第二十一章 二次根式
- 格式:doc
- 大小:1.29 MB
- 文档页数:29
1 / 11 / 1 第21章 二次根式
1. 二次根式的概念:形如 的式子叫做二次根式.
2. 二次根式的性质:
(1)=2)(a (a ≥0);(2a 0(a≥0);(3)⎪⎩
⎪⎨⎧<=>==)0___()0___()0___(____2a a a a
3. 二次根式的乘除:
计算公式:___(0,0)
___(0,0)a b a b a a b b ⎧≥≥⎪⎨=≥>⎪⎩
乘法运算:除法运算: 4. 概念: 1.2.⎧⎨⎩最简二次根式:(1) (2) (3)
同类二次根式:
5. 二次根式的加减:(一化,二找,三合并 )
(1)将每个二次根式化为最简二次根式;
(2)找出其中的同类二次根式;
(3)合并同类二次根式.
6. 二次根式化简求值步骤:(1)“一分”:分解因数(因式)、平方数(式);(2)“二移”:
根据算术平方根的概念,把根号内的平方数或者平方式移到根号外面;(3)“三化”:化去被开方数中的分母.
7. 二次根式的混合运算:
(1)二次根式的混合运算顺序与实数运算类似,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.
(2)对于二次根式混合运算,原来学过的所有运算律、运算法则及乘法公式仍然适用.
(3)在二次根式混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.。
第二十一章 二次根式知识点归纳1.定义:形如a (a ≥0)的式子叫做二次根式。
2.二次根式a 有意的条件:3.性质:(1)双重非负性:即a ≥0且a ≥0(2)⎩⎨⎧<-≥==0,0,2a a a a a a(3)2)(a =a (a ≥0)4.同类二次根:被开方数相同的二次根式最简同类二次根式:⎩⎨⎧尽的因数或因式被开方数不含开方开得或分母不含根号被开方数不含分母)(5.把根号外面的因数或因式移到根号内:()()()⎪⎩⎪⎨⎧≥<-=--=≥≥=0,00,0222b a b a b a b a b a b a b a 6.二次根式的大小比较:先把根号外的因数或因式全部移到根号内,再进行大小比较。
7.分母有理化: (1)()01>=∙=a a aa a a a(2)()()()0,0,01≠-≥≥-+=+-+=-b a b a ba ba ba ba ba b a(3)()()()0,0,01≠-≥≥--=-+-=+b a b a ba ba ba ba b a ba8.运算法则:(1)加减法则:将二次根式化成最简二次根式,再合并同类二次根式(2)乘除法则:()()⎪⎩⎪⎨⎧<≥=≥≥=∙0,00,0b a b ab a b a ab b a (3)混合运算法则。
复习题1.已知a, b, c 满足04122212=+-+++-c c c b b a ,求)(c b a +-的值。
2.已知y=32552--+-x x ,求2xy 的值。
3.已知a (a -3)≤0,若b=2-a ,求b 的取值范围。
4.已知点P (x,y )在函数x xy -+=21的图象上,那么点P 应在平面直角坐标系中的哪个像限? 5.若()a a 21122-=-,求a 的取值范围。
6.已知实数a, b, c 满足32388++-+--=--+-+c b a c b a b a b a 请问:长度分别为a, b, c 的三条线段能否构成一个三角形?若能,求出该三角形的面积。
二次根式 一、学习目标 1.掌握二次根式的基本性质:a a =2,并能对二次根式进行化简。
二、学习重点 重点:二次根式的a a =2性质.难点:综合运用性质a a =2进行化简和计算。
三、 自主预习 自学课本的内容,完成下面的题目:1.计算:=24 =22.0 =2)54( =220观察其结果与根号内幂底数的关系,归纳得到:当=>a a ,0时2.计算:=-2)4( =-2)2.0( =-2)54( =-2)20(观察其结果与根号内幂底数的关系,归纳得到:当=<a a ,0时3.计算:=20 ,那么当==a a ,0时综上所述,二次根式 练习:化简下列各式:2(1)0.3______=()2(2)0.3______-=()2(3)5_______-= 2(4)(2)_____a 0a =(<)四、 合作探究1.化简下列各式:(1))0(42≥x x (2))3()3(2≥-a a练习:化简下列各式:(1)4x (2)()232+x (x <-2)=2a五、巩固反馈 1.填空:(1)2)12(-x -2)32(-x )2(≥x =______(2)2)4(-π=(3)a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(____________。
2.把(2-x)21-x 的根号外的(2-x )适当变形后移入根号内,得( ) A 、x -2 B 、2-x C 、x --2 D 、2--x 3.已知2<x <3,化简:3)2(2-+-x x4.已知0 <x <1,化简:4)1(2+-x x -4)1(2-+x x5.边长为a 的正方形桌面,正中间有一个边长为3a 的正方形方孔.若沿图中虚线锯开,可以拼成一个新的正方形桌面.你会拼吗?试求出新的正方形边长。
第二十一章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______.2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: 149=_______;22)7(_______; 32)7(-_______;42)7(--_______; 52)7.0(_______;622])7([- _______. 二、选择题5.下列计算正确的有 .①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是 . A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是 . A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是 .A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义 1;1x -2;2x -3;12+x 4⋅+-xx2110.