鲁奇炉设备的构造
- 格式:ppt
- 大小:1.04 MB
- 文档页数:21
鲁奇加压气化炉炉型构造及工艺流程鲁奇加压气化炉炉型构造及工艺流程4.第三代加压气化炉第三代加压气化炉是在第二代炉型上的改进,其型号为Mark-Ⅲ,是目前世界上使用最为广泛的一种炉型。
其内径为Ф3.8m,外径Ф4.128m,炉体高为12.5m,气化炉操作压力为3.05Mpa。
该炉生产能力高,炉内设有搅拌装置,可气化强黏结性烟煤外的大部分煤种。
第三代加压气化炉如图4-3-21所示。
煤液压大齿轮上有孔4562循环水3粗煤气__--煤箱;2--上部传动装置;3--喷冷器;4--群板;5--布煤气;6--搅拌器;7--炉体;8--卢箅;9--炉箅传动装置;10--灰箱;11-刮刀;12--保护板;水蒸汽和氧气10 图4-3-21 第三代加压气化炉为了气化有一定黏结性的煤种,第三代气化炉在炉内上部设置了布煤器与搅拌器,它们安装在同一空心转轴上,其转速根据气化用煤的黏结性及气化炉生产负荷来调整,一般为10~20r/h,从煤锁加入的煤通过布煤器上的两个布煤孔进入炉膛内,平均每转布煤15~20mm厚,从煤锁下料口到煤锁之间的空间,约能储存0.5h气化炉用煤量,以缓冲煤锁在间歇充、泄压加煤过程中的气化炉连续供煤。
在炉内,搅拌器安装在布煤器的下面,其搅拌桨叶一般设有上、下两片桨叶。
桨叶深入到煤层里的位置与煤的结焦性能有关,其位置深入到气化炉的干馏层,以破除干馏层形成的焦块。
桨叶的材质采用耐热钢,其表面堆焊硬质合金,以提高桨叶的耐磨性能。
桨叶和搅拌器、布煤器都为壳体结构,外供锅炉给水通过搅拌器、布煤器,最后从空心轴内中心管,首先进入搅拌器最下底的桨叶进行冷却,然后再依次通过冷却上桨叶、布煤器,最后从空心轴与中心管间的空间返回夹套形成水循环。
该锅炉水的冷却循环对布煤搅拌器的正常运行非常重要。
因为搅拌桨叶处于高温区工作,水的冷却循环不正常将会使搅拌器及桨叶超温烧坏造成漏水,从而造成气化炉运行中断。
该炉型也可用于气化不黏结性煤种。
鲁奇加压气化炉1、第三代鲁奇加压气化炉第三代加压气化炉为例,该炉子的内径为3.8m,最大外径为4.128m,高为12.5m,工艺操作压力为3MPa。
主要部分有炉体、夹套、布煤器和搅拌器、炉算、灰锁和煤锁等,现分述如下。
①炉体加压鲁奇炉的炉体由双层钢板制成,外壁按3.6MPa的压力设计,内壁仅能承受比气化炉内高O.25MPa的压力。
两个简体(水夹套)之间装软化水借以吸收炉膛所散失的一些热量产生工艺蒸汽,蒸汽经过液滴分离器分离液滴后送入气化剂系统,配成蒸汽/氧气混合物喷入气化炉内一水夹套内软化水的压力3MPa,这样筒内外两两侧的压力相同,因而受力小。
夹套内的给水由夹套水循环泵进行强制循环。
同时夹套给水流过煤分布器和搅拌器内的通道,以防止这些部件超温损坏。
第三代鲁奇炉取消了早期鲁奇炉的内衬砖.燃料直接与水夹套内壁相接触,避免了在较高温度下衬砖壁挂渣现象,造成煤层下移困难等异常现象,另一方面,取消衬砖后,炉膛截面可以增大5%~10%左右,生产能力相应提高。
②布煤器和搅拌器如果气化黏结性较强的煤,可以加设搅拌器。
布煤器和搅拌嚣安装在同一转轴上,速度为15r/h左右。
从煤箱降下的煤通过转动布煤器上的两个扇形孔,均匀下落在炉内,平均每转可以在炉内加煤150~200mm厚。
搅拌器是一个壳体结构,由锥体和双桨叶组成,壳体内通软化水循环冷却。
