云南省2014届高三下学期3月统一检测数学(文)(扫描版)(附答案)
- 格式:doc
- 大小:855.50 KB
- 文档页数:14
云南省红河州2014届下学期高三年级毕业生复习统一检测考试数学试卷(文科)1.已知集合{}1,0,1,2,3,4=-M ,{}2,2-=N ,则下列结论成立的是 ( ) (A )M N ⊆ (B )M N M = (C )M N N = (D ){}2MN =2.复数122ii -+的计算结果是 ( ) (A )35i - (B )i - (C )i (D )35i3.公比为2的等比数列{}n a 的各项都是正数,且311=16a a ⋅,则6a = ( ) (A )1 (B )2 (C )4 (D )84.若命题“0,R ∃∈x 使得2002+50++<x mx m ”为假命题,则实数m 的取值范围是( )(A )[10,6]- (B )(6,2]- (C )[2,10]- (D )(2,10)- 5.四边形ABCD 是平行四边形,(2,4)AB =,(1,3)AC =,则AD = ( ) (A )(1,1)-- (B )(1,1) (C )(2,4) (D )(3,7) 6.若1tan()47πα+=,则tan α= ( ) (A )34 (B )43 (C )34- (D )43- 7.已知0.6log 0.5a =,ln 0.5b =,0.50.6c =.则 ( ) (A )>>a b c (B )>>a c b (C )>>c a b (D )>>c b a(D )8?>k9.若x ,y 满足约束条件03434x x y x y ⎧⎪+⎨⎪+⎩≥≥≤,则2z x y =-的最大值是 ( )(A )4 (B )43(C )1 (D )212.定义域为R 的函数2()||=++f x ax b x c (0≠a )有两个单调区间,则实数a ,b ,c 满足( )(A )240b ac -≥且0>a (B )240b ac -≥ (C )02b a -≥ (D )02ba -≤第Ⅱ卷 (非选择题,共90分)本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4个小题,每小题5分,共20分.请把答案填在答题卡上. 13.在正方形ABCD 中,点E 为AD 的中点,若在正方形ABCD 内部随机取一个点Q ,则点Q 落在ABE ∆内部的概率是 .14.直线32y x =与椭圆22221(0)+=>>x y a b a b相交于A 、B 两点,过点A 作x 轴的垂线,垂足恰好是椭圆的一个焦点,则椭圆的离心率是 .15.已知正三棱锥P ABC -的侧棱PA 、PB 、PC两两垂直,且AB =,则正三棱锥ABC P -的外接球的表面积是 .16.设数列{}n a 满足1241,6=+=a a a ,且对任意*∈n N ,函数12()()n n n f x a a a x ++=-+1cos n a x ++⋅2sin +-n a x 满足()02f π'=,若11n n n c a a +=⋅,则数列{}n c 的前n 项和n S 为 .三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.请把答案做在答题卡上.17.(本小题满分12分)已知函数()2cos2f x x x -(x R ∈).(Ⅰ)求()f x 的单调递增区间;(Ⅱ)在锐角三角形ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,若()2f A =,3c =,ABC ∆的面积为a 的值.18.(本小题满分12分)节日期间,高速公路车辆较多,某调查公司在一服务区从七座以下小型汽车中按进服务区的顺序,随机抽取第一辆汽车后,每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(/km h )分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后得到如下图的频率分布直方图.(Ⅰ)请直接回答这种抽样方法是什么抽样方法?并估计出这40辆车速的中位数; (Ⅱ)设车速在[80,85)的车辆为1A ,2A ,…,m A (m 为车速在[80,85)上的频数),车速在[85,90)的车辆为1B ,2B ,…,n B (n 为车速在[85,90)上的频数),从车速在[80,90)的车辆中任意抽取2辆共有几种情况?请列举出所有的情况,并求抽取的2辆车的车速都在[85,90)上的概率.20.(本小题满分12分)如图,设抛物线C :22(0)=>y px p 的焦点为F ,准线为l ,过准线l 上一点(1,0)-M 且斜率为k 的直线1l 交抛物线C 于A ,B 两点,线段AB 的中点为P ,直线PF 交抛物线C 于D ,E 两点. (Ⅰ)求抛物线C 的方程及k 的取值范围;(Ⅱ)是否存在k 值,使点P 是线段DE 的中点?若存在,求出k 值,若不存在,请说明理由.21.(本小题满分12分)已知函数21()ln (0)2=->f x x a x a . (Ⅰ)若()f x 在2=x 处的切线与直线2310++=x y 垂直,求()f x 的单调区间; (Ⅱ)求()f x 在区间[1,e]上的最大值.选考题:请考生在第22、23、24三道题中任选一题做答,并用2B 铅笔在答题卡上把所选的题号涂黑.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-1∶几何证明选讲已知AB 为半圆O 的直径,4=AB ,C 为半圆上一点,过点C 作半圆的切线CD ,过A 点作⊥AD CD 于D ,交半圆于点E ,1=DE . (Ⅰ)求证:AC 平分∠BAD ; (Ⅱ)求BC 的长.23.(本小题满分10分)选修4-4∶坐标系与参数方程在平面直角坐标系xOy 中,已知曲线1C :cos sin θθ=⎧⎨=⎩x y (θ为参数),将1C 上的所有点的横坐标、2倍后得到曲线2C .以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:sin )4ρθθ+=.(Ⅰ)试写出曲线1C 的极坐标方程与曲线2C 的参数方程;(Ⅱ)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值. 24.(本小题满分10分)选修4-5∶不等式选讲函数()=f x (Ⅰ)若5=a ,求函数()f x 的定义域A ; (Ⅱ)设{|12}=-<<B x x ,当实数a ,b ()R BC A ∈时,求证:|||1|24+<+a b ab. BA2014年红河州高中毕业生复习统一检测文科数学参考答案及评分标准一、选择题:本大题共12小题,每小题5分,满分60分.题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 DBBCACBDCABD二、填空题:本大题共4小题,每小题5分,满分20分. 13.14; 14. 12; 15. 3π; 16.1n n +. 三、解答题:本大题共6小题,满分70分.(Ⅱ)∵()=2sin(2)6f x x π-,∴()2sin(2)26f A A π=-=.∵02A π<<,∴52666A πππ-<-<,∴262A ππ-=,∴3A π=. …………8分由1sin 2ABC S bc A ∆==4b =.………………………10分 由余弦定理得2222212cos 43243132a b c bc A =+-=+-⨯⨯⨯=.∴a =. ……………………………………12分 18.(本小题满分12分)解:(Ⅰ)此调查公司在抽样中,用到的抽样方法是系统抽样. …………………2分 ∵车速在区间[80,85),[85,90),[90,95),[95,100)上的频率分别为0.05,0.1,0.2,0.3;∴车速在区间[80,95)上的频率是0.35,车速在区间[80,100)上的频率是0.65. ∴中位数在区间[95,100)内. ……………………………………2分设中位数的估计值是x ,∴0.050.10.2(95)0.060.5x +++-⨯=. 解之得97.5x =.∴中位数的估计值为97.5 …………………………………6分 (Ⅱ)由(Ⅰ)得0.05402m =⨯=,0.1404n =⨯=. …………………8分 ∴所以车速在[80,90)的车辆中任意抽取2辆的所有情况是:121112131421222324121314232434,,,,,,,,,,,,,,A A A B A B A B A B A B A B A B A B B B B B B B B B B B B B ,共有15种情况. ……………………………………10分车速都在[85,90)上的2辆车的情况有6种.所以车速都在[85,90)上的2辆车的概率是62=155. …………………………………………12分 19.(本小题满分12分)(Ⅰ)证明:连接1B M ,1AC , ……………1分 由已知得四边形11ABB A 是矩形,∴A ,M ,1B 三点共线且M 是1AB 的中点, 又∵N 是11B C 的中点,∴MN ∥1AC . ……………4分 又∵MN ⊄平面11A ACC ,1AC ⊂平面11A ACC , BA CM N1B 1A 1C∴MN ∥平面11A ACC . ………………6分 (Ⅱ)设点B 到平面ACM 的距离为h .由已知得AC ⊥平面11ABB A ,∴AC AM ⊥. ∵⊥AB AC ,12===AB AC AA ,∴11122AM AB =⋅=⨯=11222ACM S AC AM ∆=⋅⋅=⨯ ∵12AA =,M 是为1A B 的中点,1AA ⊥平面ABC , ∴点M 到平面ABC 的距离是1,112222ABC S AB AC ∆=⋅⋅=⨯⨯2=.………9分 ∵B ACM M ABC V V --=,∴11133ACM ABC S h S ∆∆⋅⋅=⋅⨯,∴ABC ACM S h S ∆∆===. ∴点B 到平面ACM………………12分 20.(本小题满分12分)解:(Ⅰ)由已知得12p-=-,∴2p =.∴抛物线方程为24y x =.……2分 设1l 的方程为(1)y k x =+,11(,)A x y ,22(,)B x y ,33(,)D x y ,44(,)E x y , 由2(1)4y k x y x=+⎧⎨=⎩得2440ky y k -+=. ………………4分216160k ∆=->,解得11k -<<,注意到0k =不符合题意,所以(1,0)(0,1)k ∈-. ………………5分(Ⅱ)不存在k 值,使点P 是线段DE 的中点.理由如下: ………………6分有(Ⅰ)得2440k y y k -+=,所以124y y k +=,所以12242x x k+=-,)2,12(2k kP -,直线PF 的方程为2(1)1ky x k =--. ………………8分 由22(1)14k y x ky x⎧=-⎪-⎨⎪=⎩得224(1)40ky k y k ---=,2344(1)k y y k -+=.……10分当点P 为线段DE 的中点时,有341222y y y y ++=,即222(1)k k k-=,因为0≠k ,所以此方程无实数根.因此不存在k 值,使点P 是线段DE 的中点. ……………12分21.(本小题满分12分)解:(Ⅰ)()f x 的定义域为(0,)+∞.2'()a x af x x x x-=-=.由()f x 在2x =处的切线与直线2310x y ++=垂直,则43'(2),122a f a -===.……2分 此时21()ln 2f x x x =-,21'()x f x x-=.令'()0f x =得1x =.()f x 与()f x '的情况如下:所以()f x 的单调递减区间是(0,1),单调递增区间是(1,)+∞. ………………5分(Ⅱ)由2'()a x af x x x x-=-=.由0a >及定义域为(0,)+∞,令'()0f x =,得x =①若01<,即01a <≤时,在[1,]e 上, ()0f x '≥,()f x 单调递增,2max()()2e f x f e a ==-. ………………7分②若21e,1e ,a <<<即在(上,'()0f x <,()f x 单调递减;在上,'()0f x >,()f x 单调递增,因此在[1,e]上,max ()max{(1),()}f x f f e =.1(1)2f =,2()2e f e a =-,令2122e a =-,解得212e a -=,当2112e a -<<时,2122>-a e ,所以2max ()2e f x a =-; 当2212e a e -<≤时,a e ->2212,所以max 1()(1)2f x f ==. ………………10分 ③若e ,即2a e ≥时,在(1,e)上,'()0f x <,()f x 在[1,e]上单调递减,max 1()(1)2f x f ==. ………………11分 综上,当2102e a -<<时2max ()2e f x a =-;当212e a -≥时,max 1()2f x =. (12)分选考题:请考生在第22、23、24三道题中任选一题做答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-1:几何证明选讲解: (Ⅰ)连接OC ,因为OA OC =,所以 OAC OCA ∠=∠.CD 为半圆的切线,∴CD OC ⊥.