计算下列各式:1;)23(2 2;)1(22+a3;)43(22-⨯-4.)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是 .A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是 . A .-7B .-5C .3D .7三、解答题17.计算下列各式:1;)π14.3(2- 2;)3(22--3;])32[(21-4.)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC的c 边的长.测试2 二次根式的乘除一学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:1=⨯12172_________;2=--)84)(213(__________; 3=⨯-03.027.02___________.3.化简:1=⨯3649______;2=⨯25.081.0 ______;3=-45______. 二、选择题4.下列计算正确的是 . A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么 .A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是 . A .±3 B .3 C .-3 D .9三、解答题7.计算:1;26⨯2);33(35-⨯- 3;8223⨯4;1252735⨯ 5;131aab ⋅6;5252ac c b b a ⋅⋅7;49)7(2⨯-8;51322-9 .7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“”的运算法则为:,4@+=xy y x 则266=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:123_____32;225______34;3-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是 .A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于 . A .11- B .11C .44-D .112三、解答题14.计算:1=⋅x xy 6335_______;2=+222927b a a _______;3=⋅⋅21132212_______; 4=+⋅)123(3_______.15.若x -y +22与2-+y x 互为相反数,求x +y x的值.拓广、探究、思考16.化简:1=-+1110)12()12(________;2=-⋅+)13()13(_________.测试3 二次根式的乘除二学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:1=12______;2=x 18______;3=3548y x ______;4=xy______;5=32______;6=214______;7=+243x x ______;8=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2132与______; 232与______;3a 3与______; 423a 与______; 533a 与______. 二、选择题 3.xxx x -=-11成立的条件是 . A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是 . A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为 . A .3232 B .32321C .281D .241 三、计算题 6.1;2516 2;9723;324 4;1252755÷-5;1525 6;3366÷7;211311÷8.125.02121÷ 综合、运用、诊断一、填空题7.化简二次根式:1=⨯62________2=81_________3=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: 1=51_______2=x 2_________3=322__________4=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.结果精确到0.001 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为 . A .a =b B .ab =1 C .a =-bD .ab =-111.下列各式中,最简二次根式是 .A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:1;3b a ab ab ⨯÷ 2;3212y xy ÷3⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.1=+2271_______;2=+10111_______;3=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减一学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:1=+31312________; 2=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是 .A .10B .12C .21 D .61 4.下列说法正确的是 .A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是 . A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,a +b a的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.填“正确”或“错误” 二、选择题14.在下列二次根式中,与a 是同类二次根式的是 .A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:1判断下列各式是否成立你认为成立的,在括号内画“√”,否则画“×”.