能量原理与变分法1
- 格式:ppt
- 大小:915.00 KB
- 文档页数:4
变分法原理变分法是一种用于求解泛函和微分方程问题的数学方法。
它通过对一个函数进行微小的变化,并计算出在这个微小变化下泛函的变化量,从而得到泛函的极值。
变分法在物理学和工程学等领域有广泛的应用,如优化问题、经典力学中的作用量原理以及量子力学中的路径积分等。
要理解变分法的原理,首先需要了解泛函的概念。
泛函是一种将函数映射到实数集上的函数,例如能量泛函、作用泛函等。
对于一个给定的泛函,我们希望找到使其取得最大或最小值的函数。
而变分法就是一种通过对函数进行微小变化,从而使得泛函的变化量趋于零的方法。
以最简单的泛函问题为例,考虑一个函数y(某)在区间[a,b]上的泛函J,即J[y(某)],例如J[y]=∫(a到b)F(某,y,y')d某,其中F是已知的函数,y'表示导数。
我们的目标是找到函数y(某),使得泛函J[y(某)]取得极值。
为了寻找这样的函数,我们引入一个变分函数δy(某),它表示函数y(某)关于自变量某的微小变化量。
于是,我们可以将函数y(某)写成y(某)+εδy(某),其中ε是一个小的实数。
然后,将变分函数代入泛函中得到J[y(某)+εδy(某)]。
将J[y(某)+εδy(某)]展开成泛函J[y(某)]关于ε的幂级数,取一阶项,得到J[y(某)+εδy(某)]≈J[y(某)]+ε∫(a到b)(∂F/∂y)δyd某+ε∫(a到b)(∂F/∂y')δy'd某。
由于δy(某)是任意的,我们要使得泛函J[y(某)+εδy(某)]的变化量趋于零,只需使得∂F/∂y- d/d某(∂F/∂y')=0,即Euler-Lagrange方程。
根据Euler-Lagrange方程解出δy(某),再令δy(某)的边界条件为零,即δy(a)=δy(b)=0。
这样,我们就可以得到函数y(某)的特解。
总结起来,变分法的原理是将函数表示为原函数与微小变化的函数之和,将其代入泛函中展开,并取一阶项,最后通过求解Euler-Lagrange 方程得到特解。
变分原理与能量原理的异同
变分原理与能量原理是理论物理中常用的两种数学方法,用于解决自然界中的物理问题。
它们在某些方面有异同之处。
相同点:
1. 都是用数学方法描述物理系统的特性和运动规律,是理论物理中的基本原理。
2. 都基于对系统的整体行为进行建模和分析,而不关注系统内部的微观细节。
3. 都基于最小作用量原理,即假设系统在其运动路径上使得某个作用量(如拉格朗日量或哈密顿量)取得极小值。
4. 都能够推导出物理系统的方程或运动方程,从而预测系统的行为和性质。
异同点:
1. 理论基础不同:能量原理基于系统的能量守恒定律,通过分析系统的能量和功的转化来描述系统的运动规律;而变分原理则基于作用量最小原理,通过对系统的作用量进行优化来描述系统的运动规律。
2. 数学形式不同:能量原理通常使用能量函数(如哈密顿量)进行描述,通过
求解该函数的极值来得到系统的方程式;而变分原理使用变分法,通过将系统的作用量表达式进行变分,从而找到使其取得极值的函数形式。
3. 应用领域不同:能量原理常常应用于经典力学领域,如牛顿力学和哈密顿力学;而变分原理则更广泛地应用于物理学的各个领域,如量子力学、场论和统计物理等。
总的来说,变分原理与能量原理在基本原理、数学形式和应用范围等方面存在一些异同。
它们各自适用于不同的物理系统和问题,并在理论物理研究中发挥着重要的作用。
变分原理和基态能量变分原理是应用数学中的一种方法,用于解决极值问题。
在物理学中,变分原理被广泛应用于研究系统的基态能量。
本文将从理论和应用两个方面探讨变分原理与基态能量的关系。
一、变分原理的基本概念和原理变分原理是对函数的极值问题进行求解的一种方法。
它通过对函数进行微小的变化,然后利用极值点的性质来求得函数的极值。
变分原理的关键在于选取合适的变分函数和边界条件。
根据变分原理,我们可以将一个函数视为一个整体,而不仅仅是一系列离散的数值。
通过对函数引入适当的变分函数,然后求解变分函数的极值,我们可以得到原函数的极值。
二、基态能量的概念和意义基态能量是指系统在最低能级时具有的能量。
在量子力学中,基态能量是系统最稳定和最低能量的状态。
研究系统的基态能量对于了解系统的稳定性和行为具有重要意义。
基态能量的计算涉及到系统的波函数和哈密顿算符。
通过求解薛定谔方程,我们可以得到系统的波函数,进而计算出基态能量。
三、变分原理与基态能量的关系变分原理在研究基态能量时起到了重要的作用。
通过变分法,我们可以从整体上考虑系统的波函数的变化,从而更准确地计算系统的基态能量。
在应用变分原理求解基态能量时,我们首先选择一个适当的变分函数,然后求解该变分函数对应的极值,即找到使得变分函数取极小值的波函数。
这个波函数就是系统的基态波函数,基态能量可以由此得到。
通过变分原理求解基态能量的好处在于,我们不需要事先知道系统的确切波函数形式。
通过选择合适的变分函数,我们可以逼近真实的波函数,并得到较为准确的基态能量。
四、变分原理和基态能量的应用变分原理和基态能量的概念和方法在物理学的各个领域都有着广泛的应用。
在量子力学中,变分原理被用来求解系统的基态能量,从而研究原子、分子和凝聚态物理的性质和行为。
在固态物理学中,变分原理被用来研究晶体和材料的基态能量,从而探索材料的电子结构和导电性等性质。