∵CD AD ⊥,//OC AD ∴.OCA CAD OAC CAD ∴∠=∠∴∠=∠,.AC ∴平分BAD ∠. ………………5分(Ⅱ)连接CE ,由(Ⅰ)得CAD OAC ∠=∠,∴CE BC =.∵A B C E 、、、四点共圆.∴ABC CED ∠=∠.∵AB 是圆O 的直径,∴ACB ∠是直角.∴CDE Rt ∆∽ACB Rt ∆,DE CB CE AB ∴=.∴41BCBC =2BC ∴=. ………………10分A11 23.(本小题满分10分)选修4-4:坐标系与参数方程解:(Ⅰ)由已知得曲线1C 的直角坐标方程是221x y +=,所以曲线1C 的极坐标方程是1ρ=,因为曲线1C 的直角坐标方程是221x y +=,所以根据已知的伸缩变换得曲线2C 的直角坐标方程是22124x y +=,所以曲线2C 的参数方程是c o s 2s i nx y ϕϕ⎧=⎪⎨=⎪⎩(ϕ是参数).…………5分24.(本小题满分10分)选修4-5:不等式选讲(Ⅰ)由|1||2|50x x +++-≥解得x x A |{=≤4-或x ≥}1. ………………5分(Ⅱ))1,1()(-=A C B R ,又|||1|2|||4|24a b ab a b ab +<+⇔+<+. 2222222222222224()(4)4(2)(168)4416(4)4(4)(4)(4)a b ab a ab b ab a b a b a b a b b b a +-+=++-++=+--=-+-=--及)1,1(,-∈b a ,22(4)(4)0b a ∴--<.224()(4)a b ab ∴+<+.|||1|24a b ab +∴<+. ………………………………10分请注意:以上参考答案与评分标准仅供阅卷时参考,其他答案请参考评分标准酌情给分.。
数学试卷 第1页(共39页) 数学试卷 第2页(共39页) 数学试卷 第3页(共39页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|13}M x x =-<<,{|21}N x x =-<<,则M N = ( ) A .(2,1)- B .(1,1)- C .(1,3) D .(2,3)-2.若tan 0α>,则( )A . sin 0α>B .cos 0α>C . sin20α>D .cos20α> 3.设1i 1iz =++,则|z |=( )A .12B .22 C .32D .24.已知双曲线2221(0)3x y a a -=>的离心率为2,则a = ( )A .2B .62C .52D .1 5.设函数()f x ,()g x 的定义域都为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )A .()f x ()g x 是偶函数B .|()|f x ()g x 是奇函数C .()f x |()|g x 是奇函数D .|()()|f x g x 是奇函数6.设D ,E ,F 分别为ABC △的三边BC ,CA ,AB 的中点,则EB FC += ( )A .ADB .12AD C .BCD .12BC 7.在函数①cos |2|y x =,②|cos |y x =,③πcos(2)6y x =+,④πtan(2)4y x =-中,最小正周期为π的所有函数为( )A .①②③B .①③④C .②④D .①③8.如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱 9.执行如图的程序框图,若输入的a ,b ,k 分别为1,2,3.则输出的M =( )A .203B .72C .165D .15810.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x = ( )A .1B .2C .4D .811.设x ,y 满足约束条件,1,x y a x y +⎧⎨--⎩≥≤且z x ay =+的最小值为7,则a =( )A .5-B .3C .5-或3D .5或3-12.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是( )A .(2,)+∞B .(1,)+∞C .(,2)-∞-D .(,1)-∞-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为 .14.甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市. 由此可判断乙去过的城市为 .15.设函数113e ,1,(),1,x x f x x x -⎧⎪=⎨⎪⎩<≥则使得()2f x ≤成立的x 的取值范围是 .16.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得M 点的仰角60MAN ∠=,C 点的仰角45CAB ∠=以及75MAC ∠=;从C 点测得60MCA ∠=.已知山高100BC = m ,则山高MN = m .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列{}2nn a 的前n 项和.姓名________________ 准考证号_____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第4页(共39页) 数学试卷 第5页(共39页) 数学试卷 第6页(共39页)18.(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结(Ⅰ)在答题卡上作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.(本小题满分12分)如图,三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1B C 的中点为O ,且AO ⊥平面11BB C C .(Ⅰ)证明:1B C AB ⊥;(Ⅱ)若1AC AB ⊥,160CBB ∠=,1BC =,求三棱柱111ABC A B C -的高.20.(本小题满分12分)已知点(2,2)P ,圆C :2280x y y +-=,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点. (Ⅰ)求M 的轨迹方程;(Ⅱ)当||||OP OM =时,求l 的方程及POM △的面积.21.(本小题满分12分)设函数21()ln (1)2a f x a x x bx a -=+-≠,曲线()y f x =在点(1,(1))f 处的切线斜率为0.(Ⅰ)求b ;(Ⅱ)若存在01x ≥,使得0()1af x a <-,求a 的取值范围.请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,四边形ABCD 是O 的内接四边形,AB 的延长线与DC 的延长线交于点E ,且CB CE =.(Ⅰ)证明:D E ∠=∠;(Ⅱ)设AD 不是O 的直径,AD 的中点为M ,且MB MC =,证明:ADE △为等边三角形.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C :22149x y +=,直线l :2,22,x t y t =+⎧⎨=-⎩(t 为参数). (Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C上任意一点P 作与l 夹角为30的直线,交l 于点A ,求||PA 的最大值与最小值.24.(本小题满分10分)选修4—5:不等式选讲若0a >,0b >,且11a b+=(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在a ,b ,使得236a b +=?并说明理由.3 / 132014年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】根据集合的运算法则可得:{|11}MN x x =-<<,即选B .【提示】集合的运算用数轴或者Venn 图可直接计算。
2014年全国统一高考数学试卷(文科)(大纲版)一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.72.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣3.(5分)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.27.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种8.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.649.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=110.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.412.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1二、填空题(本大题共4小题,每小题5分)13.(5分)(x﹣2)6的展开式中x3的系数是.(用数字作答)14.(5分)函数y=cos2x+2sinx的最大值是.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.三、解答题17.(10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.2014年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题(本大题共12小题,每小题5分)1.(5分)设集合M={1,2,4,6,8},N={1,2,3,5,6,7},则M∩N中元素的个数为()A.2B.3C.5D.7【考点】1A:集合中元素个数的最值;1E:交集及其运算.【专题】5J:集合.【分析】根据M与N,找出两集合的交集,找出交集中的元素即可.【解答】解:∵M={1,2,4,6,8},N={1,2,3,5,6,7},∴M∩N={1,2,6},即M∩N中元素的个数为3.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)已知角α的终边经过点(﹣4,3),则cosα=()A.B.C.﹣D.﹣【考点】G9:任意角的三角函数的定义.【专题】56:三角函数的求值.【分析】由条件直接利用任意角的三角函数的定义求得cosα的值.【解答】解:∵角α的终边经过点(﹣4,3),∴x=﹣4,y=3,r==5.∴cosα===﹣,故选:D.【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.3.(5分)不等式组的解集为()A.{x|﹣2<x<﹣1}B.{x|﹣1<x<0}C.{x|0<x<1}D.{x|x>1}【考点】7E:其他不等式的解法.【专题】59:不等式的解法及应用.【分析】解一元二次不等式、绝对值不等式,分别求出不等式组中每个不等式的解集,再取交集,即得所求.【解答】解:由不等式组可得,解得0<x<1,故选:C.【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题.4.(5分)已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】5G:空间角.【分析】由E为AB的中点,可取AD中点F,连接EF,则∠CEF为异面直线CE 与BD所成角,设出正四面体的棱长,求出△CEF的三边长,然后利用余弦定理求解异面直线CE与BD所成角的余弦值.【解答】解:如图,取AD中点F,连接EF,CF,∵E为AB的中点,∴EF∥DB,则∠CEF为异面直线BD与CE所成的角,∵ABCD为正四面体,E,F分别为AB,AD的中点,∴CE=CF.设正四面体的棱长为2a,则EF=a,CE=CF=.在△CEF中,由余弦定理得:=.故选:B.【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.5.