①322322=+②833833=+③15441544=+ ④24552455=+2你判断完以上各题后,发现了什么规律请用含有n 的式子将规律表示出来,并写出n 的取值范围.3请你用所学的数学知识说明你在2题中所写式子的正确性.测试5 二次根式的加减二学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:1=-+)18(50________;2=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是 . A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是 . A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于 . A .7 B .223366-+- C .1D .22336-+三、计算题能简算的要简算 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.1规定运算:ab =|a -b |,其中a ,b 为实数,则=+7)3*7(_______.2设5=a ,且b 是a 的小数部分,则=-baa ________.二、选择题14.b a -与a b -的关系是 . A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是 .A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求1x 2-xy +y 2;2x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: 125与______; 2y x 2-与______; 3mn 与______; 432+与______; 5223+与______; 63223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.精确到答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.17; 27; 37; 4-7; 5; 649.5.C . 6.B . 7.D . 8.D .9.1x ≤1;2x =0;3x 是任意实数;4x ≤1且x ≠-2.10.118;2a 2+1;3;23- 46. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.1π-3.14;2-9;3;23 436. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.1;6 224;3-.3.142;2;3.53- 4.B . 5.B . 6.B .7.1;32 245; 324; 4;53 5;3b 6;52 749; 812; 9⋅y xy 263 8..cm 62 9..72 10.210.11.1>;2>;3<. 12.B . 13.D .14.1;245y x 2;332b a + 3 ;34 49. 15.1.16.1;12- 2.2测试31.1;32 2;23x 3;342xy y x 4;xxy 5 ;36 6;223 7;32+x x 8630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.,. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.1.)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.1都画“√”;21122-=-+n nn n nn n ≥2,且n 为整数;3证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.1;22 2 .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.13;2.55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4可以按整式乘法,也可以按因式分解法.20.19; 210. 21.4.22.12; 2y x 2-; 3mn ; 432-; 5223-; 63223+答案不唯一. 23.约.。
备战中考数学(华师大版)巩固复习第二十一章二次根式(含解析)一、单选题1.下列根式中,是最简二次根式的是()A.B.C.D.2.下列二次根式中,不能与合并的是()A.B.C.D.3.下列各式中不是二次根式的是()A.B.C.D.4.下列各式中,正确的是()A.=﹣2 B.=9 C.=±3 D.±=±35.下列运算错误的是()A.÷=2B.(+ )×=2 +3C.(4 ﹣3 )÷2 =2﹣D.(+7)(﹣7)=﹣26.9的算术平方根是()A.3B.-3C.±3D.±97.下列式子为最简二次根式的是()A.B.C.D.8.下列根式中属最简二次根式的是()A.B.C.D.9.下列二次根式中属于最简二次根式的是().A.B.C.D.10.下列各式中,是最简二次根式的是()A.8B.C.D.11.有一个数值转换器,原理如下:当输入的X=64时,输出的y等于()A.2B.8C.D.二、填空题12.已知(2a+1)2+=0,则a2+b2021=________13.9的算术平方根是________14.若二次根式有意义,则m的取值范畴是________.15.化简的结果是________16.当x=-1时,二次根式的值是________.17.若二次根式在实数范畴内有意义,则x的取值范畴是_______ _.18.运算:=________19.化简的结果________20.的结果是________.21.最简根式和是同类二次根式,则a=________三、运算题22.运算(1)(2).23.运算:﹣15+(1)﹣15 +(2)÷﹣×+ .四、解答题24.求使有意义的x的取值范畴.25.运算:(1)+|3﹣|﹣()2;(2)•(﹣).五、综合题26.按要求填空:(1)填表:________(2)依照你发觉规律填空:已知:________,________;已知:,________.27.已知和,求下列各式的值:(1)x2﹣y2(2)x2+2xy+y2 .答案解析部分一、单选题1.【答案】D【考点】最简二次根式【解析】【解答】解:A、被开方数含分母,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意,故答案为:D.【分析】最简二次根式满足的条件:1、被开方数的每一个因数(或因式)的指数都小于根指数2;2、被开方数中不含有分母,被开方数是多项式时要先因式分解后再观看。
