3.设集合A={x|(x-a)2<1},且2∈A,3∉A,则实数a的取值范围为
< < ,
解析:由题意得
解得
≤ 或 ≥ .
(-) ≥ ,
(-) < ,
所以 1<a≤2.
答案:(1,2]
.
反思归纳
与集合中的元素有关的解题策略
(1)用描述法表示集合,首先要搞清楚集合中的代表元素是什么,即集合是
合A∩B有且仅有2个元素,则实数a的取值范围为(
(A)(-3,+∞)
(B)(0,1]
(C)[1,+∞)
(D)[1,5)
)
解析:(2)因为集合A∩B有且仅有2个元素,所以A∩B={-3,0},即有0<a≤1.
故选B.
反思归纳
根据集合的运算结果求参数值或范围的方法
(1)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能
论正确的是(
)
(A)A∩B={x|x<0}
(B)A∪B=R
(C)A∪B={x|x>1}
(D)A∩B=⌀
解析:(2)B={x|x2-x>0}={x|x>1或x<0},则A∩B={x|x<0},A∪B={x|x>1或
x<1},对比选项知A正确.故选A.
反思归纳
集合的基本运算问题的解题策略
(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解
可能为{0},{0,-1},{0,1},{0,-1,1},共4个.故选C.
反思归纳
(1)判断集合间关系的三种方法
①列举法:根据题目中限定条件把集合元素表示出来,然后比较集合元素