搅拌器深入到煤层里的位置与煤的结焦性有关,煤一般在400~500℃结焦,桨叶要深入煤层约l.3m。
③炉算炉箅分四层,相互叠合固定在底座上,顶盖呈锥体。
材质选用耐热的铬钢铸造,并在其表面加焊灰筋。
炉箅上安装刮刀,刮刀的数量取决于下灰量。
灰分低,装1~2把;对于灰分较高的煤可装3~4把。
炉箅各层上开有气孔,气化剂由此进入煤层中均匀分布。
各层开孔数不太一样,例如某厂使用的炉算开孔数从上至下为:第一层6个、第二层16个、第三层16个、第四层28个。
炉箅的转动采用液压传动装置,也有用电动机传动机构来驱动,液压传动机构有调速方便、结构简单、工作平稳等优点。
造气知识——关于鲁奇炉造气讲课稿一:造气车间的主要装置:备煤系统、碎煤加压气化、煤气冷却、煤气水分离、酚胺回收等。
备煤系统一、主要任务及设备:备煤系统的任务是为14台气化炉提供合格的原料煤以及5台锅炉合格的燃料煤;其范围是从汽车卸车槽卸煤开始至造气厂房气化炉顶储煤仓及锅炉系统的煤仓上部为止。
主要包括原料煤、燃料煤的卸车、上煤、储存、粉碎、筛分及运输任务。
备煤系统主要设备有:带式输送机54台,带式称重给料机48台,叶轮给煤机4台,驰张筛2台,圆振筛2台,环锤破碎机2台等,其中B60101AB两台驰张筛由德国进口,其余全部为国内配套。
二、主要工艺控制参数(1)供煤粒度要求a.进煤粒度≤50mm,允许最大粒度≤100mm,含量≤5%。
b.锅炉供煤≤30mm。
c.造气供煤≥6mm,≤50mm。
d.造气供煤粒度小于6mm含量≤5%。
(2)供煤内在控制指标a.煤中水份含量≤12%。
b.煤中不能含有其它杂物(如木棒、铁器、扫帚、皮带等)。
c.块煤中矸石<4%(3)锅炉每小时耗煤429吨,日耗煤9438吨。
锅炉煤仓总储煤6400吨,可供锅炉运行15个小时。
(4)造气炉每小时耗煤420吨,日耗煤10080吨。
气化炉煤仓总储煤2240吨,可供造气炉运行5个小时。
(5)1#~8#圆筒仓储原煤76000吨,1#、2#地槽储原煤3000吨,总储原煤79000吨,可供全厂运行4天。
(6)原煤单系列输煤能力1200吨/小时。
(7)造气单系列输煤能力750吨/小时。
(8)锅炉单系列输煤能力600吨/小时。
三、设备参数(四)工艺流程图造气系统一.主要任务及设备:造气系统的主要任务是向煤气冷却工号提供合格的粗煤气,经冷却工段冷却后提供给后序工段,以生产甲醇和二甲醚。
造气选用碎煤加压气化炉,其炉型为Mark-Ⅲ,是目前世界上使用最广泛的一种炉型。
其内径为¢3·8M,外径4·128M,炉体高12·5M,炉内燃料堆放高度4000毫米,炉体容积119M3,炉体总重量169.5(其中包括内件重量40吨),操作重量250吨,夹套宽度为46毫米,总容积为13M3,气化炉操作压力为3·05Mpa。
鲁奇加压气化炉和BGL加压化炉的比较鲁奇炉和BGL炉同属于移动床碎煤煤气化炉;煤在炉内均经过干燥、干馏、还原、氧化四个阶段;气化产物均为:粗煤气、煤焦油、中油等,煤气水中含有较多的酚、氨类物质;加煤系统、汽化炉本体、水夹套等结构基本相同。
现将其不同点比较如下:一、结构比较鲁奇炉和BGL炉主体结构基本相同,均由煤斗、煤锁、炉体、夹套、排灰系统等构成。
结构的主要不同点在于:鲁奇炉的蒸汽、氧气进气位置在炉箅子下部的布气块和炉箅子共同构成的四个半径依次缩小的布气上,而BGL炉则是通过四个对置的喷嘴进气;BGL炉在进气喷嘴附近可以加装粉煤进料喷嘴,可以直接喷入占总进料量30%左右的粉煤,而鲁奇炉无此结构,基本上不能气化粉煤;BGL炉的排灰系统为液态排渣,排灰系统由排渣口、激冷室、灰锁构成,在拍渣口附近有空气进口,以保证液态排渣,鲁奇炉的排灰系统由炉箅子和灰锁构成。
