FEM-03 变分原理基础
- 格式:pdf
- 大小:1.35 MB
- 文档页数:30
多物理场耦合技术的研究进展与发展趋势作者:胡振东一、数值计算概述现代科学技术问题通常有三种研究方法:理论推导、科学实验和科学计算。
科学技术可以帮助科学家揭示用物质实验手段尚不能表现的科学奥秘和科学规律,同时,它也是工程科学家的研究成果——理论、方法和科学数据的归总,成为推动工程和社会进步的最新生产力。
数值计算方法则是科学计算核心。
数值计算技术诞生于上个世纪五十年代初,Bruce, G. H.和Peaceman, D. W.模拟了一维气相不稳定径向和线形流。
受当时计算机能力及解法限制,数值计算技术只是初步应用于求解一维问题。
随着计算机技术和计算方法的发展,复杂的工程问题也可以采用离散化的数值计算方法并借助计算机得到满足工程要求的数值解。
数值计算可理解为用计算机来做实验,比如某一特定LED(发光二极管)工作过程中内部电流密度、温度及热应力问题,通过计算并显示其计算结果。
我们可以看到LED 内部电流密度是否存在拥挤现象,内部温度分布的各个细节,以及由于温度的变化引起的应力集中是否存在,它的位置、大小及其随时间的变化等。
我们可以将数值计算分为以下几个步骤:首先要建立反映问题本质的数学模型。
具体说就是要建立反映问题中各物理量之间的偏微分方程及其相应的定解条件,这是数值计算的出发点。
比如牛顿型流体流动的数学模型就是著名的纳维—斯托克斯方程及其相应的定解条件。
数学模型建立之后,接下来就是求解这个模型。
需要寻求高效、高准确度的计算方法。
求解科学问题就是求解偏微分方程。
在确定了计算方法后,就可以开始编制程序并进行计算。
实践表明这一部分工作是整个工作的主体,会占据整个工程的绝大部分时间。
随着软件技术的发展,出现了应用于各领域的商业软件,运用这些软件使得这部分工作得到大大简化,缩短了模拟过程的周期。
这样,科研人员能够将自己的时间和精力更多的投入到自己研究的问题上,而不是编写计算代码。
通过上述描述,用数值计算方法解决科学计算问题的一般过程可以用如下流程来形象地描述:实际问题→数学模型→计算方法→计算程序→计算机计算→结果分析在计算工作完成后,需要处理大量的计算结果数据。
变分原理与变分法在数学中,变分原理是由变分法所依赖的基本数学原理,它属于变分法的核心思想。
变分原理是这样一个原理:如果一个物理系统的运动方程可以通过一些函数的下极值原理来推导出来,那么这个物理系统的运动方程也可以通过其他的方法得到,比如经典的牛顿运动定律、拉格朗日方程或哈密顿方程等。
所以,变分原理可以看作是一种看待运动方程的新视角,它提供了一种新的方法来推导和解决运动方程。
变分法是以变分原理为基础的一种数学方法,通过对形式相对简单的函数进行一定的变分操作,使得问题的求解变得容易。
变分法的核心思想是将函数看作一个整体,而不是具体的数值,通过改变整体的形状,使其满足一定的条件,从而达到优化的目标。
在变分法中,我们将问题转化为一个泛函的极值问题,通过对泛函求导并使其为零,就可以得到满足条件的函数。
在最优控制问题中,变分法是一个常用的求解方法。
最优控制问题是研究如何通过调整一些输入信号,使得系统的性能达到最优,比如最小化成本、最大化效益等。
通过应用变分法,我们可以将最优控制问题转化为一个泛函的极值问题,通过对极值问题求解,可以得到最优的输入信号。
在极值问题中,变分法也有广泛的应用。
比如著名的布鲁诺-普恩哥雷极值问题,即求出一个连续函数,使得其在给定的边界条件下,一些泛函成为极值。
通过变分法,我们可以将这个极值问题转化为一个泛函的极值问题,通过求解极值问题,就可以得到满足要求的函数。
除了最优控制问题和极值问题,变分法在泛函分析和变分不等式研究中也有重要的应用。
在泛函分析中,变分法用于求解泛函的最小化问题,通过对泛函求导并使其为零,得到泛函的最小值。
而在变分不等式研究中,变分法用于构造适当的测试函数,将问题转化为一个较简单的形式,从而得到不等式的解析解或估计。
总结来说,变分原理与变分法是应用于最优控制问题、极值问题和泛函问题等研究领域中的基本数学工具。
