七年级数学三角形的外角练习
- 格式:doc
- 大小:108.50 KB
- 文档页数:6
经典《三角形》专题训练知识点梳理考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类. ⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形 ⎪⎪⎩⎪⎪⎨⎧)(等边三角形等腰三角形不等边三角形 3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4、三角形的重要线段①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质定理:三角形的内角和等于180°.推论1:直角三角形的两个锐角互补。
推论2:三角形的一个外角等于不相邻的两个内角的和。
推论3:三角形的一个外角大于与它不相邻的任何一个内角。
7、多边形的外角和恒为360°8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。
③多边形的对角线的条数:A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
B.n 边形共有2)3(-n n 条对角线。
9、边形的内角和公式及外角和①多边形的内角和等于(n-2)×180°(n ≥3)。
②多边形的外角和等于360°。
三角形 (按角分) 三角形 (按边分)10、平面镶嵌及平面镶嵌的条件。
①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。
②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。
初一数学三角形的外角试题1.已知,如图,点是中边上的一点,点是边延长线上一点,说明:.【答案】见解析【解析】本题主要考查的是三角形外角与内角的关系. 由于∠DCB是△DCE的一个外角,所以∠DCB>∠CDE;又因为∠ADB是△BCD的一个外角,所以∠ADB>∠DCB,故∠ADB>∠CDE.证明:∵∠DCB是△DCE的一个外角∴∠DCB>∠CDE∵∠ADB是△BCD的一个外角∴∠ADB>∠DCB∴∠ADB>∠CDE2.已知,如图,中,的平分线与的平分线交于点,若,求的度数.【答案】【解析】本题考查的是三角形内角和定理、三角形内角及外角平分线的性质. 根据三角形外角的性质和角平分线的性质表示出两角和的一半,用180°减去两角和的一半即可.∵∠ACE是△ABC的外角,∴∠ACE=∠A+∠ABC,∵BD是∠ABC的角平分线,∴∠DBC=∠ABC,∵CD是外角∠ACE的角平分线,∴∠DCE=∠ACD=∠ACE,∵∠D=∠DCE-∠DBC=∠ACE-∠ABC=(∠ACE-∠ABC)=∠A=×80°=40°.∴∠D的度数是40°.3.已知,如图,在中,是高和的交点,观察图形,试猜想和之间具有怎样的数量关系,并论证你的猜想.【答案】.证明见解析【解析】本题主要考查了三角形的外角性质和三角形内角和定理. 由于∠DOE是△AOE的外角,故∠DOE=∠OAE+∠AEO=∠OAE+90°=∠OAE+∠ADC,即∠C+∠DOE=∠OAE+∠ADC+∠C=180°解:∠C+∠DOE=180°.∵AD,BE是△ABC的高(已知),∴∠AEO=∠ADC=90°(高的意义),∵∠DOE是△AOE的外角(三角形外角的概念),∴∠DOE=∠OAE+∠AEO(三角形的一个外角等于不相邻的两个内角的和)=∠OAE+90°(∠AEO=90°)=∠OAE+∠ADC(∠ADC=90°)∴∠C+∠DOE=∠OAE+∠C+∠ADC=90°+90°=180°.另法:在四边形CEOD中,∠C+∠EOD+90°+90°=360°,则∠C+∠EOD=180°.4.如图所示,已知AB∥CD,∠A=55°,∠C=20°,则∠P= ;O【答案】35°【解析】本题主要考查的是平行线的性质及三角形内角与外角的关系.∵AB∥CD,∠A=55°∴∠AOC=∠A=55°∵∠C=20°∴∠P=∠AOC-∠C=55°-20°=35°5.