高考理科数学第二轮总复习课件 (4)
- 格式:ppt
- 大小:1.03 MB
- 文档页数:27
第3讲立体几何中的向量方法[真题再现]1.(2018·课标Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC使点C到达点P的位置,且PF⊥BF。
(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.[解](1)证明:由已知可得BF⊥PF,BF⊥EF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD。
(2)解:如图,作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD。
以H为坐标原点,错误!的方向为y轴正方向,|错误!|为单位长,建立如图所示的空间直角坐标系H.xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=错误!.又PF=1,EF=2,所以PE⊥PF.所以PH=错误!,EH=错误!.则H(0,0,0),P错误!,D错误!,错误!=错误!,错误!=错误!.又错误!为平面ABFD的法向量,设DP与平面ABFD所成角为θ,则sin θ=错误!=错误!=错误!。
所以DP与平面ABFD所成角的正弦值为错误!.2.(2018·课标Ⅱ)如图,在三棱锥P-ABC中,AB=BC=22,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M。
P A-C为30°,求PC与平面P AM所成角的正弦值[解](1)证明:因为P A=PC=AC=4,O为AC的中点,所以OP⊥AC,且OP=2错误!.如图,连接OB.因为AB=BC=错误!AC,所以△ABC为等腰直角三角形,且OB ⊥AC,OB=错误!AC=2。
由OP2+OB2=PB2知PO⊥OB.由OP⊥OB,OP⊥AC,OB∩AC=O,得PO⊥平面ABC.(2)解:如图,以O为坐标原点,错误!的方向为x轴正方向,建立空间直角坐标系O。
xyz。
由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,2错误!),错误!=(0,2,2错误!).取平面P AC的一个法向量错误!=(2,0,0).设M (a ,2-a,0)(0≤a ≤2),则错误!=(a ,4-a,0).设平面P AM 的法向量为n =(x ,y ,z ).由AP ,→·n =0,错误!·n =0得错误!可取y =错误!a ,得平面P AM 的一个法向量为n =(错误!(a -4),错误!a ,-a ),所以cos 错误!,n =错误!。
第4讲 概 率考情解读 (1)选择、填空题中常考古典概型和几何概型的基本应用,难度较小.(2)解答题中常将古典概型与概率的基本性质相结合,侧重考查逻辑思维能力,知识的综合应用能力.1.概率的五个基本性质 (1)随机事件的概率:0≤P (A )≤1. (2)必然事件的概率是1. (3)不可能事件的概率是0.(4)若事件A ,B 互斥,则P (A ∪B )=P (A )+P (B ).(5)若事件A ,B 对立,则P (A ∪B )=P (A )+P (B )=1,P (A )=1-P (B ). 2.两种常见的概率模型 (1)古典概型①特点:有限性,等可能性.②概率公式:P (A )=事件A 中所含的基本事件数试验的基本事件总数.(2)几何概型①特点:无限性,等可能性. ②P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).热点一 古典概型例1 (2013·山东)某小组共有A ,B ,C ,D ,E 五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:A B C D E 身高 1.69 1.73 1.75 1.79 1.82 体重指标19.225.118.523.320.9(1)从该小组身高低于1.80的同学中任选2人,求选到的2人身高都在1.78以下的概率; (2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.思维启迪 列举选法的所有情况,统计符合条件的方法数,然后使用古典概型的概率公式. 解 (1)从身高低于1.80的4名同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B ),(A ,C ),(A ,D ),(B ,C ),(B ,D ),(C ,D )共6个.设“选到的2人身高都在1.78以下”为事件M ,其包括的事件有3个,故P (M )=36=12.(2)从小组5名同学中任选2人,其一切可能的结果组成的基本事件有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10个.设“选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)”为事件N ,且事件N 包括事件有:(C ,D ),(C ,E ),(D ,E )共3个.则P (N )=310.思维升华 求古典概型概率的步骤(1)反复阅读题目,收集题目中的各种信息,理解题意; (2)判断试验是否为古典概型,并用字母表示所求事件;(3)利用列举法求出总的基本事件的个数n 及事件A 中包含的基本事件的个数m ;(4)计算事件A 的概率P (A )=mn.(1)一个口袋中有红球3个,白球4个.