第21章二次根式课题 二次根式【学习目标】1.经历二次根式概念的发生过程; 2.了解二次根式的概念;3.理解二次根式何时有意义,何时无意义,会在简单情况下求根号内所含字母的取值范围. 【学习重点】 二次根式的概念. 【学习难点】确定二次根式中字母的取值范围.一、情景导入 生成问题根据下图所示的直角三角形、正方形和等边三角形的条件,完成以下填空:1.直角三角形的斜边长是4+a 2cm ; 2.正方形的边长是b -3cm ; 3.等边三角形的边长是2cm .二、自学互研 生成能力知识模块一 二次根式的概念与意义 阅读教材P2,完成下面的内容.1.形如a(a ≥0)的式子叫做二次根式.一定有: (1)a ≥0(a ≥0),即a(a ≥0)是一个非负数. (2)(a)2=a(a ≥0),化掉根号的方法.2.在a 中,a 的取值必须满足a ≥0,即二次根式的被开方数必须是非负数,当x ≥1时,二次根式x -1有意义.1.从形式上看,二次根式必须具备以下两个条件: (1)必须有二次根号; (2)被开方数不能小于0. 2.判断(1)a +1是二次根式.(×) (2)a +1是二次根式.(×)3.下列式子是二次根式的有:③ ①a +b ,②2a ,③a 4,④-5. 知识模块二 二次根式的性质a 2=⎩⎨⎧a (a ≥0)-a (a <0)范例1:填空22=2;0.012=0.01;(23)2=23;02=0;(-2)2=2;(-0.75)2=0.75探究:根据算术平方根、非负数的意义,我们可以得到:a2=|a|,从而我们就可以对任何形如a2的二次根式化简了.范例2:若20m是一个正整数,求正整数m的最小值.解:∵20m=2×2×5m是一个正整数,∴当m的最小正整数为5时,即2×2×5×5=(2×5)2=10.∴m的最小正整数为5.仿例:若-3≤x≤2时,试化简|x-2|+(x+3)2+x2-10x+25.解:∵-3≤x≤2,∴x-2≤0,x+3≥0,x-5<0.∴原式=|x-2|+|x+3|+|x-5|=-(x-2)+(x+3)-(x-5)=-x+2+x+3-x+5=-x+10.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一二次根式的概念与意义知识模块二二次根式的性质二次根式共有三条性质:①(a)2=a(a≥0);②a2=|a|;③非负性,即a≥0(a≥0).四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:______________________________________________2.存在困惑:__________________________________________课题二次根式的乘法【学习目标】1.会进行简单的二次根式的乘法运算;2.能够利用积的算术平方根的性质进行二次根式的简单运算.【学习重点】会进行简单的二次根式的乘法运算.【学习难点】二次根式的乘法公式应用.一、情景导入生成问题现有一长方形,长为315cm,宽为212cm,这个长方形的面积是多少?根据长方形的面积公式可得:S=315×212,我们如何对它进行计算呢?二、自学互研生成能力知识模块一二次根式的乘法阅读教材P5~P7.计算:(1)4×25与4×25;(2)9×16与16×9.思考:用计算器计算:(1)2×3;(2)2×3.从中你能发现什么?这是什么道理?事实上,根据积的乘方法则,有(2×3)2=(2)2×(3)2=2×3,并且2×3>0.所以2×3是2×3的算术平方根,即2×3=2×3.一般地,有a·b=ab(a≥0,b≥0).这就是说,两个算术平方根的积,等于它们被开方数的积的算术平方根.注意,在上式中,a、b都表示非负数.在本章中,如果没有特别说明,字母都表示正数.范例:计算:(1)7×6;(2)12×32.解:(1)7×6=7×6=42.(2)12×32=12×32=16=4.仿例:计算:(1)5×3;(2)32×2;(3)(-26)×31 2.解:(1)15;(2)8;(3)-6 3.知识模块二积的算术平方根归纳:积的算术平方根法则用字母表示为:a×b=a×b(a≥0,b≥0).用语言表达就是:积的算术平方根,等于各因式算术平方根的积.我们通常用它对二次根式进行化简.范例:化简12,使被开方数不含完全平方的因数.解:12=22×3=22×3=2 3仿例1:计算下列各式,并将所得的结果化简:(1)3×6;(2)5·15.解:(1)原式=18=32×2=32×2=3 2.(2)原式=5×15=52×3=52×3=5 3仿例2:现有一长方形的长为315cm,宽为212cm,这个长方形的面积是多少?解:315×212=3×2×15×12=6180=365(cm2)答:这个长方形的面积是365cm2.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一二次根式的乘法知识模块二积的算术平方根仿例:(方法二)解:(1)原式=3×3×2=3 2(2)原式=5·5·3=5 3.四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:_____________________________________________2.存在困惑:_________________________________________课题二次根式的除法【学习目标】1.会利用二次根式的除法法则进行二次根式的除法运算,会运用商的算术平方根的性质化简二次根式;2.经历探索二次根式除法以及商的算术平方根的过程,掌握其应用方法;3.培养学生分析问题和逆向思维的能力,体会合作交流的乐趣,感悟数学的应用价值.【学习重点】利用二次根式的除法法则以及商的算术平方根性质进行简单运算和化简.【学习难点】二次根式的除法法则以及商的算术平方根性质的关系及应用.一、情景导入生成问题在△ABC中,BC边上的高h=63cm,它的面积恰好等于边长为23cm的正方形的面积,则BC的长为多少?