(5分)函数y=ln(+1)(x>﹣1)的反函数是()A.y=(1﹣e x)3(x>﹣1)B.y=(e x﹣1)3(x>﹣1)C.y=(1﹣e x)3(x∈R)D.y=(e x﹣1)3(x∈R)【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】由已知式子解出x,然后互换x、y的位置即可得到反函数.【解答】解:∵y=ln(+1),∴+1=e y,即=e y﹣1,∴x=(e y﹣1)3,∴所求反函数为y=(e x﹣1)3,故选:D.【点评】本题考查反函数解析式的求解,属基础题.6.(5分)已知,为单位向量,其夹角为60°,则(2﹣)•=()A.﹣1B.0C.1D.2【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)•的值.【解答】解:由题意可得,=1×1×cos60°=,=1,∴(2﹣)•=2﹣=0,故选:B.【点评】本题主要考查两个向量的数量积的定义,属于基础题.7.(5分)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【考点】D9:排列、组合及简单计数问题.【专题】5O:排列组合.【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.8.(5分)设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6=()A.31B.32C.63D.64【考点】89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】由等比数列的性质可得S2,S4﹣S2,S6﹣S4成等比数列,代入数据计算可得.【解答】解:S2=a1+a2,S4﹣S2=a3+a4=(a1+a2)q2,S6﹣S4=a5+a6=(a1+a2)q4,所以S2,S4﹣S2,S6﹣S4成等比数列,即3,12,S6﹣15成等比数列,可得122=3(S6﹣15),解得S6=63故选:C.【点评】本题考查等比数列的性质,得出S2,S4﹣S2,S6﹣S4成等比数列是解决问题的关键,属基础题.9.(5分)已知椭圆C:+=1(a>b>0)的左、右焦点为F1、F2,离心率为,过F2的直线l交C于A、B两点,若△AF1B的周长为4,则C的方程为()A.+=1B.+y2=1C.+=1D.+=1【考点】K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】利用△AF1B的周长为4,求出a=,根据离心率为,可得c=1,求出b,即可得出椭圆的方程.【解答】解:∵△AF1B的周长为4,∵△AF1B的周长=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a,∴4a=4,∴a=,∵离心率为,∴,c=1,∴b==,∴椭圆C的方程为+=1.故选:A.【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题.10.(5分)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为()A.B.16πC.9πD.【考点】LG:球的体积和表面积;LR:球内接多面体.【专题】11:计算题;5F:空间位置关系与距离.【分析】正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,求出PO1,OO1,解出球的半径,求出球的表面积.【解答】解:设球的半径为R,则∵棱锥的高为4,底面边长为2,∴R2=(4﹣R)2+()2,∴R=,∴球的表面积为4π•()2=.故选:A.【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.11.(5分)双曲线C:﹣=1(a>0,b>0)的离心率为2,焦点到渐近线的距离为,则C的焦距等于()A.2B.2C.4D.4【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】根据双曲线的离心率以及焦点到直线的距离公式,建立方程组即可得到结论.【解答】解:∵:﹣=1(a>0,b>0)的离心率为2,∴e=,双曲线的渐近线方程为y=,不妨取y=,即bx﹣ay=0,则c=2a,b=,∵焦点F(c,0)到渐近线bx﹣ay=0的距离为,∴d=,即,解得c=2,则焦距为2c=4,故选:C.【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.12.(5分)奇函数f(x)的定义域为R,若f(x+2)为偶函数,且f(1)=1,则f(8)+f(9)=()A.﹣2B.﹣1C.0D.1【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数的奇偶性的性质,得到f(x+8)=f(x),即可得到结论.【解答】解:∵f(x+2)为偶函数,f(x)是奇函数,∴设g(x)=f(x+2),则g(﹣x)=g(x),即f(﹣x+2)=f(x+2),∵f(x)是奇函数,∴f(﹣x+2)=f(x+2)=﹣f(x﹣2),即f(x+4)=﹣f(x),f(x+8)=f(x+4+4)=﹣f(x+4)=f(x),则f(8)=f(0)=0,f(9)=f(1)=1,∴f(8)+f(9)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.二、填空题(本大题共4小题,每小题5分)13.(5分)(x﹣2)6的展开式中x3的系数是﹣160.(用数字作答)【考点】DA:二项式定理.【专题】11:计算题.【分析】根据题意,由二项式定理可得(x﹣2)6的展开式的通项,令x的系数为3,可得r=3,将r=3代入通项,计算可得T4=﹣160x3,即可得答案.【解答】解:根据题意,(x﹣2)6的展开式的通项为T r=C6r x6﹣r(﹣2)r=(﹣1)+1r•2r•C6r x6﹣r,令6﹣r=3可得r=3,此时T4=(﹣1)3•23•C63x3=﹣160x3,即x3的系数是﹣160;故答案为﹣160.【点评】本题考查二项式定理的应用,关键要得到(x﹣2)6的展开式的通项.14.(5分)函数y=cos2x+2sinx的最大值是.【考点】HW:三角函数的最值.【专题】11:计算题.【分析】利用二倍角公式对函数化简可得y=cos2x+2sinx=1﹣2sin2x+2sinx=,结合﹣1≤sinx≤1及二次函数的性质可求函数有最大值【解答】解:∵y=cos2x+2sinx=1﹣2sin2x+2sinx=又∵﹣1≤sinx≤1当sinx=时,函数有最大值故答案为:【点评】本题主要考查了利用二倍角度公式对三角函数进行化简,二次函数在闭区间上的最值的求解,解题中要注意﹣1≤sinx≤1的条件.15.(5分)设x,y满足约束条件,则z=x+4y的最大值为5.【考点】7C:简单线性规划.【专题】31:数形结合.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,由图得到最优解,联立方程组求出最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得C(1,1).化目标函数z=x+4y为直线方程的斜截式,得.由图可知,当直线过C点时,直线在y轴上的截距最大,z最大.此时z max=1+4×1=5.故答案为:5.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.16.(5分)直线l1和l2是圆x2+y2=2的两条切线,若l1与l2的交点为(1,3),则l1与l2的夹角的正切值等于.【考点】IV:两直线的夹角与到角问题.【专题】5B:直线与圆.【分析】设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,由直角三角形中的边角关系求得sinθ=的值,可得cosθ、tanθ 的值,再根据tan2θ=,计算求得结果.【解答】解:设l1与l2的夹角为2θ,由于l1与l2的交点A(1,3)在圆的外部,且点A与圆心O之间的距离为OA==,圆的半径为r=,∴sinθ==,∴cosθ=,tanθ==,∴tan2θ===,故答案为:.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题17.(10分)数列{a n}满足a1=1,a2=2,a n+2=2a n+1﹣a n+2.(Ⅰ)设b n=a n+1﹣a n,证明{b n}是等差数列;(Ⅱ)求{a n}的通项公式.【考点】83:等差数列的性质;84:等差数列的通项公式;8H:数列递推式.【专题】54:等差数列与等比数列.【分析】(Ⅰ)将a n=2a n+1﹣a n+2变形为:a n+2﹣a n+1=a n+1﹣a n+2,再由条件得+2b n+1=b n+2,根据条件求出b1,由等差数列的定义证明{b n}是等差数列;(Ⅱ)由(Ⅰ)和等差数列的通项公式求出b n,代入b n=a n+1﹣a n并令n从1开始取值,依次得(n﹣1)个式子,然后相加,利用等差数列的前n项和公式求出{a n}的通项公式a n.=2a n+1﹣a n+2得,【解答】解:(Ⅰ)由a n+2a n+2﹣a n+1=a n+1﹣a n+2,由b n=a n+1﹣a n得,b n+1=b n+2,即b n﹣b n=2,+1又b1=a2﹣a1=1,所以{b n}是首项为1,公差为2的等差数列.(Ⅱ)由(Ⅰ)得,b n=1+2(n﹣1)=2n﹣1,由b n=a n+1﹣a n得,a n+1﹣a n=2n﹣1,则a2﹣a1=1,a3﹣a2=3,a4﹣a3=5,…,a n﹣a n﹣1=2(n﹣1)﹣1,所以,a n﹣a1=1+3+5+…+2(n﹣1)﹣1==(n﹣1)2,又a1=1,所以{a n}的通项公式a n=(n﹣1)2+1=n2﹣2n+2.【点评】本题考查了等差数列的定义、通项公式、前n项和公式,及累加法求数列的通项公式和转化思想,属于中档题.18.(12分)△ABC的内角A、B、C的对边分别为a、b、c,已知3acosC=2ccosA,tanA=,求B.【考点】GL:三角函数中的恒等变换应用;HP:正弦定理.【专题】58:解三角形.【分析】由3acosC=2ccosA,利用正弦定理可得3sinAcosC=2sinCcosA,再利用同角的三角函数基本关系式可得tanC,利用tanB=tan[π﹣(A+C)]=﹣tan(A+C)即可得出.【解答】解:∵3acosC=2ccosA,由正弦定理可得3sinAcosC=2sinCcosA,∴3tanA=2tanC,∵tanA=,∴2tanC=3×=1,解得tanC=.∴tanB=tan[π﹣(A+C)]=﹣tan(A+C)=﹣=﹣=﹣1,∵B∈(0,π),∴B=【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.19.(12分)如图,三棱柱ABC﹣A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2.(Ⅰ)证明:AC1⊥A1B;(Ⅱ)设直线AA1与平面BCC1B1的距离为,求二面角A1﹣AB﹣C的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)由已知数据结合线面垂直的判定和性质可得;(Ⅱ)作辅助线可证∠A1FD为二面角A1﹣AB﹣C的平面角,解三角形由反三角函数可得.【解答】解:(Ⅰ)∵A1D⊥平面ABC,A1D⊂平面AA1C1C,∴平面AA1C1C⊥平面ABC,又BC⊥AC∴BC⊥平面AA1C1C,连结A1C,由侧面AA1C1C为菱形可得AC1⊥A1C,又AC1⊥BC,A1C∩BC=C,∴AC1⊥平面A1BC,AB1⊂平面A1BC,∴AC1⊥A1B;(Ⅱ)∵BC⊥平面AA1C1C,BC⊂平面BCC1B1,∴平面AA1C1C⊥平面BCC1B1,作A1E⊥CC1,E为垂足,可得A1E⊥平面BCC1B1,又直线AA1∥平面BCC1B1,∴A1E为直线AA1与平面BCC1B1的距离,即A1E=,∵A1C为∠ACC1的平分线,∴A1D=A1E=,作DF⊥AB,F为垂足,连结A1F,又可得AB⊥A1D,A1F∩A1D=A1,∴AB⊥平面A1DF,∵A1F⊂平面A1DF∴A1F⊥AB,∴∠A1FD为二面角A1﹣AB﹣C的平面角,由AD==1可知D为AC中点,∴DF==,∴tan∠A1FD==,∴二面角A1﹣AB﹣C的大小为arctan【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题.20.(12分)设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】(Ⅰ)把4个人都需使用设备的概率、4个人中有3个人使用设备的概率相加,即得所求.(Ⅱ)由(Ⅰ)可得若k=2,不满足条件.若k=3,求得“同一工作日需使用设备的人数大于3”的概率为0.06<0.1,满足条件,从而得出结论.