通过将问题转化为泛函的极值问题,通过对泛函求导并使其为零,可以得到满足条件的函数。
第三章变分原理与有限元方法1.引言在工程实践中,我们经常面临解决微分方程的问题,如结构力学问题和热传导问题。
变分法和有限元方法是两种常用的数值方法,用于求解这些微分方程。
2.变分原理变分法是一种通过变分问题建立微分方程解的数值近似的方法。
变分法的基本思想是将要求解的微分方程问题转化为一个泛函极小化问题。
在这个问题中,泛函是一个函数,它以一些函数(称为试探函数)为自变量。
通过求取使泛函极小化的试探函数,可以得到微分方程的近似解。
3.最小作用量原理变分法的核心原理是最小作用量原理,也称为哈密顿原理。
该原理指出,真实的系统在任意的微小变分下,其作用量是不变的。
作用量是系统的能量和时间的乘积,用来描述系统的运动轨迹。
根据最小作用量原理,可以得到一个极小化问题,通过对试探函数进行变分,使得作用量取得极小值。
有限元方法是一种通过将实际问题离散化为一个有限个子区域,然后在每个子区域内建立适当的数学模型,并进行逼近求解的方法。
有限元方法的核心思想是将连续的物理问题转化为离散的代数问题,通过求解代数问题来得到连续问题的近似解。
5.有限元离散化有限元离散化是有限元方法的第一步,通过将连续的问题离散化为一组离散点上的代数问题。
这个过程中,将整个域划分为有限个子区域,即有限元,每个有限元内部的物理变量可以近似为一个简单的函数,比如常数或低阶多项式。
我们在每个有限元中引入一组基函数,将物理变量表示为这组基函数的线性组合。
6.有限元弱型表达有限元弱型表达是有限元方法的关键步骤,通过将原始的微分方程乘以一个试验函数并在整个域上积分,得到一个弱形式的表达式。
这个表达式中包含了未知函数及其导数的积分项,通过解这个弱形式的表达式,可以得到未知函数的近似解。
7.有限元方程组和边界条件通过离散化和弱型表达,可以得到一组线性代数方程组,其中未知数是有限元的节点上的物理变量。
这个方程组可以通过标准的数值方法求解。
边界条件是方程组的一部分,它指定了在边界上的物理变量的值。
【边界元法】声学有限元法与声学边界元法边界元法话题:边界元法休闲阅读计算方法边界1. 声学有限元法有限元法(FEM)是根据变分原理来求解数学物理问题的一种数值计算方法,其基础是结构离散和分片插值,对于分析复杂形状腔体内的声场特性有着显著的优点,可以真实地模拟声场的低频波动特征,也适用于声-结构界面阻抗非均匀分布的情况,但数据准备工作量大。
用声学有限元法求解Helmholtz 方程,首先需要把计算的声场V 离散成一定数量的小声场eV ,每个小声场称为单元(Element),单元之间通过一定数量的节点(Node)相互连接。
定义好单元内任意点的声压与节点声压的关系(这种关系称为形函数(ShapeFunction)或者权重函数(Weighted Function)),则每个单元内的声场由属于这个单元的节点上的声压确定。
关于如何运用有限元法来求解Helmholtz 方程的具体理论过程详见文献。
2.声学边界元法边界元法(BEM)是在有限元的离散技术基础上,通过转化Helmholtz 方程边值问题为边界积分方程发展而来的。
边界元法克服了有限元法中的某些缺点,有限元法是在整个求解域上进行离散,而边界元法只在求解域的边界上进行离散;有限元法是全域数值方法,而边界元法在域内采用了物理问题或弹性力学的基本解和一些积分运算,数值计算只在边界上进行,它属于半解析半数值方法。
同其他方法相比,边界元法的优越性在于:在区域内部不需要求未知量,从而大大减少了划分单元模型的工作量和求解方程的个数,减少了数据量和计算时间;适合求解带无穷边界条件的开放域问题。
因此边界元法在结构振动辐射声场计算中具有使分析问题降维、适用于复杂结构以及无限域问题等优点,可用来计算已知表面振速结构的声辐射,也可与有限元法相结合解决较复杂的三维流体结构耦合的声辐射问题。
边界元法基本思想是将微分方程转化为在边界上定义的边界积分方程,并将边界离散化,使积分方程成为只含有边界节点未知量的代数方程组,通过求解获得边界节点的参数,并进一步求得分析域内部的参数。
