七年级数学下册三角形
- 格式:pptx
- 大小:407.07 KB
- 文档页数:15
七年级下册数学三角形的内角和一、三角形内角和定理。
1. 定理内容。
- 三角形的内角和等于180°。
2. 证明方法。
- 方法一:测量法(不完全严谨,但可作为初步感知)- 用量角器分别测量三角形的三个内角,然后将三个角的度数相加,会发现其和接近180°。
由于测量存在误差,所以这只能是一种初步验证的方法。
- 方法二:剪拼法。
- 把三角形的三个角剪下来,然后将它们的顶点拼在一起,可以发现这三个角能拼成一个平角,从而直观地说明三角形内角和为180°。
- 方法三:推理证明(以平行线的性质为基础)- 已知:△ABC。
- 求证:∠A + ∠B+∠C = 180°。
- 证明:过点A作直线EF∥BC。
- 因为EF∥BC,根据两直线平行,内错角相等,所以∠B = ∠FAB,∠C = ∠EAC。
- 又因为∠FAB+∠BAC + ∠EAC=180°(平角的定义),所以∠B+∠BAC+∠C = 180°,即三角形内角和为180°。
二、三角形内角和定理的应用。
1. 在求三角形内角的度数中的应用。
- 例1:在△ABC中,∠A = 50°,∠B = 60°,求∠C的度数。
- 解:根据三角形内角和定理,∠C = 180° - ∠A - ∠B。
- 已知∠A = 50°,∠B = 60°,则∠C = 180° - 50° - 60° = 70°。
2. 在判断三角形的类型中的应用。
- 例2:一个三角形的三个内角的度数之比为1:2:3,判断这个三角形是什么类型的三角形。
- 解:设三角形的三个内角分别为x,2x,3x。
- 根据三角形内角和定理可得:x + 2x+3x = 180°。
- 合并同类项得6x = 180°,解得x = 30°。
- 那么三个角的度数分别为30°,2×30° = 60°,3×30° = 90°。
第四章三角形三角形三边关系三角形三角形内角和定理角平分线三条重要线段中线高线全等图形的概念全等三角形的性质SSS三角形SAS全等三角形全等三角形的判定ASAAASHL(适用于RtΔ)全等三角形的应用利用全等三角形测距离作三角形一、三角形概念1、不在同一条直线上的三条线段首尾顺次相接所组成的图形,称为三角形,可以用符号“Δ”表示.2、顶点是A、B、C的三角形,记作“ΔABC”,读作“三角形ABC”.3、组成三角形的三条线段叫做三角形的边,即边AB、BC、AC,有时也用a,b,c来表示,顶点A所对的边BC用a表示,边AC、AB分别用b,c来表示;4、∠A、∠B、∠C为ΔABC的三个内角。
二、三角形中三边的关系1、三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.用字母可表示为a+b〉c,a+c〉b,b+c〉a;a—b<c,a-c<b,b-c 〈a.2、判断三条线段a,b,c能否组成三角形:(1)当a+b>c,a+c>b,b+c〉a同时成立时,能组成三角形;(2)当两条较短线段之和大于最长线段时,则可以组成三角形。
3、确定第三边(未知边)的取值范围时,它的取值范围为大于两边的差而小于两边的和,即a b c a b-<<+.三、三角形中三角的关系1、三角形内角和定理:三角形的三个内角的和等于1800。
2、三角形按内角的大小可分为三类:(1)锐角三角形,即三角形的三个内角都是锐角的三角形;(2)直角三角形,即有一个内角是直角的三角形,我们通常用“RtΔ”表示“直角三角形”,其中直角∠C所对的边AB称为直角三角表的斜边,夹直角的两边称为直角三角形的直角边.注:直角三角形的性质:直角三角形的两个锐角互余。
(3)钝角三角形,即有一个内角是钝角的三角形。
3、判定一个三角形的形状主要看三角形中最大角的度数.4、直角三角形的面积等于两直角边乘积的一半.5、任意一个三角形都具备六个元素,即三条边和三个内角.都具有三边关系和三内角之和为1800的性质。
三角形和不等式复习温故而知新(一)三角形知识梳理1、等腰三角形的性质:①等腰三角形的两底角相等(等边对等角)②等腰三角形“三线合一”的性质:顶角平分线、底边上的中线、底边上的高互相重合。
③等腰三角形两底角的平分线相等,两腰上的高、中线也相等等腰三角形的判定:有两个角相等的三角形是等腰三角形(等角边对等边)2、等边三角形是特殊的等腰三角形,作一条等边三角形的三线合一线,将等边三角形分成两个全等的直角三角形,其中一个锐角等于30º,这它所对的直角边必然等于斜边的一半。
等边三角形的判定:有一个角等于60º的等腰三角形是等边三角形。
3、如果知道一个三角形为直角三角形首先要想的定理有:①勾股定理:222+=(注意区分斜边与直角边)a b c②在直角三角形中,如有一个内角等于30º,那么它所对的直角边等于斜边的一半③在直角三角形中,斜边上的中线等于斜边的一半4、线段垂直平分线上的点到这一条线段两个端点距离相等。
线段垂直平分线逆定理:到一条线段两端点距离相等的点,在这条线段的垂直平分线上。