如图所示,∠A +∠B+∠C+∠D+∠E= ;【答案】180°【解析】本题主要考查了三角形的外角和内角和定理因为∠1=∠B+∠D,∠2=∠C+∠E,所以∠A +∠B+∠C+∠D+∠E=∠A+∠1+∠2=180°6.如图所示,已知AB∥CD,则()A.∠1=∠2+∠3 .B.∠1=2∠2+∠3C.∠1=2∠2-∠3D.∠1=180°-∠2-∠3【答案】A【解析】本题主要考查的是平行线的性质及三角形内角与外角的关系.因为AB∥CD,所以∠ABD=∠3,因此∠1=∠2+∠ABD=∠2+∠3;7.若一个三角形三个内角的度数之比为1∶2∶3,则与之相邻的三个外角的度数之比为()A.1∶2∶3B.3∶2∶1C.3∶4∶5D.5∶4∶3【答案】D【解析】本题主要考查了三角形内角和定理及内角与外角的关系. 先根据三角形的三个内角度数之比为1∶2∶3及三角形内角和定理求出三个内角的度数,再分别求出其对应的外角度数即可设三角形三个内角分别为,则,解得,所以三角形三个内角分别为30°,60°,90°,与之相邻的三个外角的度数分别为150°,120°,90°,故选D8.一个零件的形状如图所示,按规定∠A应等于90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=148°,就断定这个零件不合格,运用三角形的有关知识说明零件不合格的理由.【答案】不合格【解析】本题主要考查了三角形内角和定理. 连接AD,利用三角形内角与外角的关系求出此零件合格时∠BDC的度数与已知度数相比较即可.解:如图,连接AD并延长至E,则∠CDE=∠C+∠CAD,∠BDE=∠B+∠BAD,所以∠BDC=∠CDE+∠BDE=∠C+∠CAD+∠B+∠BAD=21°+32°+90°=143°≠148°,所以这个零件不合格.9.图中()是△ABC的外角.A.∠1B.∠2C.∠3D.∠4【答案】C【解析】本题考查的是三角形外角的定义根据三角形外角的定义解答.根据三角形外角的定义可知,∠3是此三角形的外角.故选C.10.如图,△ABC中,D是BC上一点,F是BA延长线上一点,连接DF交AC于E,且∠B=42°,∠C=59°,∠DEC=47°,求∠F的度数.【答案】【解析】本题考查的是三角形内角和定理、外角定理、对顶角相等由∠B=42°,∠C=59°,根据三角形的外角定理即可求得∠FAE,再根据对顶角相等求得∠AEF,最后根据三角形内角和定理即可求得∠F的度数.∠B=42°,∠C=59°,∠FAE=∠B+∠C=101°,∠DEC=47°,∠AEF=47°,∠∠FAE∠AEF。
初中数学:三角形的外角检测题(含答案)总分100分时间40分钟一、选择题(每题5分)1、若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.无法确定【答案】C【解析】试题分析:三角形的一个外角和与它相邻的内角互补,当外角小于与它相邻的内角时,所以这个内角是钝角.解:如下图所示,∠ACD<∠ACB,∵∠ACB+∠ACD=180°,∴∠ACB>90°.∴△ACB是钝角三角形.故应选C.考点:三角形的外角2、已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( )A.90°B.110°C.100°D.120°【答案】C【解析】试题分析:根据三角形的三个外角的度数比为2:3:4,设三角形的三个外角是2x、3x、4x,根据三角形外角和是360°列方程求出x的值,求出每个外角的度数,根据外角的度数求出三角形的内角度数.解:设三角形的三个外角是2x、3x、4x,根据题意可得:x+3x+4x=360°,解得:x=40°,∴三角形最小的外角的度数是2x=80°,∴三角形最大的内角的度数是180°-80°=100°.考点:三角形外角的性质3、已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形【答案】C【解析】试题分析:根据三角形的一个外角是120°,求出三角形的一个内角是60°,根据有一个角是60°的等腰三角形是等边三角形判定结果.解:如下图所示,∵∠ACD=120°,∴∠ACB=60°,又∵△ABC是等腰三角形,∴△ABC是等边三角形.