阵列天线分析与综合_6
- 格式:pdf
- 大小:461.04 KB
- 文档页数:22
阵列天线分析与综合复习第一章 直线阵列的分析1. 阵列天线的分析是指:在知道阵列的四个参数(单元总数,各单元的空间分布,激烈幅度和激烈相位)的情况下确定阵列的辐射特性(方向图,方向性系数,半功率波瓣宽度,副瓣电平等) 阵列天线的综合是指:在已知阵列辐射特性的情况下,确定阵列的四个参数。
2. 能导出均匀直线阵列的阵因子函数sin(/2)()cos sin(/2)Nu S u u kd u βα==+(1) 平行振子直线阵,振子轴为z 轴方向,沿x 排列时,阵轴与射线之间的夹角为cos cos sin x βϕθ= ;沿y 轴排列时,cos sin sin y βϕθ=。
(2) 共轴振子线阵,一般设阵轴为z 轴,此时cos cos z βθ=(3) 什么是均匀直线式侧射阵(各单元等幅同相激烈,等间距最大指向/2θπ=)■沿x 轴并排排列,振子轴为z 轴的半波振子直线阵,侧射时的最大指向为y 轴方向■沿z 轴排列的共轴振子直线阵,侧射时的最大指向在xy 平面上■并能导出激励幅度不均匀、间距不均匀、相位非均匀递变的直线阵阵因子 3. 均匀侧射阵和端射阵(1) 什么是均匀侧射阵和端射阵,他们的阵因子表示是什么? (2) 最大辐射方向及最大值。
max 0cos m S NI kd αβ=⎧⎪⎨=⎪⎩0/2m m αβπαβ=⎧⎨±=⎩侧射=端射=kd(3) 抑制栅瓣条件:1cos md λβ<+ /2d d λλ<⎧⎨<⎩侧射端射(4) 零点位置:cos cos /on m n Nd ββλ=±(5)主瓣零点宽度:()2/()bo bo BW Nd BW λ=⎧⎪⎨=⎪⎩侧射阵端射阵(6) 半功率波瓣宽度侧射阵:o ()51/()0.886/()h BW Nd Nd rad λλ==端射阵:o ()()()h BW rad ==扫描阵:o ()51()sin h mBW Nd λβ=(7) 副瓣电平能证明均匀直线阵的副瓣电平13.5SLL dB =-。
阵列天线分析与综合题一、填空题(1分/每空)1. 阵列天线的分析是指在已知阵列的四个参数—单元数_、_单元的空间分布、_激励幅度分布和激励相位分布的情况下,确定阵列天线辐射特性。
阵列天线的综合则是指在已知阵列辐射特性如方向图_、—半功率波瓣宽度_和_副瓣电平_等的情况下确定阵列的如上四个参数。
2. 单元数为N,间距为d的均匀直线阵的归一化阵因子为S(u)= _____________其中u =kd cosP中。
,k= _______ ,口表示__________________ 最大指向为____________________ 阵列沿x方向排列则cosP x= _________ 若阵列沿y方向排列则cos札= _____________ 若阵列沿z方向排列则cosB z= _______ 当N很大时,侧射阵的方向性系数为D= ___________________ ,半功率波瓣宽带为(BW)h= 51上(°),副瓣电平为SLL= -13.5 dB,波束扫描时主瓣将(13) 变~ Nd ~ - —宽___,设其最大指向十为阵轴与射线之间的夹角,扫描时的半功率波瓣宽度为(14)_51—_(°),抑制栅瓣的条件为(14)__d£——_;端射阵的Nd sin P m 1 +1 cosP m |方向性系数为D= ,半功率波瓣宽带为(BW)h= 108』-*(o)。
Nd3. 一个单元数为N,间距为d的均匀直线阵,其归一化阵因子的最大值为_____ 其副瓣电平约为__________ dB设其最大指向日m为阵轴与射线之间的夹角,则抑制栅瓣的条件为_____________ 大指向对应的均匀递变相位:-max二。
4. 根据波束指向,均匀直线阵可分为三类,即(1)侧射阵_:⑵ 端射阵和—扫描阵__它们满足的关系分别是。
=(3)_0 _______ 、G =⑷__—kd_ 和—__ = -kd COS P m__。