流固耦合分析(FSI)流固耦合分析(FSI)是涉及流体和固体之间相互作用的问题研究,其理论包括了几个主要方面:流体力学、固体力学、耦合边界条件、求解器等。
以下是流固耦合分析的详细理论讲解,带有相关公式和尽量详细的说明。
一、流体力学1. 守恒定律质量守恒定律:$$ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 $$动量守恒定律:$$ \rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \cdot \tau + \mathbf{f} $$其中,$\rho$是流体密度,$\mathbf{u}$是流体速度,$\tau$是应力张量,$\mathbf{f}$是体力。
2. 纳维-斯托克斯方程$$ \rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \cdot (-p\mathbf{I} + \tau) + \mathbf{f} $$其中,$p$是静压力,$\mathbf{I}$是单位张量。
3. 边界条件(1)速度边界条件:$\mathbf{u} = \mathbf{u}_b$,其中$\mathbf{u}_b$是边界上的速度。
(2)压力边界条件:$p = p_b$,其中$p_b$是边界上的压力。
4. 流体力学求解器常用的流体力学求解器有OpenFOAM、ANSYS Fluent等。
二、固体力学1. 力学基本方程$$ \tau = \sigma\cdot \mathbf{n} $$其中,$\tau$是表面上的接触力,$\sigma$是固体的应力张量,$\mathbf{n}$是表面的单位法向量。
fem原理及方法全文共四篇示例,供读者参考第一篇示例:FEM原理及方法有限元法(Finite Element Method,FEM)是一种用于求解偏微分方程的数值方法。
它通过将求解域划分为有限数量的单元,然后在每个单元上建立局部近似,最终将所有单元的近似组合在一起,得到整个求解域的近似解。
FEM由于其高度灵活性和适用性,在工程学、物理学、生物学等领域都得到了广泛应用。
FEM的基本原理是将连续的物理问题转化为离散的数学问题,进而通过数值计算方法求解。
将求解域离散为有限个小单元,通常采用三角形或四边形单元。
然后,在每个单元内,假设解具有线性或更高次的形式,并通过插值函数对解进行近似。
最终将整个问题转化为一个大型的线性代数方程组,通过数值方法求解该方程组,得到问题的数值解。
FEM的求解过程包括以下几个步骤:1. 网格划分:首先需要将求解域划分为有限数量的单元,这些单元通常是简单几何形状,如三角形、四边形等。
这些单元的集合称为网格。
2. 单元建模:在每个单元内,需要选择适当的数学模型,即插值函数。
通常使用一些常见的插值函数,如线性插值、二次插值等。
通过这些插值函数,可以在每个单元内对解进行近似。
3. 建立局部方程:根据物理问题的边界条件和数学模型,在每个单元内建立局部方程。
这些局部方程通常是微分方程的离散形式。
4. 组装全局方程:将所有单元的局部方程组合在一起,形成整个求解域的全局方程。
这个方程通常是一个大型的线性代数方程组。
5. 求解方程组:通过数值方法,如直接法、迭代法等,求解全局方程组,得到问题的数值解。
FEM方法具有许多优点,例如:适用于不规则几何形状的求解域;可以灵活地处理复杂的边界条件;精度较高;适用于各种类型的偏微分方程等。
FEM在工程领域被广泛应用,如结构力学、热传导、流体力学等。
尽管FEM方法有诸多优点,但也存在一些挑战和局限性。
网格划分可能会导致计算误差;求解大规模方程组需要大量的计算资源;对于高次形状和非线性问题,求解比较困难等。
变分原理表达式以及每一项意义结构化学摘要:1.变分原理简介2.变分原理表达式3.各项意义结构化学解释4.变分原理在实际应用中的优势5.总结正文:【1】变分原理简介变分原理,作为量子力学、量子场论以及量子引力等领域的基础理论,是一种描述物理系统演化的数学方法。