故应选C.考点:1.三角形外角的性质;2.等腰三角形的判定.二、填空题(每题8分)4、如图,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA 到E,连EF,则∠1,∠2,∠3的大小关系是______【答案】∠1>∠2>∠3【解析】试题分析:根据三角形外角大于与它不相邻的任何一个内角.解:∵∠1是△ABC的外角,∴∠1>∠2,∵∠2是△AEF的外角,∴∠2>∠3,∴∠1>∠2>∠3.考点:三角形外角的性质5、△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”)。
三角形的外角 同步练习所形成的角2. 三角形的外角的性质: ⑴ 三角形的一个外角等于,⑵ 三角形的一个外角大于;3.直接根据图填空: ⑴∠α=⑵∠α=⑶∠α= ⑷∠α=⑸∠α=⑹∠α= ;4.如图1,AB ∥CD ,∠A= 38°∠C= 80°,则∠M 为( ) A 、52° B 、42° C 、10° D 、40°5.如图2,D 是△ABC 中边上一点,E 是BD 上一点, 则对∠1、∠2、∠A 之间关系描述正确的是 ( ) A 、∠A <∠1 >∠2 B 、∠2 >∠1 >∠A C 、∠1 >∠2 >∠A D 、无法确定6.如图3, 下列说法错误的是 ( ) A 、∠A <∠1 >∠2 B 、∠2 >∠1 >∠A C 、∠1 >∠2 >∠A D 、无法确定7.以下命题中正确的是 ( ) A 、三角形的三个内角与三个外角的和为540° B 、三角形的外角大于它的内角 C 、三角形的外角都比锐角大 D 、三角形中的内角没有小于60°的8. 如图,∠C = 48°,∠E = 25°,∠BDF = 140°,求∠A 与∠EFD 的度数。
1234566238203025150707060202013545αααααα°°°°°°°°°°°°°123A A ABC C BBCDDD EE E M H12A9.如图,∠ABC =∠C = 90°,∠A =∠CBD = 25°,试求∠1和∠2的度数。
10.如图,在△ABC 中,E 是AC 延长线上的一点,D 是BC 上的一点,下面的命题正确吗?若正确,请说明理由。
⑴∠1 = ∠E +∠A +∠B ⑵∠1 >∠A11.如图4,∠B =∠C ,则∠ADC 与∠AEB 的大小关系( ) A 、∠ADC >∠AEB B 、∠ADC = ∠AEB C 、∠ADC <∠AEB D 、大小关系不能确定12.如图5,C 在AB 的延长线上,CE ⊥AF 于E ,交FB 于D ,∠F = 40°,∠C = 20°,则∠FBA 的度数为( )A 、50°B 、60°C 、70°D 、80°13.如图6,BE 是∠ABD 的平分线,CF 是∠ACD 的平分线,BE 、CF 交于点G ,若∠BDC = 140°,∠BGC = 110°,则∠A 的大小是 ( ) A 、70° B 、75° C 、80° D 、85°14.如图7,一个任意的五角星,它的五个角的和为( ) A 、50° B 、100° C 、180° D 、200° 15.如图8 ,AB ∥CD ,AC ⊥BC ,与∠CAB 互余的角有( ) A 、1个 B 、2个 C 、3个 D 、4个16.如图9,在△ABC 中,∠ABC 和∠ACB 的外角平分线交于点O ,设∠BOC =α,则∠A 等于 ( )A CBD 12AC BDE1456A A AB CCB B CDD DE E EF F GA 、90°- 2αB 、90°αC 、180°- 2αD 、180°α17.如图,BE 、CD 交于A 点,∠C 与∠E 的平分线交于F ⑴∠F 与∠B 、∠D 有何等量关系?⑵ 当∠B ∶∠D ∶∠F = 2∶4∶x 时,x 为多少?αAA B CBC DO789ABCDEF。