【解答】解:(Ⅰ)由题意可得“同一工作日至少3人需使用设备”的概率为0.6×0.5×0.5×0.4+(1﹣0.6)×0.5×0.5×0.4+0.6×(1﹣0.5)×0.5×0.4+0.6×0.5×(1﹣0.5)×0.4+0.6×0.5×0.5×(1﹣0.4)=0.31.(Ⅱ)由(Ⅰ)可得若k=2,则“同一工作日需使用设备的人数大于2”的概率为0.31>0.1,不满足条件.若k=3,则“同一工作日需使用设备的人数大于3”的概率为0.6×0.5×0.5×0.4=0.06<0.1,满足条件.故k的最小值为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题.21.(12分)函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.【考点】6B:利用导数研究函数的单调性;6D:利用导数研究函数的极值.【专题】53:导数的综合应用.【分析】(Ⅰ)求出函数的导数,通过导数为0,利用二次函数的根,通过a的范围讨论f(x)的单调性;(Ⅱ)当a>0,x>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,推出f′(1)≥0且f′(2)≥0,即可求a的取值范围.【解答】解:(Ⅰ)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,令f′(x)=0,即3ax2+6x+3=0,则△=36(1﹣a),①若a≥1时,则△≤0,f′(x)≥0,∴f(x)在R上是增函数;②因为a≠0,∴a≤1且a≠0时,△>0,f′(x)=0方程有两个根,x1=,x2=,当0<a<1时,则当x∈(﹣∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(﹣∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;当a<0时,则当x∈(﹣∞,x1)或(x2,+∞),f′(x)<0,故函数在(﹣∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;(Ⅱ)当a>0,x>0时,f′(x)=3ax2+6x+3>0 故a>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,当且仅当:f′(1)≥0且f′(2)≥0,解得﹣,a的取值范围[)∪(0,+∞).【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.22.(12分)已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=|PQ|.(Ⅰ)求C的方程;(Ⅱ)过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,且A、M、B、N四点在同一圆上,求l的方程.【考点】KH:直线与圆锥曲线的综合.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C的方程,求得x0=,根据|QF|=|PQ|求得p的值,可得C的方程.(Ⅱ)设l的方程为x=my+1 (m≠0),代入抛物线方程化简,利用韦达定理、中点公式、弦长公式求得弦长|AB|.把直线l′的方程代入抛物线方程化简,利用韦达定理、弦长公式求得|MN|.由于MN垂直平分线段AB,故AMBN 四点共圆等价于|AE|=|BE|=|MN|,由此求得m的值,可得直线l的方程.【解答】解:(Ⅰ)设点Q的坐标为(x0,4),把点Q的坐标代入抛物线C:y2=2px (p>0),可得x0=,∵点P(0,4),∴|PQ|=.又|QF|=x0+=+,|QF|=|PQ|,∴+=×,求得p=2,或p=﹣2(舍去).故C的方程为y2=4x.(Ⅱ)由题意可得,直线l和坐标轴不垂直,y2=4x的焦点F(1,0),设l的方程为x=my+1(m≠0),代入抛物线方程可得y2﹣4my﹣4=0,显然判别式△=16m2+16>0,y1+y2=4m,y1•y2=﹣4.∴AB的中点坐标为D(2m2+1,2m),弦长|AB|=|y1﹣y2|==4(m2+1).又直线l′的斜率为﹣m,∴直线l′的方程为x=﹣y+2m2+3.过F的直线l与C相交于A、B两点,若AB的垂直平分线l′与C相交于M、N两点,把线l′的方程代入抛物线方程可得y2+y﹣4(2m2+3)=0,∴y3+y4=,y3•y4=﹣4(2m2+3).故线段MN的中点E的坐标为(+2m2+3,),∴|MN|=|y3﹣y4|=,∵MN垂直平分线段AB,故AMBN四点共圆等价于|AE|=|BE|=|MN|,∴+DE2=MN2,∴4(m2+1)2 ++=×,化简可得m2﹣1=0,∴m=±1,∴直线l的方程为x﹣y﹣1=0,或x+y﹣1=0.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了转化的数学思想,属于难题.。
云南省红河州2014届高三数学复习统一检测试题 理 新人教版1.已知集合A 是函数)2ln()(2x x x f -=的定义域,集合B={}052>-x x ,则( )A. ∅=B AB. R B A =C. A B ⊆D. B A ⊆ 2.若复数z 满足i z i +=-3)21(,则复数z 的虚部为( )A .37-B .i 37-C .57D .i573.在等比数列{}n a 中,5113133,4,a a a a ⋅=+=则155a a =( )A .3B .3或13C .13D . 3-或13-4. 一个体积为123的正三棱柱的三视图如图所示,则这个三棱柱 的侧视图的面积为( )A. 63 B . 8 C. 83 D. 125.某班有60名学生,其中正、副班长各1人,现要选派5人参加一项社区活动,要求正、副班长至少1人参加,问共有多少种选派方法?下面是学生提供的四个计算式,其中错误的是( )A. 14259C CB. 556058C C -C. 3142259258C C C C - D. 3142258258C C C C +6.将函数sin 2y x =的图象向左平移3π个单位,再向上平移1个单位,得到的函数为( )A. sin(2)13y x π=-+B. sin(2)13y x π=++C.2sin(2)13y x π=-+ D. 2sin(2)13y x π=++7.若下面框图所给的程序运行结果为S =20,那么判断框中应填入的关于k 的条件是( ) A .9?k = B .8?k ≥ C .8?k < D .8?k >8.已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 分别与α、β交于A 、C ,过点P 的直线n 分别与α、β交于B 、D ,且PA =6,AC =9,PD =8.则BD 的长为( )A .24 B. 12 C. 24125或 D. 245或2411. 已知F 是抛物线x y =2的焦点,A 、B 是该抛物线上的两点,3=+BF AF ,则线段AB 的中点到y 轴的距离为( )A. 34B. 1C. 54D. 7412. 若直角坐标平面内的两个不同的点M N 、满足条件:①M N 、都在函数()y f x =的图象上;②M N 、关于原点对称.则称点对[,]M N 为函数()y f x =的一对“友好点对”.(注:点对[,]M N 与[,]N M 为同一“友好点对”).已知函数42log (0)()6(0)x x f x x x x >⎧=⎨--≤⎩,此函数的友好点对有( )A. 0对B. 1对C. 2对D. 3对 第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4个小题,每小题5分,共20分. 13.已知向量a b 、 ,其中||2a =,||2b =,且()a b a -⊥ ,则向量a 和b 的夹角是 .14.若3sin()45πα+=,则sin 2α= . 15. 从3名男生和n 名女生中,任选3人参加比赛,已知在选出的3人中至少有1名女生的概率为3534,则n = .16. 已知数列{}{}n n a b 、,且通项公式分别为232,n n a n b n =-=,现抽出数列{}{}n n a b 、中所有相同的项并按从小到大的顺序排列成一个新的数列{}n c ,则可以推断21k c -=(用k 表示(*k N ∈)).三、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分 )在ABC ∆中,角,,A B C 对的边分别为,,a b c ,已知2a =.(1)若3A π=,求b c +的取值范围;(2)若1AB AC ⋅=,求ABC ∆面积的最大值.18.(本题满分12分 )2013年国庆期间,高速公路车辆较多.某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(km/h)分成六段[80,85),[85,90),[90,95),[95,100),[100,105),[105,110)后得到如下图的频率分布直方图.(1)此调查公司在采样中,用到的是什么抽样方法? (2)求这40辆小型车辆车速的中位数的估计值;(3)若从车速在[80,90)的车辆中任抽取3辆,求抽出的3辆车中车速在[85,90)的车辆数ξ的分布列及数学期望.110 885 90 95 100 10车速0.010.02 0.04 0.05 0.06 频率19.(本题满分12分 )等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足AD DB =12CE EA =(如图1).将△ADE 沿DE 折起到△1A DE 的位置,使二面角1A DE B --成直二面角,连结1A B 、1AC (如图2).(1)求证:1A D ⊥平面BCED ;(2)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为3π?若存在,求出PB 的长,若不存在,请说明理由.20.(本题满分12分 )已知椭圆E 的中心在原点,焦点在x 轴上,椭圆上的点到焦点的最小距离为13-,离心率33=e .(1)求椭圆E 的方程;(2)若直线m x y l +=:交E 于P 、Q 两点,点)0,1(M ,问是否存在m ,使MQ MP ⊥?若存在求出m 的值,若不存在,请说明理由.21.(本题满分12分 )已知函数()ln(1)f x x ax =+-在1x =处的切线的斜率为1. (1)求实数a 的值及函数()f x 的最大值;(2)证明:1111ln(1)()23n n N n ++++⋅⋅⋅+>+∈.选考题:本小题满分10分请考生在第22、23、24三道题中任选一题作答.如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修4-1:几何证明选讲 已知AB 为半圆O 的直径,4AB =,C 为半圆上一点,过点C 作半圆的切线CD ,过A 点作AD CD ⊥于D ,交半圆于点E ,1DE=.∠;(1)证明:AC平分BAD (2)求BC的长.24.(本小题满分10分)选修4—5:不等式选讲函数()f x =.(1)若5a =,求函数()f x 的定义域A ;(2)设{|12}B x x =-<<,当实数,()R a b B C A ∈时,证明:|||1|24a b ab+<+.PB2014年红河州高中毕业生复习统一检测理科数学参考答案(更正)二、填空题13.4π14.725-15. 4 16.2221211(32)(32)2kkc k--+=⨯-=-三、解答题17. 解:(1)2,3a Aπ==,2sin32aRA∴===……… (2分)2sin2sin33)3331sin22cos4sin()6b c R B R CB CB BB B BB BBππ∴+=+=+=++=+=+=+……… (4分)233235666A B CBBππππππ=∴+=∴<<∴<+<1sin()(,1]62Bπ∴+∈.(2,4]b c∴+∈……… (6分)(2)cos 11cos 0sin AB AC bc A A bcA ⋅==∴=>∴=,……… (8分)2222222222cos 426239a b c bc A b c b c bc bc b c =+-∴=+-∴=+≥∴≤∴≤……… (10分)1sin 212ABC S bc Abc bc ∆∴==⋅=≥=当且仅当b c ==ABC ∆. .……… (12分)18.