在统计物理学中,变分原理被用来分析系统的基态能量和热力学性质,从而研究相变、磁性和量子统计效应等现象。
第一章 变分原理与变分法1.1 关于变分原理与变分法(物质世界存在的基本守恒法则)一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理:昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理;对运动事物:能量守恒,动量(矩)守恒,熵增原理等。
变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。
Examples :① 光线最短路径传播;② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron );③CB AC EB AE +>+Summary : 实际上光的传播遵循最小能量原理;在静力学中的稳定平衡本质上是势能最小的原理。
二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论数学上的泛函定义定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映射)关系特征描述法:{ J :R x R D X ∈=→⊂r J )(|}Examples :① 矩阵范数:线性算子(矩阵)空间 数域‖A ‖1 = ∑=ni ij ja 1max ;∑=∞=nj ij ia A 1max;21)(1122∑∑===n j ni ij a A② 函数的积分: 函数空间数域 D ⊂=⎰n ba n f dxx f J )(Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。
Discussion :① 判定下列那些是泛函:)(max x f f b x a <<=;x y x f ∂∂),(; 3x+5y=2; ⎰+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。
物理问题中的泛函举例① 弹性地基梁的系统势能i. 梁的弯曲应变能: ⎰=∏l b dx dxw d EJ 0222)(21ii. 弹性地基贮存的能量: dx kw l f ⎰=∏0221 iii. 外力位能: ⎰-=∏l l qwdx 0iv. 系统总的势能:000;})({221222021===-+=∏⎰dxdww x dx qw kw dxw d EJ l泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统势能。
第一章 变分原理与变分法1.1 关于变分原理与变分法(物质世界存在的基本守恒法则)一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理:昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理;对运动事物:能量守恒,动量(矩)守恒,熵增原理等。
变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。
Examples :① 光线最短路径传播;② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron );③CB AC EB AE +>+Summary : 实际上光的传播遵循最小能量原理;在静力学中的稳定平衡本质上是势能最小的原理。
二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论数学上的泛函定义定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间的(映射)关系特征描述法:{ J :R x R D X ∈=→⊂r J )(|}Examples :① 矩阵范数:线性算子(矩阵)空间 数域‖A ‖1 = ∑=ni ij ja 1max ;∑=∞=nj ij ia A 1max;21)(1122∑∑===n j ni ij a A② 函数的积分: 函数空间数域 D ⊂=⎰n ba n f dxx f J )(Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。
Discussion :① 判定下列那些是泛函:)(max x f f b x a <<=;x y x f ∂∂),(; 3x+5y=2; ⎰+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。
物理问题中的泛函举例① 弹性地基梁的系统势能i. 梁的弯曲应变能: ⎰=∏l b dx dxw d EJ 0222)(21ii. 弹性地基贮存的能量: dx kw l f ⎰=∏0221 iii. 外力位能: ⎰-=∏l l qwdx 0iv. 系统总的势能:000;})({221222021===-+=∏⎰dxdww x dx qw kw dxw d EJ l泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系统势能。