七下数学每日一练:三角形的外角性质练习题及答案_2020年解答题版答案答案答案2020年七下数学:图形的性质_三角形_三角形的外角性质练习题~~第1题~~(2019嘉兴.七下期末) 如图, , , ,求 .考点: 平行线的性质;三角形的外角性质;~~第2题~~(2019嘉兴.七下期末) 如图,AB ∥CD ,∠A=60°,∠C=∠E ,求∠E.考点: 对顶角、邻补角;平行线的性质;三角形的外角性质;~~第3题~~(2019甘井子.七下期中) (问题发现)如图1,D 是△ABC 边AB 延长线上一点,求证:∠A+∠C=∠CBD.小白同学的想法是,过点B 作BE ∥AC ,从而将∠A 和∠C 转移到∠CBD 处,使这三个角有公共顶点B ,请你按照小白的想法,完成解答;(问题解决)在上述问题的前提,,如图3,从点B 引一条射线与∠ACB 的角平分线交于点F ,且∠CBF=∠DBF ,探究∠A 与∠F 的数量关系。
在小白想法的提示下,小黑同学也想通过作平行线将∠A 或∠F 的位置进行转移,使两角有公共顶点,,请你根据小黑的想法或者学过的知识解决此问题。
考点: 角的平分线;平行线的性质;三角形的外角性质;答案答案~~第4题~~(2019长春.七下期中) 已知,如图,O 是ΔABC 高AD 与BE 的交点,∠C=50°,求∠AOB 的度数.考点: 三角形内角和定理;三角形的外角性质;~~第5题~~(2019.七下期中) 如图,∠MON =90°,点A ,B分别在射线OM ,ON 上移动,∠OAB 的平分线与∠OBA 的外角平分线交于点C ,试猜想:随着点A ,B 的移动,∠ACB 的大小是否发生变化,并说明理由.考点: 角的平分线;三角形的外角性质;2020年七下数学:图形的性质_三角形_三角形的外角性质练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。
三⾓形内⾓和外⾓练习题及作业11.2 与三⾓形有关的⾓习题课⼀、知识要点1、三⾓形内⾓和定理:三⾓形三个内⾓的和等于______,即:在△ABC中,∠A+∠B+∠C=_____理解与延伸:①⼀个三⾓形中最多只有⼀个钝⾓或直⾓②⼀个三⾓形中最少有⼀个⾓不⼩于60°③等边三⾓形每个⾓都是60°2、直⾓三⾓形的性质与判定性质:直⾓三⾓形的两个锐⾓__________;判定:有两个⾓互余的三⾓形是_______________3、三⾓形的外⾓:三⾓形的⼀边与另⼀边的______________组成的⾓特点:①三⾓形的⼀个外⾓和与它同顶点的内⾓互为_______________②三⾓形有____个外⾓,每个顶点处有____个外⾓,但算三⾓形外⾓和时,每个顶点处只算____个外⾓,外⾓和是指三个外⾓的和,三⾓形的外⾓和为________ 性质:三⾓形的外⾓等于与它______________的两个内⾓的和⼆、知识应⽤1、三⾓形内⾓和定理应⽤(1)已知两⾓求第三⾓ (2)已知三⾓的⽐例关系求各⾓ (3)已知三⾓之间相互关系求未知⾓2、三⾓形外⾓性质的应⽤(1)已知外⾓和它不相邻两个内⾓中的⼀个可求“另⼀个”(2)可证⼀个⾓等于另两个⾓的_______(3)经常利⽤它作为中间关系式证明两个⾓相等.三、例题分析1、如图,⼀种滑翔伞的形状是左右对称的四边形ABCD,其中∠A = 150°,∠B = ∠D = 40°则∠C=_______2、如图,⼀个直⾓三⾓形纸⽚,剪去直⾓后,得到⼀个四边形,则∠1+∠2=_______3、△ABC中,∠B = ∠A + 10°,∠C = ∠B + 10°.求△ABC的各内⾓的度数4. 将⼀个直⾓三⾓板和⼀把直尺如图放置,如果∠α=43°,求∠β的度数5、如图,求∠A+∠B+∠C+∠D+∠E的度数变式:(1)如图①,五⾓形的顶点分别为A、B、C、D、E,∠A+∠B+∠C+∠D+∠E=_____(2)如图②,∠A+∠DBE+∠C+∠D+∠E=_____(3)如图③,∠A+∠B+∠C+∠D+∠E=_____6、(1)如图1,BO、CO分别是△ABC中∠ABC和∠ACB的平分线,则∠BOC与∠A的关系是____________________________(2)如图2,BO、CO分别是△ABC两个外⾓∠CBD和∠BCE的平分线,则∠BOC与∠A的关系是____________________________(3)如图3,BO、CO分别是△ABC⼀个内⾓和⼀个外⾓的平分线,则∠BOC与∠A的关系是____________________________(4)请就图2及图2中的结论进⾏证明四、课外作业:A 组题1、如图,已知点B 、C 、D 、E 在同⼀直线上,△ABC 是等边三⾓形,且CG=CD ,DF=DE ,则∠E=______2、如图,∠1+∠2+∠3+∠4+∠5+∠6=______3、把⼀副三⾓板按如图⽅式放置,则两条斜边所形成的钝⾓α=_______度.4、如图,∠1、∠2、∠3的⼤⼩关系为()A .