解: (1)系统抽样 …………………………………2分 (2)设图中虚线所对应的车速为x ,则中位数的估计值为0.0150.0250.0450.06(95)0.5x ⨯+⨯+⨯+⨯-=,解得97.5x =即中位数的估计值为97.5 ………4分(3)从图中可知,车速在[80,85)的车辆数为0.015402⨯⨯=(辆),车速在[85,90)的车辆数为0.025404⨯⨯=(辆)∴ξ可取:1,2,3 ………6分110 80 85 90 95100 105 车速0.010.02 0.04 0.050.06 频率 组距x2124361(1)5C C P C ξ===,1224363(2)5C C P C ξ===,0324361(3)5C C P C ξ===, ………8分ξ的分布列为………10分均值131()1232555E ξ=⨯+⨯+⨯=. …………12分 19. (1) 因为等边△ABC 的边长为3,且AD DB =12CE EA =, 所以1AD =,2AE =. 在△ADE 中,60DAE ∠=,由余弦定理得603DE ==. 因为222AD DE AE +=,所以AD DE ⊥. ……… (4分) 折叠后有1A D DE ⊥因为二面角1A DE B --是直二面角,所以平面1A DE ⊥平面BCED又平面1A DE平面BCED DE =,1A D ⊂平面1A DE ,1A D DE ⊥, 所以1A D ⊥平面BCED ……… (6分)所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB =(12分)解法2:由(1)的证明,可知ED DB ⊥,1A D ⊥平面BCED .以D 为坐标原点,以射线DB 、DE 、1DA 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系D xyz -如图设2PB a=()023a ≤≤,则BH a =,3PH a =,2DH a =- 所以()10,0,1A ,()23,0P a a -,()3,0E所以()12,3,1PA a a =- ……… (8分)因为ED ⊥平面1A BD,所以平面1A BD 的一个法向量为()0,3,0DE =因为直线1PA 与平面1A BD所成的角为60,B CED 1A Hxy zP所以11sin 60PA DE PA DE===, ……… (10分)解得54a =即522PB a ==,满足023a ≤≤,符合题意所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB =……(12分)20. 解:(1)设椭圆E 的方程为 12222=+b y a x ,)0(>>b a由已知得 ⎪⎩⎪⎨⎧=-=-3313a c c a ⇒ 3=a ,1=c ,从而 22=b ……… (2分)∴ 椭圆E 的方程为 12322=+y x ……… (4分)(2)由 ⎪⎩⎪⎨⎧+==+m x y y x 12322 ⇒0636522=-++m mx x设 ),(11y x P 、),(22y x Q , 则 5621mx x -=+,563221-=m x x ,⇒ 221212121)())((m x x m x x m x m x y y +++=++= ……… (6分)由题意0)63(543622>-⨯⨯-=∆m m ,⇒ 55<<-m ……… (8分) 要MQ MP ⊥,就要0=⋅MQ MP , 又 ),1(11y x MP -=,),1(22y x MQ -=∴ 0)1)(1(2121=+--y y x x ,⇒01))(1(222121=+++-+m x x m x x⇒015)1(6512622=++---m m m m ,⇒07652=-+m m ……… (10分)⇒56114-=m 或56114--=m ,又55<<-m ,∴56114-=m ,故存在56114-=m 使得MQ MP ⊥. ……… (12分)21. 解: (1)由已知可得函数的定义域为(1,)-+∞1`()11`(1)111f x a x f a ∴=-+∴=-=+ 12a ∴=-……… (2分)1()ln(1)2f x x x ∴=++3`()02(1)x f x x +∴=>+()f x ∴在(1,)-+∞是单调递增()f x ∴ 的最大值不存在 ……… (6分)(2)由(1)令()ln(1)g x x x =+-,则`()1xg x x =-+max ()()(0)0g x g x g ===极大,ln(1)x x ∴≥+,当且仅当0x =时等号成立令1(*)x k N k =∈则0x >111ln(1)ln ln(1)ln k k kk k k +∴>+==+-111123(ln 2ln1)(ln 3ln 2)[ln(1)ln ]ln(1)kn n n ∴+++⋅⋅⋅+>-+-+⋅⋅⋅++-=+……… (12分) 22. 解: (1)连接OC ,因为OA OC =, 所以 OAC OCA ∠=∠CD 为半圆的切线 AD CD ∴⊥, //OC AD ∴OCA CAD OAC CAD ∴∠=∠∴∠=∠AC ∴平分BAD ∠ ……… (5分)(2)连接CE ,由OCA CAD ∴∠=∠知BC CE = 所以A B C E 、、、四点共圆cos cos B CED ∴∠=∠,DE CBCE AB ∴=,2BC ∴= ……… (10分)24. 解:(1)由|1||2|50x x +++-≥得{|41}A x x x =≤-≥或 ……… (5分) (2)(1,1)R B C A =-又|||1|2|||4|24a b aba b ab +<+⇔+<+而2222222222222224()(4)4(2)(168)4416(4)4(4)(4)(4)a b ab a ab b ab a b a b a b a b b b a +-+=++-++=+--=-+-=--,(1,1)a b ∈- 22(4)(4)0b a ∴--< 224()(4)a b ab ∴+<+|||1|24a b ab+∴<+ ……… (10分)请注意:以上参考答案与评分标准仅供阅卷时参考,其他答案请参考评分标准酌情给分.。
云南师大附中2014届高考适应性月考卷(三) 文科综合参考答案 第Ⅰ卷(选择题,共140分) 选择题(本大题共35小题,每小题4分,共140分) 题号123456789101112答案题号131415161718192021222324答案题号2526272829303132333435答案【解析】 1.甲为低压槽附近,未来受冷锋影响,气温将下降;乙为低压中心,盛行上升气流,以阴雨天气为主,气温日较差较小;丙位于锋面气旋的暖锋锋后,受暖气团控制,以晴朗天气为主;丁处气压较高,气流辐散。
2.陆地上主要受低气压控制,说明此时为夏季。
受图示天气系统的影响,长江流域会出现较多降水,干流水位上升;由于降水较多,水位上涨,湘江河面将变宽;珠江口咸潮发生在冬季;湖泊此时的作用为蓄洪。
3.由图中气温信息可知,甲至乙的地域分异主导因素是热量内涝原因城市内涝说明城市建设过程中应该加强城市12.现代农机合作社的兴起,通过土地流转农民在土地流转过程中获得的收入属于按生产要素收入,可以增加财产性收入,故①正确;通过土地流转实现规模化种植,有利于改善土地资源配置效率,②正确;同时通过机械化应用实现现代化生产,通过延伸加工链条实现农业产业化,有利于农村剩余劳动力的转移,但现代农机合作社不属于个体经济,而是集体经济,故③不正确;材料未涉及再分配,所以④与题意无关。
13.适当减少财政赤字和国债规模,会减少财政支出,故①不选;结构性减税、加大民生领域和薄弱环节的财政支出有利于扩大社会总需求,故属于积极财政政策,②③入选;增加国企上缴的利润收入有利于增加财政收入,财政收入是社会总供给的一部分,从而增加社会总供给,故④不选。
14.全国假日办发布调查问卷,面向社会征集意见体现了①坚持群众观点和群众路线;是否取消黄金周,不同的人有不同的看法体现了③价值判断是社会存在的反映;②社会意识对社会存在具有双重影响,故错误;④不同的价值判断源自实践,故错误。
云南省云南民族中学2024年高三下学期复习教学质量检测试题(二)数学试题试卷 注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM xBA yBD =+(,)x y ∈R ,则2x y +的最大值为( )A 2B 3C .2D .222.直三棱柱111ABC A B C -中,12CA CC CB ==,AC BC ⊥,则直线1BC 与1AB 所成的角的余弦值为( ) A 5 B .53C 25 D .35 3.双曲线22:21C x y -=的渐近线方程为( )A .20x ±=B .20x y ±=C 20x y ±=D .20x y ±= 4.历史上有不少数学家都对圆周率作过研究,第一个用科学方法寻求圆周率数值的人是阿基米德,他用圆内接和外切正多边形的周长确定圆周长的上下界,开创了圆周率计算的几何方法,而中国数学家刘徽只用圆内接正多边形就求得π的近似值,他的方法被后人称为割圆术.近代无穷乘积式、无穷连分数、无穷级数等各种π值的表达式纷纷出现,使得π值的计算精度也迅速增加.华理斯在1655年求出一个公式:π2244662133557⨯⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯,根据该公式绘制出了估计圆周率π的近似值的程序框图,如下图所示,执行该程序框图,已知输出的 2.8T >,若判断框内填入的条件为?k m ≥,则正整数m 的最小值是A .2B .3C .4D .55.已知三棱锥P ABC -中,ABC ∆是等边三角形,43,25,AB PA PC PA BC ===⊥,则三棱锥P ABC -的外接球的表面积为( )A .25πB .75πC .80πD .100π 6.已知P 与Q 分别为函数260x y --=与函数21y x =+的图象上一点,则线段||PQ 的最小值为( )A .65B 5C 65D .67.已知复数z 满足()125z i ⋅+=(i 为虚数单位),则在复平面内复数z 对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限8.设1F ,2F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,过2F 的直线交椭圆于A ,B 两点,且120AF AF ⋅=,222AF F B =,则椭圆E 的离心率为( )A .23B .34C 5D 7 9.已知数列{}n a 中,112,()1,n n n a n a a a n N *+=-=+∈ ,若对于任意的[]*2,2,a n N ∈-∈,不等式21211n a t at n +<+-+恒成立,则实数t 的取值范围为( ) A .(][),21,-∞-⋃+∞B .(][),22,-∞-⋃+∞C .(][),12,-∞-⋃+∞ D .[]2,2- 10.()712x x -的展开式中2x 的系数为( )A .84-B .84C .280-D .28011.执行如图的程序框图,若输出的结果2y =,则输入的x 值为( )A .3B .2-C .3或3-D .3或2-12.已知集合2{|log (1)2},,A x x B N =-<=则A B =( )A .{}2345,,,B .{}234,,C .{}1234,,, D .{}01234,,,, 二、填空题:本题共4小题,每小题5分,共20分。