二、自学互研生成能力知识模块一二次根式的除法阅读教材P7~P8.1.填空:(1)49=23;49=23.(2)1625=45;1625=45.(3)10036=106;10036=106.2.利用计算器计算,并用“>”“<”或“=”填空.(1)23__=__23(2)25__=__25(3)56__=__56(4)82__=__ 4归纳:二次根式除法法则:ab=ab(a≥0,b>0)用语言表述为:两个算术平方根的商,等于这两个被开方数的商的算术平方根.范例:计算:(1)153;(2)246.解:(1)153=153= 5.(2)246=246=4=2.知识模块二商的算术平方根归纳:商的算术平方根法则:商的算术平方根等于这两个数的平方根的商.用字母表示为:ab=ab(a≥0,b>0).范例:化简12,使分母中不含二次根式,并且被开方数中不含分母.解:12=12=1×22×2=222=222=22.归纳:1.化简后的二次根式被开方数中不含分母,并且被开方数中所有因数(或因式)的幂的指数都小于2,像这样的二次根式称为最简二次根式.2.要化去分母中的根号,只要将分子、分母同乘以一个恰当的二次根式就可以了.如上述“范例”,将分子、分母同乘以2,得12=1×22×2=2(2)2=22.这种化简过程叫做分母有理化.仿例:已知xy>0,化简x-y x2.解:∵-yx2≥0,x2>0,∴y≤0.∵xy>0,∴x<0,y<0,-y>0∴原式=x·-yx2=x·-y-x=--y三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一二次根式的除法范例:(方法二)解:(1)153=3·53=5;(2)246=266=2知识模块二商的算术平方根四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:_______________________________________________2.存在困惑:___________________________________________课题二次根式的加减【学习目标】1.知道什么是同类二次根式,会进行二次根式的加减法运算;2.经历探索二次根式加减的过程,掌握其计算方法;3.认识数的拓展过程,感受事物的演绎过程,培养乐学、会学的思想.【学习重点】二次根式的加减法.【学习难点】如何进行二次根式的加减法.一、情景导入生成问题有一个矩形花圃,它的长为53米,它的宽为12米,则这个矩形的周长为2(53+12)米,这个式子还可以化简吗?二、自学互研生成能力知识模块一二次根式的加减阅读教材P10~P11的内容.计算:(1)3a-2a;(2)3a-2a+4a;(3)33-23;(4)3a-2a+4 a.归纳:1.与整式中同类相类似,我们把像3a、-2a与4a这样的几个二次根式,称为同类二次根式,33与-23也是同类二次根式.2.二次根式的加减,与整式的加减相类似,关键是将同类二次根式合并.3.判断两个二次根式是不是同类二次根式,一定要先把它化为最简二次根式,然后再观察被开方数是否相同.范例:计算:32+3-22-3 3.解:32+3-22-3 3=(32-22)+(3-33)=2-2 3. 仿例1:计算:8+18+12.解:8+18+12=22+32+23=52+2 3仿例2:计算:(1)27-12+45;(2)252+32-18.解:(1)27-12+45=33-23+35=3+3 5.(2)252+32-18=522+42-32=(52+4-3)2=72 2.知识模块二运用乘法公式复习:1.平方差公式:(a+b)(a-b)=a2-b22.完全平方公式:(a±b)2=a2±2ab+b2范例:计算:(1)(2+1)(2-1);(2)(2-1)2.解:(1)(2+1)(2-1)=(2)2-12=2-1=1.(2)(2-1)2=(2)2-2·2·1+12=3-2 2.三、交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一二次根式的加减知识模块二运用乘法公式四、检测反馈达成目标见《名师测控》学生用书.五、课后反思查漏补缺1.收获:______________________________________________2.存在困惑:__________________________________________第21章小结与复习【学习目标】1.理解二次根式的意义,会化简二次根式,会进行二次根式的乘除、加减混合运算;2.经历探究二次根式概念及运算的过程,体会二次根式的解题方法,在多解中进行比较,寻求有效快捷的计算方法;3.培养学生良好的运算习惯和不懈的探索精神. 【学习重点】二次根式的化简以及运算. 【学习难点】二次根式性质、法则的正确使用.一、情景导入 生成问题二、自学互研 生成能力知识模块一 二次根式1.定义:形如a(a ≥0)的式子叫__二次根式__,其中a 叫__被开方数__,只有当a 是一个非负a 才有意义.典例1:下列各式中不是二次根式的为( B )A .b 2+1B .aC .0D .(a -b )2 2.二次根式的性质: (1)(a)2(a ≥0)=a ;(2)a 2=|a|=⎩⎨⎧a (a >0)0(a =0)-a (a <0);(3)ab =a·b(a ≥0,b ≥0); (4)a b =a b(a ≥0,b >0). 典例2:当__a ≤0__时||a -a 2=-2a.知识模块二 二次根式的运算1.二次根式的乘法:a·b =ab(a ≥0,b ≥0) 典例3:若把根号外的因式移到根号内,则化简a -1a =__--a__.2.二次根式的除法:a b=ab (a ≥0,b >0)典例4:计算:3223×(-1815)÷1225.解:原式=-152注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式.3.二次根式的加减:需要把二次根式化简,然后把被开方数相同的二次根式(即同类二次根式)的系数相加减,被开方数不变.注意:对于二次根式的加减,关键是合并同类二次根式,通常是先化成最简二次根式,再把同类二次根式合并.但在化简二次根式时,二次根式的被开方数应不含分母,不含开得尽方的因数.典例5:计算:12-13-38+|2-3| 解:原式=23 34.二次根式的混合运算:先乘方(或开方),再乘除,最后加减,有括号的先算括号里面的;能利用运算律或乘法公式进行运算的,可适当改变运算顺序进行简便运算.注意:进行根式运算时,要正确运用运算法则和乘法公式,分析题目特点,掌握方法与技巧,以便使运算过程简便.二次根式运算结果应尽可能化简.另外,根式的分数必须写成假分数或真分数,不能写成带分数.例如1722不能写成812 2.典例6:已知x =1-2,y =1+2,求x 2+y 2-xy -2x +2y 的值. 解:原式=7+4 2.三、交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 二次根式 知识模块二 二次根式的运算四、检测反馈 达成目标见《名师测控》学生用书.五、课后反思 查漏补缺1.收获:________________________________________________ 2.存在困惑:____________________________________________。