从中不放回地摸球,每次摸2个,摸到的2个球中至少有1个红球则中奖,则摸2次恰好第2次中奖的概率为________.答案 935解析 设“摸2次恰好第2次中奖”为事件A ,则P (A )=C 24(C 23+C 13C 12)C 27C 25=935, 所以,摸2次恰好第2次中奖的概率为935.(2)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中a ,b ∈{1,2,3,4,5,6},若|a -b |≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( ) A.1136 B.518 C.16 D.49 答案 D解析 根据题目条件知所有的数组(a ,b )共有62=36组,而满足条件|a -b |≤1的数组(a ,b )有:(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,2),(2,1),(2,3),(3,2),(3,4),(4,3),(4,5),(5,4),(5,6),(6,5),共有16组,根据古典概型的概率公式知所求的概率为P =1636=49.故选D.热点二 几何概型例2 (1)(2014·湖南)在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为( ) A.45 B.35 C.25 D.15(2)(2013·四川)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) A.14 B.12 C.34 D.78思维启迪 (1)几何概型,试验结果构成的区域长度;(2)几何概型,试验结果构成的区域为面积.答案 (1)B (2)C解析 (1)在区间[-2,3]上随机选取一个数X ,则X ≤1,即-2≤X ≤1的概率为p =35.(2) 如图所示,设在通电后的4秒钟内,甲串彩灯、乙串彩灯第一次亮的时刻为x 、y ,x 、y 相互独立,由题意可知⎩⎪⎨⎪⎧0≤x ≤40≤y ≤4|x -y |≤2,所以两串彩灯第一次亮的时间相差不超过2秒的概率为P (|x -y |≤2)=S 正方形-2S △ABC S 正方形=4×4-2×12×2×24×4=1216=34.思维升华 当试验的结果构成的区域为长度、面积、体积、弧长、夹角等时,应考虑使用几何概型求解;利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(1)在区间[-3,3]上随机取一个数x ,使得函数f (x )=1-x +x +3-1有意义的概率为________.(2)已知P 是△ABC 所在平面内一点,PB →+PC →+2P A →=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( ) A.14 B.13 C.23 D.12答案 (1)23 (2)D解析 (1)由⎩⎪⎨⎪⎧1-x ≥0,x +3≥0,得f (x )的定义域为[-3,1],由几何概型的概率公式,得所求概率为P=1-(-3)3-(-3)=23. (2)取边BC 上的中点D ,由PB →+PC →+2P A →=0,得PB →+PC →=2AP →,而由向量的中点公式知PB →+PC →=2PD →,则有AP →=PD →,即P 为AD 的中点,则S △ABC =2S △PBC ,根据几何概率的概率公式知,所求的概率为12.热点三 互斥事件与对立事件例3 某项活动的一组志愿者全部通晓中文,并且每个志愿者还都通晓英语、日语和韩语中的一种(但无人通晓两种外语).已知从中任抽一人,其通晓中文和英语的概率为12,通晓中文和日语的概率为310.若通晓中文和韩语的人数不超过3人.(1)求这组志愿者的人数;(2)现在从这组志愿者中选出通晓英语的志愿者1名,通晓韩语的志愿者1名,若甲通晓英语,乙通晓韩语,求甲和乙不全被选中的概率.思维启迪 无人通晓两种外语说明抽1人,其通晓英语、通晓日语、通晓韩语是互斥的. 解 (1)设通晓中文和英语的人数为x ,通晓中文和日语的人数为y ,通晓中文和韩语的人数为z ,且x ,y ,z ∈N *,则⎩⎨⎧x x +y +z =12,y x +y +z =310,0<z ≤3,解得⎩⎪⎨⎪⎧x =5,y =3,z =2,所以这组志愿者的人数为5+3+2=10.(2)设通晓中文和英语的人为A 1,A 2,A 3,A 4,A 5,甲为A 1,通晓中文和韩语的人为B 1,B 2,乙为B 1,则从这组志愿者中选出通晓英语和韩语的志愿者各1名的所有情况为(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(A 5,B 1),(A 5,B 2),共10种,同时选中甲、乙的只有(A 1,B 1)1种.所以甲和乙不全被选中的概率为1-110=910.思维升华 求解互斥事件、对立事件的概率问题时,一要先利用条件判断所给的事件是互斥事件,还是对立事件;二要将所求事件的概率转化为互斥事件、对立事件的概率;三要准确利用互斥事件、对立事件的概率公式去计算所求事件的概率.(2013·江西)小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A 1、A 2、A 3、A 4、A 5、A 6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X .若X >0就去打球,若X =0就去唱歌,若X <0就去下棋.(1)写出数量积X 的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率. 