云南省红河州2014届高三毕业生复习统一检测文科数学试卷(带解析)1则下列结论成立的是( )(A (B (C (D {}2N =【答案】(D ) 【解析】试题分析:由所成立M 成立.{}2N =.故选(D ).考点:1.集合的运算.2.集合间的关系. 2的计算结果是( )(A (B (C (D 【答案】(B ) 【解析】故选(B ).考点:复数的运算.3( )(A (B (C (D 【答案】(B ) 【解析】试题分析:又公比故选(B )考点:1.等比数列的性质.2.等比数列的通项公式.4 ( )(A (B (C (D【答案】(C ) 【解析】为真命题.4(2m =-故选(C ).考点:1.命题的真假.2.特称命题与全称命题的否定.3.二次不等式的解法.5(2,4),AC ( )(A (B (C (D 【答案】(A ) 【解析】故选(A ). 考点:1.向量的加减.2.向量的相等.6( )(A (B (C (D 【答案】(C ) 【解析】故选(C ). 考点:1.角的和差公式.2.解方程的思想.7 )(A (B (C (D 【答案】(B ) 【解析】 试题分析:由>可故选(B )考点:1.对数函数的性质.2.指数函数的性质.3.数的大小比较.8.( )(A(B (C (D 【答案】(D ) 【解析】试题分析:依题意此时要退出循环,故选(D ). 考点:1.程序框图.2.递推的思想.9( )(A (B(C (D【答案】(C )【解析】试题分析足约束条图所示. 目标函为所以z 的最大值即为目标函数的直线在y 轴的截距最小.所以过点A 最小为1.故选(C ).考点:1.线性规划的知识.2.数学结合的数学思想.10.则这个三棱住的侧视图的面积为( )(A(B(C(D【答案】(A)【解析】试题分析:依题意可得三棱柱的底面是边长为4正三角形.所以可得三棱柱的高为3.故选(A).考点:1.三视图的知识.2.棱柱的体积公式.3.空间想象力.11.已知定义在R.()(A(B(C(D【答案】(B)【解析】试题分析:依题意可得函数在上递减,在上递增.又故选(B).考点:1.函数的单调性.2.函数与导函数的图像的关系.3.图解不等式.12)(A(B(C(D【答案】(D)【解析】试题分析:有两个单调区间...故选(D).考点:1.函数的单调性.2.函数的奇偶性.3.归纳化归的思想.13内部的概率是.【解析】试题分析:考点:几何概型.14.垂足恰好是椭圆的一个焦点,则椭圆的离心率是.【解析】.所以离心率考点:1.椭圆的性质.2.解方程的能力.15.【解析】考点:1.球的内接正方体.2.球的表面积.3.空间想象力.16.为 .【解析】得.所以可得公差为1.考点:1.函数的导数.2.数列的求和公式.3.等差数列的性质. 17. (1(2)【答案】(1(2【解析】试题分析:(1,利用化一公式,将函数化为一个函数的形式.再根据基本函数的单调性得到结论.(2)由(1)可求得角A的值.又根据三角形的面积公式公式b.在三角形ABC中,已知角A,边长b,c.由余弦定理.(1得,.所以的单调递增区间是(2∵,∴,∴,∴.由.考点:1.函数的恒等变形的公式.2.三角函数的单调性.3.解三角形的知识.18.节日期间,高速公路车辆较多,某调查公司在一服务区从七座以下小型汽车中按进服务区的顺序,随机抽取第一辆汽车后,每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速公路的车速(1)请直接回答这种抽样方法是什么抽样方法?并估计出这40辆车速的中位数;(2,车速【答案】(1(2【解析】试题分析:(1)系统抽样的方法是每间隔一个相同的长度,抽取一个样本.所以本小题符合系统抽样的方法.通过直方图计算中位数,是指直方图中从左到右直方图的面积为二分之一这条分界线所对的值,通过运算可求得中位数的估算值.(20.050.1.所以可求出车速在这两段上的车辆数.再求出相应的概率即可.(1)此调查公司在抽样中,用到的抽样方法是系统抽样. 2分2分分(2 8分,共有10分12分考点:1.统计的方法.2.统计数表的应用.3.概率的运算.19.(1(2.【答案】(1)参考解析;(2【解析】试题分析:(1)案.(2分别求出三角形ABC 的面积和点M到平面ABC的高即可得到三棱锥B-ACM的体积.求出三角形ACM的面积,由.(1 1分4分. 6分(29分12分考点:1.线面平行.2.等积法的应用.20.如图,(1(2BA CMN1B1A1C由.【答案】(1(2)不存在.参考解析【解析】试题分析:(1.由于直线与抛物线有两个交点,所以联立方程消去y,需要判别式大于零即可得到k的取值范围,又由于k等于零时没有两个交点,所以应排除,即可得到结论.(2.由直线AB的方程联立抛物线的方程,即可求得AB中点P的坐标.从而写出PF的方程再联立抛物线的方程,对比DE的中点是否与AB 的中点相同.即可得到答案.(1 2分4分5分(2 6分有(18分10分12分考点:1.抛物线的性质.2.联立方程解方程组的思想.3.存在性的问题.21(1(2.【答案】(1)参考解析;(2)参考解析【解析】试题分析:(1再通过在定义域内导函数的正负,求得函数的单调区间,及为所求的结论.(2)由于是求..从而得到结论.(12分:5分(2①若,即时,在上, ,单调递增,7分②调递减;上,10分③,单调递减,11分综上, 12分考点:1.函数的导数.2.导数的几何意义.3.函数的最值.4.分类讨论的思想.(1(2【答案】(1)参考解析;(2【解析】试题分析:(1OC,EC.由题意可得直线AD ∥OC.从而可得角DAC 等于角ACO.又由于三角形AOC 是等腰三角形.即可得到结论.(2)由(1)的结论∠DAC=∠CAB.以及再根据弦切角与所夹的弧对的圆周角相等即可得到三角形DEC 相似三角形CBA.∵CD AD⊥OCA ∴∠分(21∵AB 是圆O10分 考点:1.弦切角与圆周角.2.圆的切线.3.等腰三角形. 23(1(2BABA【答案】(1(2)参考解析【解析】试题分析:(1-1和-2.所以通过对实数分三类分别去绝对值可求得结论.(2)由(1)可得定义域A...(15分(2244a b=+10分考点:1.绝对值不等式.2.求差法比较两个数的大小.24的横坐标、(1(2【答案】(1)参考解析;(2【解析】试题分析:(1,写出相应的直坐标方程,在转化为极坐标方程.得到直角坐标方程,在转化为参数方程.(2..用点P 的参数方程的形式带入,点到直线的距离公式,通过求三角函数的最值即可得到结论.(1). 5分(2))由已知得直直角坐标方程即.所以点P到直线的距离.当即此时点P所以考点:1.极坐标知识.2.参数方程知识.3.几种方程间的互化.4.函数的最值问题.。
2024-2025学年云南师大附中高三(上)期中数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.复数z =1+ii ,则z +i =( )A. −1B. 1+2iC. −1+2iD. 12.集合A ={x|3x 2−10x +3<0},则x ∈A 是sinx >0的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3.已知直线a ,b ,c ,平面α,β,下列选项能推出a//b 的是( )A. a ⊥c ,b ⊥cB. a ,b 与α所成角相同C. a//α,a//β,α∩β=bD. a//α,b ⊂α4.如图是某市随机抽取的100户居民的月均用水量频率分布直方图,如果要让60%的居民用水不超出标准a(单位:t),根据直方图估计,下列最接近a 的数为( )A. 8.5B. 9C. 9.5D. 105.已知函数f(x)=x 23,记a =f(5−12),b =f(log 312),c =f(12),则( )A. a <b <cB. a <c <bC. b <a <cD. c <a <b6.已知直线l 1:x−my +1=0与l 2:mx +y−m +2=0交于点P ,点A(3,0),则|PA|的最大值为( )A. 22B. 2+2C. 3D. 47.已知三棱锥P−ABC 的所有顶点都在球O 的球面上,其中△PAB 为正三角形,△ABC 为等腰直角三角形,∠ACB =90°,AB =2,PC = 7,则球O 的表面积为( )A. 20π3B. 8πC. 28π3D. 32π38.双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的左焦点坐标为F 1(−c,0),直线l :y =33(x +c)与双曲线C 交于A ,B两点(其中A 在第一象限),已知OF 1⋅OA =−c 2,F 1B =λF 1A(O 为坐标原点),则λ=( )A. 13B. 14C. 15D. 27二、多选题:本题共3小题,共18分。
2024届云南三校高考备考实用性联考卷(七)数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效,3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U =R ,集合{}{}10,1,1,3,4A xx B =-=-∣ ,那么如图阴影部分表示的集合为()A.{}1,4-B.{}1,3,4C.{}1,4D.{}1,3,4-2.若1i +是一元二次方程20,x ax a a -+=∈R 的根,则该方程的两根之和为()A.2B.1i- C.22i- D.13.已知(1,0),||1,||a b a b ==+=a 与b 的夹角为()A.π6B.π3C.2π3D.5π64.小张、小王两人计划报一些兴趣班,他们分别从“篮球、绘画、书法、游泳、钢琴”这五个随机选择一个,记事件A :“两人至少有一人选择篮球”,事件B :“两人选择的兴趣班不同”,则概率()P BA =∣()A.49B.59C.89D.455.我国古代有一种容器叫“方斗”,“方斗”的形状是一种上大下小的正四棱台(两个底面都是正方形的四棱台),如果一个方斗的容积为28升(一升为一立方分米),上底边长为4分米,下底边长为2分米,则该方斗的表面积为()A.(220dm+ B.(220dm+ C.256dm D.(220dm+6.已知圆的半径为1,,,a b c 分别为该圆的内接ABC 的三边,若abc =ABC 的面积为()B. C. D.7.如图的形状出现在南宋数学家杨辉所著的《详解九章算法•商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,……第n 层有n a 个球,则数列1n a ⎧⎫⎨⎬⎩⎭的前30项和为()A.6031B.382C.2031D.19318.已知函数()e ln xf x x x x a =---,若()0f x =在()0,e x ∈有实数解,则实数a 的取值范围是()A.[)0,∞+ B.1,e∞⎡⎫+⎪⎢⎣⎭C.[)1,∞+D.[)e,∞+二、多项选择题(本大题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.下列说法正确的是()A.设随机变量X 的均值为,a μ是不等于μ的常数,则X 相对于μ的偏离程度小于X 相对于a 的偏离程度(偏离程度用差的平方表示)B.若一组数据12,,,n x x x 的方差为0,则所有数据()1,2,,i x i n = 都相同C.用决定系数2R 比较两个回归模型的拟合效果时,2R 越小,残差平方和越小,模型拟合效果越好D.在对两个分类变量进行2χ独立性检验时,如果列联表中所有数据都扩大为原来的10倍,在相同的检验标准下,再去判断两变量的关联性时,结论不会发生改变10.函数()()ππ02,22f x x ωϕωϕ⎛⎫=+<-<< ⎪⎝⎭ 的部分图象如图所示,则下列说法中正确的是()A.()f x 的表达式可以写成()5π24f x x ⎛⎫=+ ⎪⎝⎭B.()f x 的图象关于直线5π8x =对称C.()f x 在区间5π7π,88⎡⎤⎢⎥⎣⎦上单调递增D.若方程()1f x =在()0,m 上有且只有6个根,则5π13π,24m ⎛⎫∈⎪⎝⎭11.如图,已知二面角l αβ--的棱l 上有,A B 两点,,,,C AC l D BD l αβ∈⊥∈⊥,且AC AB BD ==,则()A.当αβ⊥时,直线CD 与平面β所成角的正弦值为33B.当二面角l αβ--的大小为60 时,直线AB 与CD 所成角为45C.若22CD AB ==,则三棱锥A BCD -的外接球的体积为55π3D.若2CD AB =,则二面角C BD A --的余弦值为7三、填空题(本大题共3小题,每小题5分,共15分)12.已知多项式()423450123453(1)x x a a x a x a x a x a x +-=+++++,则2345a a a a +++=__________.13.若()2ln 1f x x b ⎛⎫=+⎪+⎝⎭为奇函数,则b =__________.14.油纸伞是中国传统工艺品,至今已有1000多年的历史,为宣传和推广这一传统工艺,北京市文化宫于春分时节开展油纸伞文化艺术节.活动中将油纸伞撑开后摆放在户外展览场地上,如图所示,该伞的伞沿是一个半,阳光照射油纸伞在地面形成了一个椭圆形影子(春分时,北京的阳光与地面夹角为60 ),若伞柄底端正好位于该椭圆的焦点位置,则该椭圆的离心率为__________.四、解答题(共77分,解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)设圆C 与两圆222212:(3)1,:(3)1C x y C x y ++=-+=中的一个内切,另一个外切.(1)求圆心C 的轨迹E 的方程;(2)已知直线0(0)x y m m -+=>与轨迹E 交于不同的两点,A B ,且线段AB 的中点在圆2265x y +=上,求实数m 的值.16.(本小题满分15分)已知函数()1ln 2f x a x x x =++,且曲线()y f x =在点()()1,1f 处的切线与直线12y x =-垂直.(1)求函数()f x 的单调区间;(2)若关于x 的不等式()22mf x x x+ 恒成立,求实数m 的取值范围.17.(本小题满分15分)如图,在几何体ABCDEF 中,ADEF 为等腰梯形,ABCD 为矩形,AD ∥,1EF AB =,3,2,1AD DE EF ===,平面ADEF ⊥平面ABCD .(1)证明:BF CF ⊥;(2)求直线AF 与平面CEF 所成角的余弦值.18.(本小题满分17分)现有标号依次为1,2,,n 的n 个盒子,标号为1号的盒子里有2个黑球和2个白球,其余盒子里都是1个黑球和1个白球.现从1号盒子里取出2个球放入2号盒子,再从2号盒子里取出2个球放入3号盒子, ,依次进行到从1n -号盒子里取出2个球放入n 号盒子为止.