第二十一章 二次根式21.1 二次根式(1)学习要求:了解二次根式的概念,会求二次根式中被开方式所含字母的取值范围. 做一做: 填空题: 1.要使根式3-x 有意义,则字母x 的取值范围是______.2.当x ______时,式子121-x 有意义.3.要使根式234+-x x有意义,则字母x 的取值范围是______. 4.若14+a 有意义,则a 能取得的最小整数值是______. 5.若x x -+有意义,则=+1x ______.6.使等式032=-⋅+x x 成立的x 的值为______.7.一只蚂蚁沿图1中所示的折线由A 点爬到了C 点,则蚂蚁一共爬行了______cm .(图中小方格边长代表1cm)图1选择题:8.使式子23+x 有意义的实数x 的取值范围是( ) (A)x ≥0(B)32->x (C)23-≥x (D)32-≥x9.使式子2||1+-x x 有意义的实数x 的取值范围是( )(A)x ≥1 (B)x >1且x ≠-2 (C)x ≠-2 (D)x ≥1且x ≠-210.x 为实数,下列式子一定有意义的是( )(A)21x(B)x x +2(C)112-x (D)12+x11.有一个长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根细木条(木条的粗细、形变忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是( )(A)cm 41 (B)cm 34 (C)cm 25 (D)cm 3512.如图2,点E 、F 、G 、H 、I 、J 、K 、N 分别是正方形各边的三等分点,要使中间阴影部分的面积是5,那么大正方形的边长应是( )图2(A)525(B)53 (C)25 (D)54解答题13.要使下列式子有意义,字母x 的取值必须满足什么条件?(1)1||21--x x (2)x+--21 (3)232+x (4)xx 2)1(- (5)222++x x14.如图3,在6×6的网格(小正方形的边长为1)中有一个△ABC ,请你求出这个△ABC 的周长.图315.一个圆的半径为1 cm ,和它等面积的正方形的边长是多少?16.有一块面积为(2a +b )2π的圆形木板,挖去一个圆后剩下的木板的面积是(2a -b )2π,问所挖去的圆的半径多少?17.(1)已知05|3|=-++y x ,求yx 的值;(2)已知01442=+++++y x y y ,求yx的值.18.2006年黄城市全年完成国内生产总值264亿元,比2005年增长23%,问:(1)2005年黄城市全年完成国内生产总值是多少亿元(精确到1亿元)?(2)预计黄城市2008年国内生产总值可达到386.5224亿元,那么2006年到2008年平均年增长率是多少?(下列数据供计算时选用22.14884.1,21.14641.1==).问题探究:已知实数x 、y 满足324422+--+-=x xx y ,求9x +8y 的值.21.1 二次根式(2)学习要求:掌握二次根式的三个性质:a ≥0(a ≥0);(a )2=a (a ≥0);||2a a =. 做一做: 填空题: 1.当a ≥0时,=2a______;当a <0时,2a=______.2.当a ≤0时,=23a ______;=-2)23(______.3.已知2<x <5,化简=-+-22)5()2(x x ______.4.实数a 在数轴上的位置如图所示,化简:=-+-2)2(|1|a a ______.5.已知△ABC 的三边分别为a 、b 、c 则=+----||)(2c a b c b a ______. 6.若22)()(y x y x -=-,则x 、y 应满足的条件是______.7.若0)2(|4|2=-+++x y x ,则3x +2y =______. 8.直线y =mx +n 如图4所示,化简:|m -n |-2m =______.图49.请你观察、思考下列计算过程:因为112=121,所以11121=,同样,因为1112=12321,所以=12321111,……由此猜想=76543211234567898______.选择题:10.36的平方根是( )(A)6 (B)±6(C)6 (D)±611.化简2)2(-的结果是( )(A)-2 (B)±2 (C)2 (D)412.下列式子中,不成立的是( )(A)6)6(2= (B)6)6(2=--(C)6)6(2=-(D)6)6(2-=--13.代数式)0(2=/a aa 的值是( )(A)1(B)-1(C)±1(D)1(a >0时)或-1(a <0时)14.已知x <2,化简442+-x x 的结果是( )(A)x -2(B)x +2 (C)-x +2 (D)2-x15.如果2)2(2-=-x x ,那么x 的取值范围是( )(A)x ≤2 (B)x <2 (C)x ≥2 (D)x >216.若a a-=2,则数a 在数轴上对应的点的位置应是( )(A)原点(B)原点及原点右侧 (C)原点及原点左侧(D)任意点17.若数轴上表示数x 的点在原点的左边,则化简|3|2xx +的结果是( )(A)4x(B)-4x(C)2x(D)-2x18.不用计算器,估计13的大致范围是( )(A)1<13<2 (B)2<13<3 (C)3<13<4 (D)4<13<519.某同学在现代信息技术课学了编程后,写出了一个关于实数运算的程序:输入一个数值后,屏幕输出的结果总比该数的平方小1,若某同学输入7后,把屏幕输出的结果再次输入,则最后屏幕输出的结果是( ) (A)6(B)8(C)35(D)37解答题: 20.