化炉制得的粗煤气成分很复杂,主要有CO2、CO、H2、CH4、H2S等,无论煤气作何用途,均需净化处理可使得:(1)清除煤气中的有害杂质;(2)回收粗煤气中一些有价值的副产品;(3)回收粗煤气的显热。
根据煤气的用途不同,其组成要相应地进行调整处理如煤气若作城市煤气,则粗煤气中CO就需调整在符合安全规定范围内;煤气若作合成氨或合成甲醇的原料气,其组成中的CH4又需转化成H2;.可见煤气用途不同,煤气组成的调整工艺也不同。
煤气化系统包括备煤、气化、变换、煤气冷却所组成的气化系统和有煤气水分离、脱酚氨回收所组成的副产品回收系统以及用于废水处理的生化处理。
就上述工艺予以分别介绍。
气化炉总布置图序号设备名称及代号①气化炉B606AOI②煤锁V606A01③煤锁溜槽V606A02④煤仓V606A03⑤灰锁V606A04⑥洗涤冷却器V606A06⑦膨胀冷却器V606A07⑧煤锁气洗涤器V606A08⑨煤锁气气柜V606A09⑩开车煤锁气洗涤器V606A10 ⑾火炬气汽液分离器V606A11 ⑿火炬导燃器和火炬筒V606A12 ⒀夹套蒸汽分离器F606A01 ⒁粗煤气分离器F606A02⒂煤尘气分离器F606A03⒃煤锁气分离器F606A04⒄开车煤气分离器F606A05 ⒅煤锁气引射器J606A01⒆洗涤冷却循环水泵J606A02 ⒇煤锁气洗涤水泵J606A04 (21 开车煤气洗涤水泵J606A05(22 火炬冷凝液泵J606A06(23 气化剂混合管L606A01(24 洗涤冷却器刮刀L606A02(25 废热锅炉C606A01煤的气化一:工艺概述粒度为5~50㎜的原料煤由储煤仓经煤锁间断地加入到气化炉内,在3.1MPa压力下,煤自上经下经干燥层、干馏层、气化层逐层下移,与底部进入的气化剂(蒸汽+氧气)逆流接触发生气化反应,生成的煤气将热量传递给下降的煤层,以约600~700℃的温度离开气化炉。
鲁奇加压气化炉炉型构造及工艺流程鲁奇加压气化炉炉型构造及工艺流程4.第三代加压气化炉第三代加压气化炉是在第二代炉型上的改进,其型号为Mark-Ⅲ,是目前世界上使用最为广泛的一种炉型。
其内径为Ф3.8m,外径Ф4.128m,炉体高为12.5m,气化炉操作压力为3.05Mpa。
该炉生产能力高,炉内设有搅拌装置,可气化强黏结性烟煤外的大部分煤种。
第三代加压气化炉如图4-3-21所示。
煤液压大齿轮上有孔4562循环水3粗煤气__--煤箱;2--上部传动装置;3--喷冷器;4--群板;5--布煤气;6--搅拌器;7--炉体;8--卢箅;9--炉箅传动装置;10--灰箱;11-刮刀;12--保护板;水蒸汽和氧气10 图4-3-21 第三代加压气化炉为了气化有一定黏结性的煤种,第三代气化炉在炉内上部设置了布煤器与搅拌器,它们安装在同一空心转轴上,其转速根据气化用煤的黏结性及气化炉生产负荷来调整,一般为10~20r/h,从煤锁加入的煤通过布煤器上的两个布煤孔进入炉膛内,平均每转布煤15~20mm厚,从煤锁下料口到煤锁之间的空间,约能储存0.5h气化炉用煤量,以缓冲煤锁在间歇充、泄压加煤过程中的气化炉连续供煤。
在炉内,搅拌器安装在布煤器的下面,其搅拌桨叶一般设有上、下两片桨叶。
桨叶深入到煤层里的位置与煤的结焦性能有关,其位置深入到气化炉的干馏层,以破除干馏层形成的焦块。
桨叶的材质采用耐热钢,其表面堆焊硬质合金,以提高桨叶的耐磨性能。
桨叶和搅拌器、布煤器都为壳体结构,外供锅炉给水通过搅拌器、布煤器,最后从空心轴内中心管,首先进入搅拌器最下底的桨叶进行冷却,然后再依次通过冷却上桨叶、布煤器,最后从空心轴与中心管间的空间返回夹套形成水循环。
该锅炉水的冷却循环对布煤搅拌器的正常运行非常重要。
因为搅拌桨叶处于高温区工作,水的冷却循环不正常将会使搅拌器及桨叶超温烧坏造成漏水,从而造成气化炉运行中断。
该炉型也可用于气化不黏结性煤种。
鲁奇碎煤加压气化工艺分析一、鲁奇加压气化发展史鲁奇炉是德国鲁奇煤气化公司研究生产的一种煤气化反应器。
该炉型的发展经历了漫长的过程,其发展过程可分为三个阶段。
1、第一阶段:任务是证明煤炭气化理论在工业上实现移动床加压气化。
1936年至1954年,鲁奇公司进行了34次试验。
在这基础上设计了MARK—Ⅰ型气化炉。
该炉型的特点是炉内设有耐火砖,灰锁置于炉侧,气化剂通过炉篦主轴通入炉内。
炉身较短,炉径较小。
这种炉气化强度低,产气量仅为4500~8000Nm3/h,而且仅适用于褐煤气化。
2、第二阶段:任务是扩大煤种,提高气化强度。
为此设计出了第二代气化炉,其特点是(1)改进了炉篦的布气方式。
(2)增加了破粘装置,灰锁置于中央,炉篦侧向传动,(3)去掉了炉膛耐火砖。
炉型有MARK—Ⅱ型与MARK—Ⅲ型。
单台炉产气量为14000~17000Nm3/h。
3、第三阶段:任务是继续提高气化强度和扩大煤种适用范围。
设计了MARK—Ⅳ型炉,内径3.8米,产气量35000~50000Nm3/h,其主要特点是:(1)增加了煤分布器,改进了破粘装置,从而可气化炼焦煤以外的所有煤。
(2)设置多层炉篦,布气均匀,气化强度高,灰渣残炭量少。
(3)采用了先进的制造技术与控制系统,从而增加了加煤排灰频率,运转率提高到80%以上。
4、第四代加压气化炉:第四代加压气化炉是在第三代的基础上加大了气化炉的直径(达Ф5m),使单炉生产能力大为提高,其单炉产粗煤气量可达75000m3(标)/h(干气)以上。
目前该炉型仅在南非sasol公司投入运行。
今后鲁奇炉的发展方向:(1)降低汽氧比,提高气化层温度,扩大煤种适用范围,灰以液态形式排出,从而提高蒸汽分解率,增加热效率,大幅度提高气化强度,气化强度可由2.4t/m2h提高到3-5t/m2h.煤气中的甲烷可下降到7%以下。
(2)提高气化压力,根据鲁尔—100型炉实验,当压力由2.5Mpa提高到10.0Mpa,煤的转化率及气化强度可成倍增加,氧与蒸汽的消耗减少,煤的粒度也可以减少。