(1)当2n =时,求2号盒子里有3个黑球的概率;(2)当3n =时,求3号盒子里的黑球的个数ξ的分布列;(3)记n 号盒子中黑球的个数为n X ,求n X 的期望()n E X .19.(本小题满分17分)三阶行列式是解决复杂代数运算的算法,其运算法则如下:123123123231312321213132123a a ab b b a bc a b c a b c a b c a b c a b c c c c =++---.若111222i j ka b x y z x y z ⨯=,则称a b⨯ 为空间向量a 与b的叉乘,其中()()111111222222,,,,,a x i y j z k x y z b x i y j z k x y z =++∈=++∈R R ,{},,i j k 为单位正交基底.以O 为坐标原点,分别以,,i j k的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,已知,A B 是空间直角坐标系中异于O 的不同两点.(1)①若()()0,2,1,1,3,2A B -,求OA OB ⨯uur uuu r;②证明:0OA OB OB OA ⨯+⨯=uur uuu r uuu r uur r.(2)记AOB 的面积为AOB S ,证明:12AOB S OA OB =⨯V uur uuur ;(3)问:2()OA OB ⨯uur uuu r 的几何意义表示以AOB 为底面、OA OB ⨯uur uuu r 为高的三棱锥体积的多少倍?2024届云南三校高考备考实用性联考卷(七)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求)1.由10A xx =-∣ ,得U {1A x x =<-∣ð或0}x >,而{}1,1,3,4B =-,依题意,阴影部分表示的集合(){}U1,3,4A B ⋂=ð,故选B.2.设20x ax a -+=的另一个根是z ,易知z 与1i +一定是共轭复数,故z 1i =-,故1i 1i 2++-=,故选A.3.由题知,222||1,()||2||||cos ||3a a b a a b b θ=+=++=r rr r r r r ,所以1π2cos 1,cos ,23θθθ===,故选B.4.由题意可知A :两人都没选择篮球,即()44165525P A =⨯=,所以()()9125P A P A =-=,而AB :有一人选择篮球,另一人选别的兴趣班,则()4285525P AB⨯==⨯,所以()()()88259925P AB P BA P A ===∣,故选C.5.如图所示,高线为MN ,由方斗的容积为28升,可得(1284163MN=++⋅,解得3MN =.由上底边长为4分米,下底边长为2分米可得AM NB AB ===,侧面积为,所以方斗的表面积为(220dm s =+,故选D.6.设,,a bc 分别为角,,A B C 所对的边,在ABC 中,由正弦定理可得,22sin sin sin a b c R A B C====,所以11162sin ,sin 222244ABC c c abc C S ab C ab ===⋅=== ,故选C.7.根据已知条件有11a =,当2n 时,21324312,3,4,,n n a a a a a a a a n --=-=-=-= ,以上各式累加得:1234n a a n -=++++ ,又11a =,所以()()1123422n n n a n n +=+++++=,经检验11a =符合上式,所以()()*12n n n a n +=∈N ,所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,则111111122122233411n S n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=- ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ ,所以3026023131S =-=,故选A.8.根据题意,()0f x =,所以e ln x a x x x =--,令()()e ln ,0,e xg x x x x x =--∈,则函数()e ln x f x x x x a =---在()0,e 上存在零点等价于y a =与()g x 的图象有交点.()()()()()1e 1111e e 1e 11e xx x x xx x x g x x x x x x x x +-+⎛⎫=+--=+-=+'-=⎪⎝⎭,令()()e 1,0,e x h x x x =-∈,则()e e 0x x h x x =+>',故()h x 在()0,e 上单调递增,因为()010h =-<,()1e 10h =->,所以存在唯一的()00,1x ∈,使得()00h x =,即00e 10x x -=,即001e xx =,00ln x x =-,所以当00x x <<时,()()()00,0,h x g x g x <'<单调递减,当0e x x <<时,()()()00,0,h x g x g x >'>单调递增,所以()0min 000000()e ln 11xg x g x x x x x x ==--=-+=,又0x →时,()g x ∞→+,故()()[)0,e ,1,x g x ∞∈∈+,所以1a ,故选C.二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得6分,部分选对的得部分分,有选错的得0分)题号91011答案ABADABD【解析】9.对于A ,由均值的性质可知222()()()E X a E X a μμ-=-+-,由于a 是不等于μ的常数,故可得22()()E X a E X μ->-,即X 相对于μ的偏离程度小于X 相对于a 的偏离程度,A 正确;对于B ,根据方差公式()()()2222121s n x x x x x x n ⎡⎤=-+-++-⎣⎦ ,可知若一组数据1x ,2,,n x x 的方差为0,则12,B n x x x === 正确;对于C ,由决定系数的定义可知,C 错误;对于2D,χ的值变为原来的10倍,在相同的检验标准下,再去判断两变量的关联性时,结论可能发生改变,D 错误,故选AB.10.对A ,由()01f =-1ϕ=-,即2sin 2ϕ=-,又πππ,224ϕϕ-<<∴=-,又()f x 的图象过点π,08⎛⎫⎪⎝⎭,则π08f ⎛⎫= ⎪⎝⎭,即ππππsin 0,π8484k ωω⎛⎫-=∴-= ⎪⎝⎭,即得82k ω=+,k ∈Z ,又02,2ωω<∴= ,所以()π5π2244f x x x ⎛⎫⎛⎫=-=+ ⎪ ⎪⎝⎭⎝⎭,故A 正确;对B,5π5π5π5π208842f ⎛⎫⎛⎫=⨯+==⎪ ⎪⎝⎭⎝⎭,故B 错误;对C ,当5π7π,88x ⎡⎤∈⎢⎥⎣⎦时,则5π5π2,3π42x ⎡⎤+∈⎢⎥⎣⎦,由余弦函数单调性知,()f x 在5π7π,88x ⎡⎤∈⎢⎥⎣⎦单调递减,故C 错误;对于D ,由()1f x =,得5πcos 242x ⎛⎫+= ⎪⎝⎭,解得ππ4x k =+或ππ,2k k +∈Z ,方程()1f x =在()0,m 上有6个根,从小到大依次为:ππ5π3π9π5π,,,,,424242,而第7个根为13π4,所以5π13π24m < ,故D 正确,故选AD.11.对A 选项:当αβ⊥时,因为,l AC l αβ⋂=⊥,所以AC β⊥,所以直线CD 与平面β所成角为CDA ∠,又因为AD β⊂,所以AC AD ⊥,因为,BD l AC AB BD ⊥==,所以AD ==,所以3sin 3ACCDA CD∠==,故A 正确;对B 选项:如图,过A 作AE ∥BD ,且AE BD =,连接,ED EC ,则四边形ABDE 为正方形,所以AB ∥DE ,所以CDE ∠(或其补角)即为直线AB 与CD 所成角,因为BD l ⊥,四边形ABDE 为正方形,有AE ∥BD ,所以AE l ⊥,又因为AC l ⊥,所以CAE ∠即为二面角l αβ--的平面角,即60CAE ∠= ,由AC l AE l AC AE A ⊥⊥⋂=、、,且,AC AE ⊂平面ACE ,所以l ⊥平面ACE ,又四边形ABDE 为正方形,所以DE ∥l ,所以DE ⊥平面ACE ,又CE ⊂平面ACE ,所以DE CE ⊥.由AC BD =且四边形ABDE 为正方形,60CAE ∠= ,所以AC AE CE ==,所以tan 1CDE ∠=,即45CDE ∠= ,即直线AB 与CD 所成角为45 ,故B 正确;对于D ,如图,作AE ∥BD ,且AE BD =,则二面角l αβ--的平面角为CAE ∠,不妨取22CD AB ==,由2CD =,在Rt DEC中,易得CE =,在ACE 中,由余弦定理得1cos 2CAE ∠=-,120CAE ∠= ,过C 点作CO AE ⊥交线段EA 的延长线于点O ,则CO ⊥平面ABDE ,过O 点作OH BD ⊥,交线段DB 的延长线于点H ,连接CH ,则CHO ∠为二面角C BD A --的平面角,易得371,22CO HO CH ===,所以27cos 7OH CHO CH ∠==,故D 正确;对C 选项:同选项D 可知120CAE ∠= ,如图,分别取线段,AD AE 的中点,G M ,连接GM ,过G 点作平面β的垂线,则球心O '必在该垂线上,设球的半径为R ,则O E R '=,又ACE 的外接圆半径1312sin120r =⨯= ,而平面ACE ⊥平面ABDE ,所以O G '∥平面ACE ,即MG 的长为点O '到平面ACE 的距离,则2215124R ⎛⎫=+= ⎪⎝⎭,所以四面体A BCD -的外接球的体积为3455ππ36R =,故C 错误,故选AB D.三、填空题(本大题共3小题,每小题5分,共15分)【解析】12.含x 的项为:443344C (1)3C (1)11x x x ⋅⋅-+⋅⋅⋅-=-,故111a =-;令0x =,即03a =,令1x =,即01234523450,8a a a a a a a a a a =+++++∴+++=.13.()f x 定义域为210x b+>+,得x b >-或2x b <--,由()f x 为奇函数有20b b ---=,所以1b =-.14.如图,伞的企沿与地面接触点B 是椭圆长轴的一个端点,伞沿在地面上最远的投影点A 是椭圆长轴的另一个端点,对应的伞沿为,C O 为伞的圆心,F 为伞柄底端,即椭圆的左焦点,令椭圆的长半轴长为a ,半焦距为c ,由,OF BC OF OB ⊥==,得45,2,a c BF FBC AB a BC ∠+===== ABC 中,60BAC ∠= ,则()23216275,sin75sin 453022224ACB ∠==+=⨯+⨯= ,由正弦定理得,223sin75sin60a =,解得262a =,则622c =,所以该椭圆的离心率2c e a ==-.四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)解:(1)圆221:(3)1C x y ++=的圆心为()13,0C -,半径为1,圆222:(3)1C x y -+=的圆心为()23,0C ,半径为1,设圆C 的半径为r ,若圆C 与圆1C 内切,与圆2C 外切,则121,1CC r CC r =-=+,可得212CC CC -=;若圆C 与圆2C 内切,与圆1C 外切,则211,1CC r CC r =-=+,可得122CC CC -=;综上所述:122CC CC -=,可知:圆心C 的轨迹E 是以12C C 、为焦点的双曲线,且1,3a c ==,可得2228b c a =-=,所以圆心C 的轨迹E 的方程为2218y x -=.(2)联立方程221,80,y x x y m ⎧-=⎪⎨⎪-+=⎩消去y 得227280x mx m ---=,则()()222Δ42883270m m m =++=+>,可知直线与双曲线相交,如图6,设()()1122,,,A x y B x y ,线段AB 的中点为()00,M x y ,可得120008,277x x m m x y x m +===+=,即8,77m m M ⎛⎫ ⎪⎝⎭,且8,77m m M ⎛⎫ ⎪⎝⎭在圆2265x y +=上,则2286577m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得7m =±,又0m >,所以实数m 的值为7.16.(本小题满分15分)解:(1)函数()f x 的定义域为()21{0},2a xx f x x x >=-'+∣,又曲线()y f x =在点()()1,1f 处的切线与直线12y x =-垂直,所以()1122f a =-+=',即1a =.()()()()21211ln 2,(0)x x f x x x f x x x x +-+'∴=+=>,由()0f x '<且0x >,得102x <<,即()f x 的单调递减区间是10,2⎛⎫ ⎪⎝⎭,由()0f x '>得12x >,即()f x 的单调递增区间是1,2∞⎛⎫+ ⎪⎝⎭.