计算:(1);)12(|3|)2(02---+- (2)⋅-+-|21|2)3(0221.化简:(1));1()2()1(22>++-x x x(2).||2)(2x y y x ---22.已知实数x ,y 满足04|5|=++-y x ,求代数式(x +y )2007的值.23.已知x x y y x =-+-+7135,求2)3(|1|-+-y x 的值.24.在实数范围内分解因式:(1)x 4-9; (2)3x 3-6x ; (3)8a -4a 3; (4)3x 2-5.25.阅读下面的文字后,回答问题:小明和小芳解答题目:先化简下式,再求值:221a a a +-+,其中a =9时,得出了不同的答案.小明的解答是:原式=1)1()1(2=-+=-+a a a a ;小芳的解答是:原式=1719212)1()1(2=-⨯=-=--=-+a a a a a .(1)______的解答是错误的;(2)说明错误的原因.26.细心观察图5,认真分析各式,然后解决问题.图5;21,21)1(12==+S ;22,31)2(22==+S ;23,41)3(32==+S …… ……(1)请用含有n (n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出21024232221S S S S S +++++ 的值.27.一物体从高处自由落下,落到地面所用的时间t (单位:秒)与开始落下时的高度h (单位:米)有下面的关系式:⋅≈5h t(1)已知h =100米,求落下所用的时间t ;(结果精确到0.01)(2)一人手持一物体从五楼让它自由落到地面,约需多少时间?(每层楼高约3.5米,手拿物体高为1.5米)(结果精确到0.01) (3)如果一物体落地的时间为3.6秒,求物体开始下落时的高度.问题探究:同学们一定听过蚂蚁和大象进行举重比赛的故事吧!蚂蚁能举起比它的体重重许多倍的火柴棒,而大象举起的却是比自己体重轻许多倍的一截圆木,结果蚂蚁获得了举重冠军!我们这里谈论的话题是:蚂蚁和大象一样重吗?我们知道,即使是最大的蚂蚁与最小的大象,它们的重量明显不是一个数量级的.但是下面的推导却让你大吃一惊:蚂蚁和大象一样重!设蚂蚁重量为x 克,大象的重量为y 克,它们的重量和为2a 克,则x +y =2a . 两边同乘以(x -y ),得(x +y )(x -y )=2a (x -y ),即x 2-y 2=2ax -2ay .可变形为x 2-2ax =y 2-2ay . 两边都加上a 2,得(x -a )2=(y -a )2. 两边开平方,得x -a =y -a .所以x =y .这里竟然得出了蚂蚁和大象一样重,岂不荒唐!那么毛病究竟出在哪里呢?亲爱的同学,你能找出来吗?21.2 二次根式的乘除(1)学习要求:理解二次根式的乘法法则,即)0,0(≥≥=⋅b a ab b a 的合理性,会运用法则进行计算,并会逆用乘法法则对二次根式进行化简.做一做:填空题: 1.计算:ab a ⋅=______.2.已知xy <0,则=y x 2______.3.实数a ,b 在数轴上的位置如图所示,则化简22b a 的结果是______.4.若,6)4()4)(6(2x x x x --=--则x 的取值范围是______.5.在如图的数轴上,用点A 大致表示40:6.观察分析下列数据,寻找规律:0,3,6,3,23,15,23,……那么第10个数据应是______. 选择题:7.化简20的结果是( ) (A)25(B)52 (C)102 (D)548.化简5x -的结果是( )(A)x x2- (B)x x--2(C)x x-2(D)x x29.若a ≤0,则3)1(a -化简后为( ) (A)1)1(--a a (B)a a --1)1( (C)a a --1)1((D)1)1(--a a解答题: 10.计算:(1);63⨯ (2));7(21-⨯ (3));102(53-⨯(4));804()245(-⨯- (5));25.22(321-⨯(6);656)3122(43⨯-⨯ (7));152245(522-⨯(8);24)654(⨯- (9));3223)(3223(-+(10));23)(32(x y y x -+ (11);)10253(2+ (12);10253ab a ⋅(13));42(2212mn m m +-⋅(14))12()321(123143z xy x x ⋅-⋅⋅.11.化简:(1));0(224≥-a b a a (2)⋅≥≥+-)0(23223a b ab b a b a12.计算:(1)|;911|)1π(8302+-+--+-(2).425.060sin 12)21(20082008o 2⨯---13.如图1,在△ABC 中,∠C =90°,∠A =30°,∠B 的平分线BD 的长为4cm ,求这个三角形的三边长及面积.图1问题探究:在劳技课上,老师请同学们在一张长为17cm ,宽为16cm 的长方形纸板上,剪下一个腰长为10cm 的等腰三角形(要求等腰三角形的一个顶点与长方形的一个顶点重合,其余两个顶点在长方形的边上).请你帮助同学们计算剪下的等腰三角形的面积.21.2 二次根式的乘除(2)学习要求:理解二次根式除法运算法则,即ba b a =(a ≥0,b >0)的合理性,会运用法则进行计算,了解最简二次根式的概念,会逆用除法法则对二次根式进行化简,掌握类比学习的方法.做一做:填空题: 1.在4,21,8,6中,是最简二次根式的是______.2.某精密仪器的一个零件上有一个矩形的孔,其面积是42cm 2,它的长为5cm ,则这个孔的宽为______cm . 3.2-3的倒数是______,65+的倒数是______.4.使式子3333+-=+-x x x x 成立的条件是______.选择题:5.下列各式的计算中,最简二次根式是( ) (A)27(B)14(C)a1 (D)23a6.下列根式xy y x xy 53,,21,12,2+中最简二次根式的个数是( )(A)1个 (B)2个(C)3个 (D)4个7.化简273-的结果是( )(A)27- (B)27+ (C))27(3- (D))27(3+8.在化简253-时,甲的解法是:,25)25)(25()25(3253+=+-+=-乙的解法是:,2525)25)(25(253+=--+=-以下判断正确的是( )(A)甲的解法正确,乙的解法不正确 (B)甲的解法不正确,乙的解法正确 (C)甲、乙的解法都正确(D)甲、乙的解法都不正确9.