阵列天线分析与综合复习第一章 直线阵列的分析1. 什么是阵列天线的分析?2. 什么是阵列天线的综合?3. 能导出均匀直线阵列的阵因子sin(/2)(),cos sin(/2)Nu S u u kd u βα==+ 当阵轴为x 轴、y 轴或z 轴时,cos β的表示分别是什么?阵因子与哪些因素有关?4. 均匀侧射阵与端射阵(1) 什么是均匀直线侧射阵和端射阵?它们的阵因子表示分别是什么?(2) 最大辐射方向与最大值(3) 抑制栅瓣条件(4) 零点位置(5) 主瓣零点宽度(侧射阵、端射阵、扫描阵)(6) 半功率波瓣宽度(侧射阵、端射阵、扫描阵)(7) 副瓣电平。
能证明均匀直线阵的副瓣电平SLL=-13.5dB 。
(8) 方向性系数。
■能证明不等幅、等间距直线阵的方向性系数公式(1.38)■当/2d λ=时,能证明得到式(2.26)■能导出均匀直线侧射阵和端射阵的阵因子公式2/D L λ=和4/D L λ=5. 能用Z 变换方法和直接相加法分析书上P17图1.14、图1.15、图1.17分布与P34习题1.10正弦分布的阵列。
即能根据P18表1.2的阵列函数简表导出阵因子,并能写出求和形式的阵因子和作适当的分析。
直线阵列能用Z 变化法分析的条件限制是什么?6. 谢昆诺夫单位圆辅助分析阵列(1) 能由阵列多项式的零点导出阵列激励分布,见P34习题1.13。
(2) 熟悉不同单元间距d 时,,cos ju w e u kd θα==+,w 在单位圆上的轨迹变化。
(3) 根据w 在单位圆上的轨迹变化,能说明阵列不出现栅瓣的条件。
(4) 单位圆上某点与各零点的距离的乘积含义是什么?(5) 能用单位圆分析一个简单直线阵列。
7. 不均匀阵列概念(1) 不等间距阵列(2) 幅度不均匀阵列(3) 相位不均匀阵列(4) 波束展宽方法(5) 相位和幅度误差分析模型8. 单脉冲阵列(激励幅度对称)(1) 和方向图■能根据阵列单元顺序排列写出阵因子方向图函数(单元数不分奇偶)。
§2.6 伍德沃德—劳森抽样法简称伍德沃德法。
这种方法是用于天线波束赋形的一种常用的方向图综合方法,它是对所需方向图在不同离散角度处进行抽样来实现预期方向图的。
与各方向抽样和联系的是谐波电流,谐波电流对应的场叫做构成函数。
综合方法分为连续的线源和离散的线阵分别讨论。
对于连续线源。
其构成函数为形式,对于离散线阵,其构成函数为形式。
各谐波电流激励系数等于所要求的方向图在对应抽样点上的幅度。
谐波电流的有限项之和为源的总激励。
构成函数的有限项之和则为综合的方向图,其中每一项代表一个电流谐波产生的场。
sin()/m m a u u m m sin()/(sin )m m a nu n u m a 伍德沃德方法中有关公式的处理类似于信号理论中的香农(Shannon)抽样定理。
该定理指出:“一个有限频带的函数,如果最高频率为()g t h f ,则函数可以用等间隔的抽样唯一地表示。
抽样间隔必须不大于()g t 1/(2)/2h h t f T Δ==,为对应于最高频率的周期”。
用类似的方法综合天线方向图时,其抽样间隔应取h T /L λ弧度,L 为源的长度。
2.6.1连续线源(1) 连续线源上的电流分布对于长为L 的连续线源,伍德沃德方法是令连续线源的总电流I (z )在线上用若干谐波电流()n I z 的有限和来表示:()(),/2/2N n n N I z I z L z L =−=−≤∑≤ (2.119)式中谐波电流为cos (),/2/2n jkz n n a I z e L z L Lθ−=−≤≤ (2.120) n θ代表所需方向图的抽样角度。
(2N 个偶数抽样)1,2,,n =±±± N N (2N +1个奇数抽样)0,1,2,,n =±±± (2) 谐波电流产生的场方向图由各谐波电流()n I z 产生的场方向图函数(即构成函数)为/2/2(cos cos )cos /2/2()()n L L jkz jkz n n n L L a S I z e dz e L θθθθ−−−==∫∫dzsin[(cos cos )]2(cos cos )2n n n kL a θθθθ−=− (2.121) 其最大值发生在n θθ=处。