它通过寻找一个函数,使该函数关于物理量的期望值达到极小,从而得到系统在给定条件下的最优性质。
【2】变分原理表达式变分原理的表达式一般形式为:δS = 0其中,S 是作用量,δ 表示微小变化,这个方程表明在物理量发生微小变化时,作用量的变化率为零。
【3】各项意义结构化学解释1.波函数:描述量子系统状态的复数值函数,用符号Ψ表示。
在变分原理中,波函数的模方表示系统在给定状态下的概率。
2.哈密顿算符:描述量子系统演化的算符,包含系统能量、动量等物理量。
在变分原理中,我们要找到一个合适的哈密顿算符,使得对应的波函数满足薛定谔方程。
3.拉格朗日算符:描述力学系统演化的算符,包含系统广义坐标和速度。
在变分原理中,拉格朗日算符与哈密顿算符相结合,用于求解系统的运动方程。
【4】变分原理在实际应用中的优势1.普适性:变分原理适用于各种量子力学体系,包括粒子物理、凝聚态物理、光学等领域。
2.准确性:通过寻找使作用量极小的波函数,变分原理可以得到精确的物理结果。
3.灵活性:变分原理可以与其他数学方法相结合,如微扰论、路径积分等,从而拓展其在理论物理中的应用。
【5】总结变分原理作为量子力学的基础理论,在描述物理系统演化的过程中具有重要作用。
通过掌握变分原理的表达式和各项意义结构化学,我们可以更好地理解量子系统的性质,并为实际应用提供理论依据。
变分原理基础罗建辉2009年夏季1 能量原理能量原理是以能量形式表述的力学定律。
概括地说,在所有满足一定的约束条件的可能状态中,真实状态应使其能量取极值或驻值。
本课程讨论结构力学、弹性力学、薄板的能量原理,只讨论线性平衡问题。
2 弹性系统真实平衡状态的能量特征举例从能量角度看,弹性系统的真实平衡状态具有如下的能量特征:即与其他可能状态相比,真实状态的能量为极值或驻值。
对这一能量特征举几个简例。
例0—1. 弹簧系统真实平衡状态的能量特征图0—1 所示为一弹簧下端挂一重物。
弹簧的刚度系数为k ,重物的重力为P 。
用∆表示位移,当弹簧系统处于平衡状态时,求得位移∆的真解为kP =∆=∆0)(真解 (1)真解的能量特征是弹簧系统的势能p ∏为极小。
现检验如下:∆-∆=∏P k p221 (2)式(2)右边第一项是弹簧的应变能,第二项是重力P 的势能。
系统势能p ∏是位移∆的二次式。
由式(2)得221()22pP Pk kk∏=∆--(3)现考察真解的能量特征。
显然,真解(1)使势能p ∏取极小值。
换一个角度,求p ∏的一阶及二阶导数,得Pk d d p-∆=∆∏ (4)22>=∆∏k d d p(5)将真解(1)代入式(4),得0=∆∏d d p,故知势能p∏为驻值。
根据式(5),又知势能p∏变分原理广义变分原理单变量形式多变量形式为极小值。
例0—2 超静定梁真实平衡状态的能量特征图0—2a 所示为一超静定梁,取图0—2b 所示静定梁为其基本结构。
根据平衡条件,基本结构的弯矩可表示为PMX M M +=11 (6)其中p M 是在荷载作用下基本结构的弯矩,1M 是在单位多余力11=X 作用下基本结构的弯矩,1X 是任意值。
式(6)同时也是超静定梁满足平衡条件的可能弯矩,由于1X 是任意参数,因此超静定梁的可能弯矩尚未唯一确定。
为了确定1X 的真解,还必须应用变形协调条件)(1111=∆+p X 真解δ (7)式中⎰=∆dxEI M M pp 11 (8)⎰=dxEIM 2111δ试验证真解的能量特征是梁的余能c ∏为极小值,余能c ∏的表示式为dxMX M EIdx EIMpc ⎰⎰+==∏2112)(212 (9)余能c ∏是1X 的二次函数,由式(9)得11111122211221212211112221111111111(2)21[2]21[2]21[()]2p c p p p p p p p p M X M M X M dxEIM dx M M dx M dx X X EIEI EIM dx X X EIM dx X EIδδδδ∏=++=++=+∆+=+∆-∆+⎰⎰⎰⎰⎰⎰(10)由式(10)可知变形协调条件(7)使余能c ∏取极小值。