三角形的三边的垂直平分线交于一点,并且这个点到三个顶点的距离相等。
5、角平分线上的点到角两边的距离相等。
角平分线逆定理:在角内部的,如果一点到角两边的距离相等,则它在该角的平分线上。
三角形三条角平分线交于一点,并且交点到三边距离相等,交点即为三角形的内心。
6、互逆命题和互逆定理7、全等三角形课堂复习等腰三角形1、已知,等腰三角形的一条边长等于6,另一条边长等于,则此等腰三角形的周长是()A.9 B.12 C.15 D.12或152. 等腰三角形的底角为15°,腰上的高为16,那么腰长为______ ____3、等腰三角形的一个角是80度,则它的另两个角是4、等腰三角形的顶角为120°,腰长为4,则底边长为__________C EA D B等边三角形1、如图:等边三角形ABC 中,D 为AC 的中点,E 为BC 延长线上一点,且DB=DE,若△ABC 的周长为12,则△DCE 的周长为___________. 垂直平分线1、如图1,在△ABC 中,已知AC=27,AB 的垂直平分线交AB 于点D ,交AC 于点E ,△BCE 的周长等于50,求BC 的长.2、如图:△ABC 中,AB=AC,∠BAC=1200,EF 垂直平分AB, EF=2,求AB 与BC 的长。
七年级数学下册北师大版第五章《三角形》知识点总结第一篇:七年级数学下册北师大版第五章《三角形》知识点总结第五章《三角形》知识点总结(北师大版七年级下)一、三角形及其有关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。
2、三角形的表示:三角形用符号“△”表示,顶点是A、B、C的三角形记作“△ABC”,读作“三角形ABC”。
3、三角形的三边关系:(1)三角形的任意两边之和大于第三边。
(2)三角形的任意两边之差小于第三边。
(3)作用:①判断三条已知线段能否组成三角形②当已知两边时,可确定第三边的范围。
③证明线段不等关系。
4、三角形的内角的关系:(1)三角形三个内角和等于180°。
(2)直角三角形的两个锐角互余。
5、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。
6、三角形的分类:(1)三角形按边分类:不等边三角形三角形等腰三角形底和腰不相等的等腰三角形等边三角形(2)三角形按角分类:直角三角形(有一个角为直角的三角形)锐角三角形(三个角都是锐角的三角形)钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。
它是两条直角边相等的直角三角形。
7、三角形的三种重要线段:(1)三角形的角平分线:定义:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
性质:三角形的三条角平分线交于一点。
交点在三角形的内部。
(2)三角形的中线:定义:在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
性质:三角形的三条中线交于一点,交点在三角形的内部。
(3)三角形的高线:定义:从三角形一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
BC三角形知识点归纳、典型练习题及考点分析一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形 要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示通常用三个大写字母表示三角形的顶点,如用A 、B 、C 表示三角形的三个顶点时,此三角形可记作△ABC ,其中线段AB 、BC 、AC 是三角形的三条边,∠A 、∠B 、∠C 分别表示三角形的三个内角.3.三角形中的三种重要线段三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:①三角形的角平分线是一条线段,可以度量,而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点,这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画.(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. 注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.练习题:1、图中共有( A :5 B :6 C :7 D :82、如图,AE ⊥BC ,BF ⊥AC ,CD ⊥AB ,则△ABC 中AC 边上的高是( ) A :AE B :CD C :BF D :AF 3、三角形一边上的高( )。
A :必在三角形内部B :必在三角形的边上C :必在三角形外部D :以上三种情况都有可能 4、能将三角形的面积分成相等的两部分的是( )。