阵列天线分析与综合前言任何无线电设备都需要用到天线。
天线的基本功能是能量转换和电磁波的定向辐射或接收。
天线的性能直接影响到无线电设备的使用。
现代无线电设备,不管是通讯、雷达、导航、微波着陆、干扰和抗干扰等系统的应用中,越来越多地采用阵列天线。
阵列天线是根据电磁波在空间相互干涉的原理,把具有相同结构、相同尺寸的某种基本天线按一定规律排列在一起组成的。
如果按直线排列,就构成直线阵;如果排列在一个平面内,就为平面阵。
平面阵又分矩形平面阵、圆形平面阵等;还可以排列在飞行体表面以形成共形阵。
在无线电系统中为了提高工作性能,如提高增益,增强方向性,往往需要天线将能量集中于一个非常狭窄的空间辐射出去。
例如精密跟踪雷达天线,要求其主瓣宽度只有1/3度;接收天体辐射的射电天文望远镜的天线,其主瓣宽度只有1/30度。
天线辐射能量的集中程度如此之高,采用单个的振子天线、喇叭天线等,甚至反射面天线或卡塞格伦天线是不能胜任的,必须采用阵列天线。
对一些雷达设备、飞机着陆系统等,其天线要求辐射能量集中程度不是很高,其主瓣宽度也只有几度,虽然采用一副天线就能完成任务,但是为了提高天线增益和辐射效率,降低副瓣电平,形成赋形波束和多波束等,往往也需要采用阵列天线。
在雷达应用中,其天线即需要有尖锐的辐射波束又希望有较宽的覆盖范围,则需要波束扫描,若采用机械扫描则反应时间较慢,必须采用电扫描,如相控扫描,因此就需要采用相控阵天线。
在多功能雷达系统中,既需要在俯仰面进行波束扫描,又需要改变相位展宽波束,还需要仅改变相位进行波束赋形,实现这些功能的天线系统只有相控阵天线才能完成。
随着各项技术的发展,天线馈电网络与单元天线进行一体化设计成为可能,高集成度的T/R组件的成本越来越低,使得在阵列天线中的越来越广泛的采用,阵列天线实现低副瓣和极低副瓣越来越容易,功能越来越强。
等等。
综上所述,采用阵列天线的原因大致有如下几点:■容易实现极窄波束,以提高天线的方向性和增益;■易于实现赋形波束和多波束;■易于实现波束的相控扫描;■易于实现低副瓣电平的方向图。
阵列天线的结构-电性能影响分析的开题报告一、研究背景和意义随着移动通信、卫星通信、雷达等通信技术的不断发展,天线系统的性能需求越来越高。
阵列天线是一种将多个单元天线安装成阵列的天线系统,通过调整天线元件的相位和振幅,可以实现多种波束方向和形状的发射和接收。
阵列天线的结构和电性能对天线系统的整体性能有很大的影响,因此如何优化阵列天线的结构和电性能是当前研究的热点和难点之一。
本研究的目的是通过对阵列天线的结构和电性能进行分析和优化,提高天线系统的性能和可靠性,为通信技术和电子设备的发展提供支持和保障。
二、研究内容和方法1.分析阵列天线的结构:包括线性阵列、圆形阵列、方阵列等结构,在此基础上分析天线单元的排列方式、间距、方向等参数对阵列天线性能的影响。
2.分析阵列天线的电性能:包括天线阵列的辐射图案、波束宽度、增益、功率分布等参数。
通过计算和模拟等方法,分析天线单元之间的耦合效应、相位差、振幅等参数对电性能的影响。
3.研究阵列天线的优化方法:结合上述分析结果,提出针对具体问题的解决方案,如调整天线单元间的间距和方向、优化天线单元的设计和材料、改变天线单元的驱动方式等,以提高阵列天线的整体性能和稳定性。
三、研究预期成果1.阵列天线结构-电性能的综合分析模型,可以有效预测天线系统的性能。
2.针对特定问题的天线优化方案,可以提高天线系统的性能和可靠性。
3.为通信技术和电子设备的发展提供技术支持和保障。
四、研究进度安排1.文献调研和相关理论研究,完成开题报告和中期报告(1-2个月)。
2.分析阵列天线的结构和电性能,建立数学和仿真模型,完成论文初稿(3-6个月)。
3.实际阵列天线的设计和制作,测试阵列天线的性能,对比理论与实验结果,完善论文(7-9个月)。
4.论文修改和完善,准备答辩(10-12个月)。
五、参考文献1.张尔东等. 天线结构设计优化[M]. 北京:清华大学出版社,2015.2.周洋. 多频多单元天线阵的设计与实现[D]. 北京邮电大学,2017.3.Gilbert E.。
