解 当a>0时,f(x)在(-1,1)上单调递减,当a<0时,f(x)在(-1,1)上单调递增.证明
如下:
(方法1 定义法)任取x1,x2∈(-1,1),且x1<x2,
因为
-1+1
1
f(x)=a(
)=a(1+ ),则
-1
-1
1
1
( 2 - 1 )
f(x1)-f(x2)=a(1+ )-a(1+ )=
(-1)-
(方法2 导数法) f'(x)=
2
(-1)
=
-
(-1)2
,所以当a>0时,f'(x)<0,当a<0
时,f'(x)>0,即当a>0时,f(x)在(-1,1)上单调递减,当a<0时,f(x)在(-1,1)上单调
递增.
解题心得1.判断函数单调性的四种方法:
(1)定义法;
(2)图像法;
3
∴f(-2)<f(- )<f(-1).故选
2
D.
f(x)在(-∞,-1]上是增函数,
3 1
4.(2020 全国 2,文 10)设函数 f(x)=x - 3 ,则 f(x)(
)
A.是奇函数,且在(0,+∞)上单调递增 B.是奇函数,且在(0,+∞)上单调递减
C.是偶函数,且在(0,+∞)上单调递增 D.是偶函数,且在(0,+∞)上单调递减
3.若f(x)满足f(-x)=f(x),且在(-∞,-1]上是增函数,则(
3
A.f(-2)<f(-1)<f(2)
3
B.f(-1)<f(-2)<f(2)