(2)由(1)知不等式()22m f x x x +恒成立,可化为1ln 222m x x x x x +++ 恒成立,即ln 12m x x ⋅+ 恒成立.令()ln 1g x x x =⋅+,当10,e x ⎛⎫∈ ⎪⎝⎭时,()()0,g x g x '<在10,e ⎛⎫ ⎪⎝⎭上单调递减;当1,e x ∞⎛⎫∈+ ⎪⎝⎭时,()()0,g x g x '>在1,e ∞⎛⎫+ ⎪⎝⎭上单调递增.所以1e x =时,函数()g x 有最小值11e-.由ln 12m x x ⋅+ 恒成立,得22e m - ,即实数m 的取值范围是2,2e ∞⎛⎤-- ⎥⎝⎦.17.(本小题满分15分)(1)证明:如图7,过点F 作AD 的垂线,垂足为M ,连接,MB MC ,由已知可得1,2,2,5AM MF MD BM CM =====,平面ADEF ⊥平面ABCD ,平面ADEF ⋂平面,ABCD AD FM =⊂平面ADEF ,,FM AD FM ⊥∴⊥平面ABCD ,,MB MC ⊂ 平面,,ABCD FM MB FM MC ∴⊥⊥,3,6BF CF ∴==,222BF CF BC ∴+=,BF CF ∴⊥.(2)解:建立如图所示空间直角坐标系,A xyz -则()()()1,3,0,0,2,1,0,1,1C E F ,()()()0,1,1,1,1,1,0,1,0AF CE EF ∴==--=-uuu r uuu r uuu r ,设平面CEF 的法向量为(),,n x y z = ,则0,0,n EF y n CE x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩uuu r r uuu r r 令1x =得()1,0,1n = ,设直线AF 与平面CEF 所成角为θ,则,1sin cos ,2AF n AF n AF nθ⋅===uuu r r uuu r r uuu r r .ππ0,,26θθ⎡⎤∈∴=⎢⎥⎣⎦ ,即直线AF 与平面CEF 所成角的余弦值为32.18.(本小题满分17分)解:(1)由题可知2号盒子里有3个黑球的概率为202224C C 1C 6P ==.(2)由题可知ξ可取1,2,3,()221123222222224444C C C C C 71C C C C 36P ξ==⨯+⨯=,()221123222222224444C C C C C 73C C C C 36P ξ==⨯+⨯=,()()()11211318P P P ξξξ==-=-==,所以3号盒子里的黑球的个数ξ的分布列为ξ123P 7361118736(3)记1n a -为第()2n n 号盒子有一个黑球和三个白球的概率,则116a =,1n b -为第()2n n 号盒子有两个黑球和两个白球的概率,则12211,318b b ==,则第()2n n 号盒子有三个黑球和一个白球的概率为111n n a b ----,且()()1222221113322n n n n n b b a a b n -----=++-- ,化解得121162n n b b --=+,得12131331,565515n n b b b --⎛⎫-=--= ⎪⎝⎭,而21313565b b ⎛⎫-=- ⎪⎝⎭,则数列35n b ⎧⎫-⎨⎬⎩⎭为等比数列,首项为131515b -=,公比为16,所以13115156n n b -⎛⎫=+ ⎪⎝⎭,又由1221162n n n a b a ---=+求得:111556n n a ⎛⎫=- ⎪⎝⎭.因此()()1111111231322n n n n n n n E X a b a b a b ------=⨯+⨯+⨯--=--=.19.(本小题满分17分)(1)①解:因为()()0,2,1,1,3,2A B -,则()021*******,1,2132i j kOA OB i j k i i j k ⨯==-++--=-+=--r r r uur uuu r uu r r r r r r r r r .②证明:设()()111222,,,,,A x y z B x y z ,则121212212121OA OB y z i z x j x y k x y k z x j y z i⨯=++---uur uuu r r r r r r r ()122112211221,,y z y z z x z x x y x y =---,将2x 与1x 互换,2y 与1y 互换,2z 与1z 互换,可得()211221122112,,OB OA y z y z z x z x x y x y ⨯=---uuu r uur ,故()0,0,00OA OB OB OA ⨯+⨯==uur uuu r uuu r uur r .(2)证明:因为sin AOB ∠===.故1sin 2AOB S OA OB AOB ∠=⋅=V uur uuu r 故要证12AOB S OA OB =⨯V uur uuu r ,只需证OA OB ⨯=uur uuu r ,即证2222||||()OA OB OA OB OA OB ⨯=-⋅uur uuu r .由(1)()()()111222122112211221,,,,,,,,OA x y z OB x y z OA OB y z y z z x z x x y x y ==⨯=---uur uuu r uur uuu r ,故()()()2222122112211221||OA OB y z y z z x z x x y x y ⨯=-+-+-uur uuu r ,又()2222222222111222121212|,|,()OA x y z OB x y z OA OB x x y y z z =++=++⋅=++uur uuu r uur uuu r ,则2222||||()OA OB OA OB OA OB ⨯=-⋅uur uuu r uur uuu r uur uuu r 成立,故12AOBS OA OB =⨯V uur uuu r .(3)解:由(2)12AOB S OA OB =⨯V uur uuu r ,得22()||OA OB OA OB ⨯=⨯uur uuu r uur uuu r 1222AOB OA OB OA OB S OA OB =⨯⋅⨯=⋅⨯V uur uuu r uur uuu r uur uuu r ,故21()63AOB OA OB S OA OB ⨯=⋅⨯⨯V uur uuu r uur uuu r ,故2()OA OB ⨯uur uuu r 的几何意义表示以AOB 为底面、OA OB ⨯uur uuu r 为高的三棱锥体积的6倍.。
2014年下学期高三调研考试数学(文科)(考试时量:120分钟 满分150分)参考答案一:单选题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,二:填空题:(本题共5小题,每小题5分,共25分。
) 11. 2±12. 18 13. 23π14. 15. 9-三:解答题:(本大题共6小题,共75分。
解答应写出文字学明、证明过程或演算步骤) 16. (本小题满分12分)解:解:根据已知得2{|,34}{|,14}{1,2,3}A x x N x x x x N x ++=∈+>=∈-<<=, 2分由702x x -≤-,解得27x <≤. ∴{|,27}{3,4,5,6,7}B x x N x +=∈<≤= 4分 ∴集合C 中的元素为:(1,3),(1,4),(1,5),(1,6),(1,7), (2,3),(2,4),(2,5),(2,6),(2,7),(3,3),(3,4),(3,5),(3,6),(3,7)共有15个 6分 (Ⅰ)∵(3,3)、(3,4)都在集合C 中,集合C 中共有15个元素, ∴在集合C 中随机取出一个元素(,)x y , 取出的元素是(3,3)或(3,4)的概率等于215. 9分 (Ⅱ)∵在集合C 的元素(,)x y 中,满足6x y +≤的有(1,3),(1,4),(1,5),(2,3),(2,4),(3,3)一共有6个,OBACDEFP∵62155=, ∴在集合C 中随机取出一个元素(,)x y ,6x y +≤的概率等于25. 12分 17.解:(Ⅰ)2()2cos cos f x x x x =+⋅1cos22x x =+2sin(2)16x π=++ 4分所以,周期T π=. 6分(Ⅱ)∵,64x ππ⎡⎤∈-⎢⎥⎣⎦,∴ 22,663x πππ⎡⎤+∈-⎢⎥⎣⎦ 8分1sin(2),162x π⎡⎤+∈-⎢⎥⎣⎦∴()f x 的值域为[]0,3 12分18.解:(Ⅰ)证明:连接BD ,交AC 于点O ,连接OP . 因为P 是DF 中点,O 为矩形ABCD 对角线的交点, 所以OP 为三角形BDF 中位线,所以BF // OP ,因为BF ⊄平面ACP ,OP ⊂平面ACP ,所以BF // 平面ACP . 5分 (Ⅱ)因为∠BAF =90º,所以AF ⊥AB ,又因为 平面ABEF ⊥平面ABCD , 且平面ABEF ∩平面ABCD = AB , 所以AF ⊥平面ABCD 从而AF ⊥CD又因为四边形ABCD 为矩形 所以AD ⊥CD从而CD ⊥平面FAD 8分 所以∠CPD 就是直线PC 与平面FAD 所成的角 10分又2sin ,3CD CPD CP ∠==Q 且1CD PD PF =⇒=⇒=分 19.(Ⅰ)解法1:当1n =时,111a S p q ==++, 1分 当2n ≥时,1n n n a S S -=- 2分 ()()221121n pn q n p n q n p ⎡⎤=++--+-+=-+⎣⎦. 3分∵{}n a 是等差数列,∴1211p q p ++=⨯-+,得0q =. 4分 又2353,5,9a p a p a p =+=+=+, 5分 ∵235,,a a a 成等比数列,∴2325a a a =,即()()()2539p p p +=++, 6分解得1p =-. 7分 解法2:设等差数列{}n a 的公差为d , 则()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭. 1分 ∵2n S n pn q =++, ∴12d =,12da p -=,0q =. 4分 ∴2d =,11p a =-,0q =. ∵235,,a a a 成等比数列,∴2325a a a =, 5分即()()()2111428a a a +=++.解得10a =. 6分 ∴1p =-. 7分 (Ⅱ)由(Ⅰ)得22n a n =-. 8分 ∵22log log n n a n b +=,∴221224n an n n b n n n --=⋅=⋅=⋅. 9分∴1231n n nT b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅ , ① 10分则有()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅ ,② 11分①-②得0121344444n nn T n --=++++-⋅14414n nn -=-⋅-()13413n n -⋅-=12分 ∴()131419nn T n ⎡⎤=-⋅+⎣⎦. 13分 20.解:(Ⅰ)根据题意,得1(5)8y x =- []0,5x ∈. 4分 (Ⅱ)令tt ⎡∈⎣,则212x t =, 7分2211517y t t (t 2).1648168=-++=--+ 10分因为2⎡∈⎣2=时,即2x =时,y 取最大值0.875. 12分 答:总利润的最大值是0.875亿元. 13分21.解(Ⅰ)∵2()ln 1f x x a x =--的定义域为(0,)+¥,函数()f x 的图象上的每一点处的切线斜率都是正数,∴()20af x x x'=->在(0,)+¥上恒成立. 2分 ∴22a x <在(0,)+¥上恒成立 .∵220y x =>在(0,)+¥上恒成立, ∴0a ≤∴所求的a 的取值方位为(,0]-¥. 6分 (Ⅱ)当2a =时,函数()1f x y x =-的图象与()y F x =的图象没有公共点. 理由:当2a =时,2()2ln 111f x x x y x x --==--, 它的定义域为01x x >≠且,()F x 的定义域为0x ≥.当01x x >≠且时,由()()1f x F x x =-得:22ln 20x x x --+=. 8分设2()2ln 2h x x x x =--+,则21)(222)()21x h x xx x +'=--=∴当01x <<时,()0h x '<,此时,()h x 单调递减; 当1x >时,()0h x '>,此时,()h x 单调递增. ∴当2a =,01x x >≠且时,()()1f x F x x =-无实数根, 即当2a =时,函数()1f x y x =-的图象与()y F x =的图象没有公共点. 13分。