∠2>∠1>∠3B .∠1>∠3>∠2C .∠3>∠2>∠1D .∠1>∠2>∠35、如果三⾓形的⼀个外⾓和与它不相邻的两个内⾓的和为180°,那么与这个外⾓相邻的内⾓的度数为( )A 、30°B 、60°C 、90°D 、120°6、如图,已知∠1=60°,∠A+∠B+∠C+∠D+∠E+∠F=()A 、360°B 、540°C 、240°D 、280°7、如图,在△ABC 中,D 、E 分别是AB 、AC 上的点,点F 在BC 的延长线上,DE ∥BC ,∠A=46°,∠1=52°,求∠2的度数.8、⼀个零件的形状如图,按规定∠A= 90°,∠B 和∠C ,应分别是32°,和21°,检验⼯⼈量得∠BDC = 148°,就断定这两个零件不合格,运⽤三⾓形的有关知识说明零件不合格的理由。
7.2.2 三角形的外角
基础过关作业
1.若三角形的外角中有一个是锐角,则这个三角形是________三角形.
2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).
3.如图1,x=______.
(1) (2) (3)
4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.
5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.6.如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高,H是BD、•CE的交点,求∠BHC的度数.
综合创新作业
7.如图所示,在△ABC中,AB=AC,AD=AE,∠
BAD=60°,则∠EDC=______.
8.一个零件的形状如图7-2-2-6所示,按规定∠A
应等于90°,∠B、∠D应分别是30°和20°,李叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗?
9.(1)如图7-2-2-7(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;
(2)如图7-2-2-7(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.
10.(易错题)三角形的三个外角中最多有_______个锐角.
培优作业
11.(探究题)(1)如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠BDC与∠A之间的数量关系.
点D,试探索∠BDC与∠A之间的数量关系.
为什么?
数学世界
七桥问题
18世纪在哥尼斯堡城的普莱格尔河上有七座桥,将河中的两个岛和河岸连接.如图所
示.城中的居民经常沿河过桥散步,于是就提出一个问题:•能否一次不重复地把这七座
桥走遍?可是,走来走去,这个愿望还是无法实现.该怎样走才好呢?•这就是著名的哥
尼斯堡七桥问题.••好奇的人把这个问题拿给当时的大数学家欧拉(1707~1783).欧
拉以深邃的洞察力很快证明了这样的走法不存在.
你知道欧拉是根据什么道理证明的吗?
答案:
1.钝角
2.直角点拨:∵∠C-∠B=∠A,∴∠C=∠A+∠B.
又∵(∠A+∠B)+∠C=180°,∴∠C+∠C=180°,∴∠C=90°,∴△ABC的外角中最小的角是直角.
3.60 点拨:由题意知x+80=x+(x+20).解得x=60.4.∠1>∠2>∠3
点拨:∵∠1是∠2的外角,∠2是∠3的外角,∴∠1>∠2>∠3.5.解:∠BAC=180°-(∠B+∠C)=180°-(52°+78°)=50°.∵AE是∠BAC的平分线,
∴∠BAE=∠CAE=1
2
∠BAC=25°.
∴∠AEB=∠CAE+∠C=25°+78°=103°.