解 (1)X 的所有可能取值为-2,-1,0,1. (2)数量积为-2的有OA 2→·OA 5→,共1种;数量积为-1的有OA 1→·OA 5→,OA 1→·OA 6→,OA 2→·OA 4→,OA 2→·OA 6→,OA 3→·OA 4→,OA 3→·OA 5→,共6种; 数量积为0的有OA 1→·OA 3→,OA 1→·OA 4→,OA 3→·OA 6→,OA 4→·OA 6→,共4种; 数量积为1的有OA 1→·OA 2→,OA 2→·OA 3→,OA 4→·OA 5→,OA 5→·OA 6→,共4种. 故所有可能的情况共有15种.所以小波去下棋的概率为P 1=715;因为去唱歌的概率为P 2=415,所以小波不去唱歌的概率为P =1-P 2=1-415=1115.1.互斥事件与对立事件的关系 (1)对立一定互斥,互斥未必对立;(2)可将所求事件化为互斥事件A 、B 的和,再利用公式P (A +B )=P (A )+P (B )来求,也可通过对立事件公式P (A )=1-P (A )来求P (A ). 2.古典概型与几何概型古典概型 特点 ①有限性 ②等可能性 计算公式P (A )=A 包含的基本事件个数m 总的基本事件个数n几何概型 特点①无限性 ②等可能性计算公式P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积)真题感悟1.(2014·陕西)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) A.15 B.25 C.35 D.45 答案 C解析 取两个点的所有情况为C 25=10,所有距离不小于正方形边长的情况有6种,概率为610=35.故选C. 2.(2014·福建)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.答案 0.18解析 由题意知,这是个几何概型问题, S 阴S 正=1801 000=0.18, ∵S 正=1,∴S 阴=0.18. 押题精练1.电子钟一天显示的时间是从00:00到23:59,每一时刻都由四个数字构成,则一天中任一时刻显示的四个数字之和为23的概率为( ) A.1180 B.1288 C.1360 D.1480 答案 C解析 因为时钟一分钟显示一次,故总的显示方法数为24×60=1 440(种),四个数字之和为23的有09:59,18:59,19:49,19:58四种情况,故所求概率为41 440=1360.2.如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )A .1-2πB.12-1πC.2πD.1π 答案 A 解析设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC . 不妨令OA =OB =2, 则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1, 所以整体图形中空白部分面积S 2=2.又因为S 扇形OAB =14×π×22=π,所以阴影部分面积为S 3=π-2.所以P =π-2π=1-2π.3.甲、乙、丙3位教师安排在周一至周五中的3天值班,要求每人值班1天且每天至多安排1人,则恰好甲安排在另外两位教师前面值班的概率是( ) A.13 B.23 C.34 D.35 答案 A解析 第一种情况:甲安排在第一天,则有A 24=12种;第二种情况,甲安排在第三天,则有A 23=6种;甲安排在第二天,则有A 22=2种,所以P =12+6+2A 35=13.(推荐时间:60分钟)一、选择题1.(2014·课标全国Ⅰ)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78 答案 D解析 4名同学各自在周六、周日两天中任选一天参加公益活动的情况有24=16(种),其中仅在周六(周日)参加的各有1种,∴所求概率为1-1+116=78.2.已知菱形ABCD 的边长为4,∠ABC =150°,若在菱形内任取一点,则该点到菱形的四个顶点的距离大于1的概率为( ) A.π4 B .1-π4 C.π8 D .1-π8 答案 D解析 P =4×4×sin 150°-π×124×4×sin 150°=1-π8.3.一个袋中有3个黑球,2个白球共5个大小相同的球,每次摸出一球,放进袋里再摸第二次,则两次摸出的球都是白球的概率为( )A.25B.45C.225D.425 答案 D解析 有放回地摸球,基本事件总数为25;两次都是白球所包含的基本事件为4.所以两次摸出的球都是白球的概率为425.4.若利用计算机在区间(0,1)上产生两个不等的随机数a 和b ,则方程x =22a -2bx有不等实数根的概率为( ) A.14 B.12 C.34 D.25 答案 B解析 方程x =22a -2bx,即x 2-22ax +2b =0,原方程有不等实数根,则需满足Δ=(-22a )2-4×2b >0, 即a >b.在如图所示的平面直角坐标系内,(a ,b )的所有可能结果是边长为1的正方形(不包括边界),而事件A “方程x =22a -2bx 有不等实数根”的可能结果为图中阴影部分(不包括边界).由几何概型公式可得P (A )=12×1×11×1=12.5.