电子科技大学2010 -2011学年第二学期期末考试 A 卷课程名称:阵列天线分析与综合 考试形式:一页纸开卷 考试日期:2011年6月24日考试时长:120分钟课程成绩构成:平时 20%, 期中 0%, 实验 0%, 期末 80%本试卷试题由 —四—部分构成,共 _6_页。
题号 -一--二二三四合计得分1. 阵列天线的分析是指在已知阵列的四个参数 (1)单元数 、⑵ 单元的空间分布 、(3)激励幅度分 布—和(4)_激励相位分布_的情况下,确定阵列天线辐射特性。
阵列天线的综合则是指在已知阵列辐射特性如(5) ____ 方向图 _、(6)—半功率波瓣宽度 —和⑺—副瓣电平—等的情况下确定阵列的如上四个参 数。
2.单元数为N ,间距为d 的均匀直线阵的归一化阵因子为S(u) = (8) sin(Nu/2)/[Nsin(u/2)],其中u 二kdcos 匸,二,k=(9) 2二/,,:-表示______ ,其最大指向为(10) :m 二cos'(— /kd)。
当N 很大时,侧射阵的方向性系数为D=(11) 2L/ ■,半功率波瓣宽带为扎 o(BW)h =(12)_51——()_,副瓣电平为SLL=(13)_ -13.5_dB ;端射阵的方向性系数为 D=(14)4L/h ,半Nd3. 均匀直线阵的零点位置与 (16)_单元数 N_、(17)__单元间距d__、(18)__频率(或波长)__和(19)_最大指 向 H m (或均匀递变相位 a )___有关。
4. 用Z 变换分析阵列特性要求阵列单元间距为 度的(22)__包络可Z 变换 。
填空题(共30分,每空1 分)(20)__等间距__,激励相位为(21)__均匀涕变___,激励幅功率波瓣宽带为.....密...... 封 ..... 线 ..... 以 ..... 内 ..... 答 .... 题 ...... 无 ..... 效……5. 道尔夫一切比雪夫阵列的特点有三点,一是 (23)_等副瓣电平_,二是(24) _在相同副瓣电平、相同阵列长度下其主瓣宽度最窄 _,三是(25) _阵列单元数多副瓣不是很低时,阵列两端单元的激励幅度将发生跳 变_。
天线阵列在雷达系统中的应用研究分析一、引言雷达作为一种重要的探测和监测工具,在军事、民用等众多领域都发挥着关键作用。
而天线阵列作为雷达系统的重要组成部分,其性能和应用对于雷达系统的整体效能有着显著的影响。
二、天线阵列的基本原理天线阵列是由多个天线单元按照一定的规则排列组成的。
通过合理设计天线单元的间距、相位和幅度等参数,可以实现对电磁波的定向辐射和接收,从而提高雷达的性能。
天线阵列的工作原理基于电磁波的干涉和叠加。
当多个天线单元同时发射或接收电磁波时,它们产生的电磁场会相互干涉和叠加,形成特定的方向性波束。
通过调整天线单元之间的相位差,可以控制波束的指向和形状。
三、天线阵列在雷达系统中的优势(一)提高分辨率天线阵列可以通过增加天线单元的数量和优化排列方式,来提高雷达系统的角度分辨率和距离分辨率。
这使得雷达能够更精确地分辨目标的位置、形状和尺寸。
(二)增强抗干扰能力由于天线阵列可以形成窄波束,能够有效地降低来自其他方向的干扰信号的影响,提高雷达系统在复杂电磁环境下的工作能力。
(三)实现多目标跟踪天线阵列可以同时形成多个波束,对多个目标进行跟踪和监测,大大提高了雷达系统的多目标处理能力。
(四)增加探测距离通过提高发射功率和接收灵敏度,天线阵列可以增加雷达系统的探测距离,使其能够更早地发现目标。
四、天线阵列在雷达系统中的应用类型(一)相控阵雷达相控阵雷达是天线阵列在雷达系统中应用的典型代表。
它通过控制每个天线单元的相位,实现波束的快速扫描和指向控制。
相控阵雷达具有反应速度快、多目标跟踪能力强等优点,广泛应用于军事防空、导弹防御等领域。
(二)MIMO 雷达MIMO(多输入多输出)雷达采用多个发射天线和多个接收天线,通过发射不同的波形和接收回波的处理,提高雷达系统的性能。
MIMO 雷达在目标检测、参数估计和抗干扰等方面具有优势。
(三)智能天线阵列智能天线阵列能够根据环境和目标的变化自适应地调整波束形状和方向,提高雷达系统的性能和适应性。