6.解:在△ACE中,∠ACE=90°-∠A=90°-60°=30°.而∠BHC是△HDC的外角,
所以∠BHC=∠HDC+∠ACE=90°+30°=120°.
7.30°点拨:设∠CAD=2a,由AB=AC知∠B=1
2
(180°-60°-2a)=60°-•a,•
∠ADB=180°-∠B-60°=60°+a,由AD=AE知,∠ADE=90°-a,所以∠EDC=180°-∠ADE-∠ADB=30°.
8.解法1:如答图1,延长BC交AD于点E,
则∠DEB=∠A+∠B=90°+30°=•120°,
从而∠DCB=∠DEB+∠D=120°+20°=140°.
若零件合格,∠DCB应等于140°.
李叔叔量得∠BCD=142°,
因此可以断定该零件不合格.
(1) (2) (3)
点拨:也可以延长DC与AB交于一点,方法与此相同.
解法2:如答图2,连接AC并延长至E,则∠3=∠1+∠D,∠4=∠2+∠B,
因此∠DCB=∠1+∠D+∠2+∠B=140°.以下同方法1.
解法3:如答图3,过点C作EF∥AB,交AD于E,
则∠DEC=90°,∠FCB=∠B=•30°,所以∠DCF=∠D+∠DEC=110°,
从而∠DCB=∠DCF+∠FCB=140°.以下同方法1.
说明:也可以过点C作AD的平行线.
点拨:上述三种解法应用了三角形外角的性质:三角形的一个外角等于它不相邻的两个内角的和.
9.解:(1)由图知∠A+∠F=∠OQA,∠B+∠C=∠QPC,∠D+∠E=∠EOP.
而∠OQA、•∠QPC、∠EOP是△OPQ的三个外角.
∴∠OQA+∠QPC+∠EOP=360°.
∴∠A+∠B+∠C+∠D+∠E+∠F=∠OQA+∠QPC+∠EOP=360°.
(2)360°点拨:方法同(1).
10.1 点拨:本题易因混淆内角、外角的概念,而误填为3.
11.解:(1)∠BDC=90°-1
2
∠A.
理由:∠ABC+∠ACB=180°-∠A.
∠EBC+∠FCB=(180°-∠ABC)+(180°-∠ACB)=360°-(∠ABC+∠ACB)=180°+∠A.∵BD、CD分别为∠EBC、∠FCB的平分线,
∴∠CBD=1
2
∠EBC,∠BCD=
1
2
∠FCB.
∴∠CBD+∠BCD=1
2
(∠EBC+∠FCB)=
1
2
×(180°+∠A)
=90°+1
2
∠A.
在△BDC中,∠BDC=180°-(∠CBD+∠BCD)=180°-(90°+1
2
∠A)=90°-
1
2
∠A.
(2)∠BDC=1
2
∠A.
理由:∵∠ACE是△ABC的外角,
∴∠ACE=∠A+∠ABC,
∵CD是∠ACE的平分线,BD是∠ABC的平分线,
∴∠DCE=1
2
∠ACE=
1
2
∠A+
1
2
∠ABC,∠DBC=
1
2
∠ABC.
∵∠DCE是△BCD的外角,
∴∠BDC=∠DCE-∠DBC=1
2
∠A+
1
2
∠ABC-
1
2
∠ABC=
1
2
∠A.
12.解:如图,设球员接球时位于点C,他尽力向球门冲近到D,
此时不仅距离球门近,射门更有力,而且对球门AB的张角也扩大,球就更容易射中.理由说明如下:
延长CD到E,则∠ADE>∠ACE,∠BDE>∠BCE,
∴∠ADE+∠BDE>∠ACE+∠BCE,即∠ADB>∠ACB.
点拨:解此题关键是将生活中的问题抽象为数学问题.
数学世界答案:
欧拉将七桥布局转化为图所示的简单图形,于是七桥问题就变成一个一笔画的问题.这个图形显然无法一笔画出,也就是说,•要想一次无重复地走遍这七座桥是办不到的.。