有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,则取出球的编号互不相同的概率为( )A.521B.27C.13D.821 答案 D解析 有编号分别为1,2,3,4,5的5个红球和5个黑球,从中随机取出4个,有C 410=210种不同的结果,由于是随机取出的,所以每个结果出现的可能性是相等的;设事件A 为“取出球的编号互不相同,”则事件A 包含了C 15·C 12·C 12·C 12·C 12=80个基本事件,所以P (A )=80210=821.6.在区间[0,2]上任取两个实数a ,b ,则函数f (x )=x 3+ax -b 在区间[-1,1]上有且仅有一个零点的概率是( ) A.18 B.14 C.34 D.78答案 D解析 因为f ′(x )=3x 2+a ,由于a ≥0,故f ′(x )≥0恒成立,故函数f (x )在[-1,1]上单调递增,故函数f (x )在区间[-1,1]上有且只有一个零点的充要条件是⎩⎪⎨⎪⎧ f (-1)≤0,f (1)≥0,即⎩⎪⎨⎪⎧a +b +1≥0,a -b +1≥0. 设点(a ,b ),则基本事件所在的区域是⎩⎪⎨⎪⎧0≤a ≤2,0≤b ≤2,画出平面区域,如图所示,根据几何概型的意义,所求的概率是以图中阴影部分的面积和以2为边长的正方形的面积的比值,这个比值是78.故选D.二、填空题7.点A 为周长等于3的圆周上的一个定点.若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为___________________________________.答案 23解析如图,设A ,M ,N 为圆周的三等分点,当B 点取在优弧MAN 上时,对劣弧AB 来说,其长度小于1,故其概率为23.8.(2013·江苏)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.答案 2063解析 P =4×57×9=2063.9.抛掷甲、乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得的数字分别为x ,y ,则xy为整数的概率是________.答案 12解析 将抛掷甲、乙两枚质地均匀的正四面体所得的数字x ,y 记作有序实数对(x ,y ),共包含16个基本事件,其中x y为整数的有 (1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,1),(4,2),共8个基本事件,故所求的概率为816=12. 10.已知区域Ω={(x ,y )|x +y ≤10,x ≥0,y ≥0},A ={(x ,y )|x -y ≥0,x ≤5,y ≥0},若向区域Ω上随机投1个点,则这个点落入区域A 的概率P (A )=________.答案 14解析 作出如图所示的可行域,易得区域Ω的面积为12×10×10=50,区域A (阴影部分)的面积为12×5×5=252.故该点落在区域A 的概率P (A )=25250=14. 三、解答题11.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).求取出的4张卡片中,含有编号为3的卡片的概率.解 设“取出的4张卡片中,含有编号为3的卡片”为事件A ,则P (A )=C12C35+C22C25C47=67. 所以,取出的4张卡片中,含有编号为3的卡片的概率为67. 12.设O 为坐标原点,点P 的坐标为(x -2,x -y ).(1)在一个盒子中,放有标号为1,2,3的三张卡片,现从此盒中有放回地先后抽到两张卡片的标号分别记为x ,y ,求|OP |的最大值,并求事件“|OP |取到最大值”的概率;(2)若利用计算机随机在[0,3]上先后取两个数分别记为x ,y ,求P 点在第一象限的概率.其中基本事件的总数为9,随机事件A 为“|OP |取到最大值”包含2个基本事件,故所求的概率为P (A )=29. (2)设事件B 为“P 点在第一象限”.若⎩⎪⎨⎪⎧0≤x ≤3,0≤y ≤3,则其所表示的区域面积为3×3=9. 由题意可得事件B 满足⎩⎪⎨⎪⎧ 0≤x ≤3,0≤y ≤3,x -2>0,x -y >0,即如图所示的阴影部分,其区域面积为1×3-12×1×1=52. 故P (B )=529=518. 13.现有8名数理化成绩优秀者,其中A 1,A 2,A 3数学成绩优秀,B 1,B 2,B 3物理成绩优秀,C 1,C 2化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛.(1)求C 1被选中的概率;(2)求A 1和B 1不全被选中的概率.解 (1)从8人中选出数学、物理、化学成绩优秀者各1名,其一切可能的结果组成的基本事件空间为Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}. 由18个基本事件组成.由于每一个基本事件被抽取的机会均等.因此这些基本事件的发生是等可能的.用M 表示“C 1恰被选中”这一事件,则M ={(A 1,B 1,C 1),(A 1,B 2,C 1),(A 1,B 3,C 1),(A 2,B 1,C 1),(A 2,B 2,C 1),(A 2,B 3,C 1),(A 3,B 1,C 1),(A 3,B 2,C 1),(A 3,B 3,C 1)}.事件M 由9个基本事件组成,因而P (M )=918=12. (2)用N 表示“A 1,B 1不全被选中”这一事件, 则其对立事件N 表示“A 1,B 1全被选中”这一事件, 由于N ={(A 1,B 1,C 1),(A 1,B 1,C 2)},事件N 由2个基本事件组成,所以P (N )=218=19. 由对立事件的概率公式得P (N )=1-P (N )=1-19=89.。