解析:由题图可知 T=
所以
||
- = (T 为 f(x)的最小正周期),即 T=π,
=π,即ω=±2,又ω>0,故 f(x)=2cos(2x+ ).
点( ,0)可看作“五点法”中的第二个点,故 2× + = ,得 =- ,
则 f(x)=2cos(2x-),所以 f()=2cos(2×-)=- .
t=+2kπ或 t= +2kπ,k∈Z,
由题图可知,ωx2+ -(ωx1+ )= -= ,
即ω(x2-x1)= ,所以ω=4.
因为 f( )=sin( + )=0,所以 + =2kπ,k∈Z,即 =- +2kπ,
[课程标准要求]
1.了解函数y=Asin(ωx+ )的物理意义,能画出y=Asin(ωx+ )
的图象,了解参数A,ω, 对函数图象变化的影响.2.会用三角函
数解决一些简单的实际问题,体会三角函数是描述周期变化现象的
重要函数模型.
积累·必备知识
回顾教材,夯实四基
1.y=Asin(ωx+ )的有关概念
√
D.0,,,,
解析:令x 依次等于 0,,π, ,2π,得 x 依次为 0,π,2π,3π,4π.
故选 C.
3.(必修第一册 P239 练习 T2 改编)为了得到函数 y=sin(x-)的图象,只要把