鲁奇炉结构图如下:BGL炉结构如下图:二、气化温度主要的不同点在于:气化温度不同,BGL炉气化温度高,一般1200-14000C(鲁奇900-1200 0C);气化效率是鲁奇炉的2-4倍;液态排渣(鲁奇为固态排渣);蒸汽分解率是鲁奇炉的3倍,废水产量约为鲁奇炉的25%。
具体比较如下:鲁奇炉要求气化温度低于煤的灰熔点,不能使灰渣熔化,否则会产生大块的灰渣堵塞排灰通道,因此、气化温度多选择在1000度左右;BGL汽化炉要求气化温度高于煤的灰熔点,以便使灰渣以液态排出,因此,气化温度多选择在1300度左右。
三、处理能力由于BGL汽化炉提高了气化温度,所以反应速度大大加快,使得单炉处理能力大大提高,一般情况是鲁奇炉的2-3倍左右,如:同样为3.8米内径的汽化炉,鲁奇炉日投煤量约900吨左右,BGL炉可达到2000吨以上。
四、蒸汽、氧气消耗BGL汽化炉蒸汽分解率高,蒸汽耗量约为鲁奇炉的30%,氧气耗量略高于鲁奇炉。
五、废水产量移动床气化工艺因经过了煤的干燥、干馏阶段,因此都要产生含油、酚、氨等物质,这些物质随未分解的水蒸气进入粗煤气,冷却分离后产生含油废水,BGL工艺由于提高了气化温度,提高了蒸汽利用率,所以废水产量大大降低,仅为鲁奇炉的25%左右。
鲁奇炉在煤制油中的应用摘要:本文主要介绍潞安煤基合成油有限公司利用鲁奇炉制油运行的状况及出现的问题。
总结2008年以来,鲁奇炉在运行中存在的问题以及相应的技术改造,并对鲁奇炉发展方向进行分析和展望。
关键词:鲁奇炉;加压气化;煤化工中图分类号:tp2 文献标识码:a 文章编号:1672-3791(2013)01(b)-0000-00能源与环境是国民经济和社会可持续发展的重要保证。
2020年,煤炭在国家能源构成中仍将在60%左右。
煤经过气化转化成清洁、高效的气体燃料,既能提高热效率,又可节约能源,保护环境,鲁奇碎煤加压气化技术生产与20世纪40年代,其生产能力大,煤种适应性广,是目前世界上适用最广泛的煤气化技术[1]。
1鲁奇炉构造和工艺原理1.1鲁奇炉构造我公司采用的是是mark-iv鲁奇炉,它由炉体、煤锁、灰锁及其辅助设备组成。
炉体的主要是将提供煤和气化剂加压气化的场所,使煤与气化剂逆向接触发生化学反应生产粗煤气。
炉体内炉篦为塔式结构。
在炉篦下部装有三把刮刀、以便将气化后的灰渣排除。
炉体的辅助设备主要为煤斗、煤锁、灰锁等组成。
煤定期地靠重力通过连接在煤仓二个出口的煤锁供煤溜槽,进入溜槽下部的煤锁中,煤锁为压力容器,拥有顶部和底部液压锥阀,煤锁容积为12m?3,灰锁与气化炉的底部法兰直接连接,有效容积8m3。
1.2鲁奇炉工艺原理鲁奇炉加压气化的实质是一部分煤与大部分氧气发生氧化反应,反应中放出的热提供给水蒸气与碳、二氧化碳等发生还原反应。
反正生产出h2、co、ch4、co2等气体,即所谓的粗煤气。
炉内工艺过程为:原料煤通过煤锁加入气化炉内,气化炉压力约为3.0mpa,煤自上而下依据物理、化学反应依此可分为干燥层、干馏层、还原层、氧化层灰层。
气化剂自下而上经灰渣层预热后进入氧化层和还原层,生成的煤气显热用于煤的干馏和干燥[2]。
其主要的化学反应发生在还原层与氧化层内,同时发生一些物理、化学反应得到焦油和酚类物质。