△ABC 的三边长分别为2、10、2,△A ′B ′C ′的两边长分别为1和5,若△ABC ~△A 'B 'C ',则△A 'B 'C '的第三边的长应等于( ) (A)22(B)2 (C)2 (D)2210.如图1,为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 的仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于( )图1(A)m )13(6+ (B)m )13(6- (C)m )13(12+(D)m )13(12-11.计算)(ba ab ab ba ÷的正确结果是( )(A)ba (B)ab(C)22ba(D)112.若ab ≠0,则等式aba ba135-⋅=--成立的条件是( ) (A)a >0,b >0 (B)a <0,b >0(C)a >0,b <0(D)a <0,b <0解答题: 13.计算:(1);51(2);208 (3);2814 (4);5)12(÷-(5));74(142-÷ (6));452()403(-÷-(7));6121(211-÷ (8);1543513÷- (9);45332b a b a ÷(10));6(322344cb ac b a -÷ (11);152)1021(23÷⨯(12);521431252313⨯÷(13);653034y xy xy ⋅÷(14);3)23(235ab b a abb÷-⋅ (15));1843(3211233xyxyx-÷⋅(16)⋅-÷+)2332()2332(14.已知一个圆的半径是cm,90一个矩形的长是135πcm ,若该圆的面积与矩形的面积相等,求矩形的宽是多少?15.已知b a ==20,2,用含a ,b 的代数式表示:(1);5.12(2).016.016.已知:如图2,在△ABC 中,∠A =60°,∠B =45°,AB =8.求△ABC 的面积.图217.阅读下列解题过程,根据要求回答问题:化简:)0(2323<<+--a b aba ab b ab a解:原式ab a b ab a 2)(--=①ab ab a b a --=)( ②ab aa )1(⋅=③ ab =④(1)上面解答过程是否正确?若不正确,请指出是哪几步出现了错误? (2)请你写出你认为正确的解答过程.18.座钟的摆针摆动一个来回所需的时间称为一个周期,其计算公式是gl T π2=,其中T表示周期(单位:秒),l 表示摆长(单位:米),g =9.8米/秒2,假若一台座钟的摆长为0.5米,它每摆动一个来回发出一次滴答声,那么在1分钟内这台座钟大约发出了多少次滴答声?(π取3.14)问题探究:借助计算器计算下列各题:(1);211- (2);221111- (3);222111111- (4).222211111111-仔细观察上面几道题及其计算结果,你能发现什么规律?你能解释这一规律吗?与同学交流一下想法.并用所发现的规律直接写出下面的结果:个个10012002222111⋅⋅⋅-⋅⋅⋅=______.21.3 二次根式的加减(1)学习要求:了解同类二次根式的概念,会辨别两个二次根式是否为同类二次根式.会进行简单的二次根式的加、减法运算,体会化归的思想方法.做一做: 填空题: 1.计算:=+28______.2.写出两个与2ab 是同类二次根式的根式:______.3.若最简二次根式123+x 与13-x 是同类二次根式,则x =______. 4.若最简二次根式b a +3与ba b 2+是同类二次根式,则a =______,b =______.5.计算:=+++-8)3321(|2|0______.6.三角形的三边长分别为cm 20、cm 40、cm 45,这个三角形的周长是______cm .选择题: 7.计算312-的结果是( )(A)3(B)3 (C)32 (D)338.下列二次根式中,属于最简二次根式的是( ) (A)a 4(B)4a (C)4a(D)4a9.下列二次根式中,与2是同类二次根式的是( ) (A)27(B)12(C)10(D)810.在下列各组根式中,是同类二次根式的是( )(A)3和18(B)3和31 (C)b a 2和2ab(D)1+a 和1-a11.下列各式的计算中,成立的是( )(A)5252=+(B)15354=- (C)y x y x +=+22(D)52045=-12.若121,121+=-=b a 则)(ab ba ab -的值为( )(A)2 (B)-2 (C)2 (D)22解答题: 13.计算:(1);2523+ (2);188+ (3);50483122+-(4);312712-+ (5);202452321+-(6);12531110845--+ (7);)33()33(22++-(8);5.0753128132-+--(9))455112()3127(+--+;(10)231)13(3-++; (11)a a a aaaa1084333273123-+-;问题探究教师节到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画送给老师,其中一个面积为800cm 2,另一个面积为450cm 2.他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2米金彩带,请你帮忙算一算,他的金彩带够用吗?如果不够用,还需买多长的金彩带?(2=1.414,保留整数)21.3 二次根式的加减(2)学习要求会进行简单的二次根式的加、减、乘、除四则运算的混合运算. 做一做: 填空题:1.若最简根式12-a 与43-a 是同类二次根式,则a =______.2.计算:=+-⨯--++-|31|3)1π(27202______.3.计算:=+--22)3553()3553(______.4.计算:=-+-+814121218______.5.若y <0,则=-33xy y x ______.6.化简:=-+x xx xx 5022322123______.7.已知a +b =-8,ab =8,化简=+ba aab b ______.8.一青蛙在如图1的8×8的正方形(每个小正方形的边长为1)网格的格点(小正方形的顶点)上跳跃,青蛙每次所跳的最远距离为5,青蛙从点A 开始连续跳六次正好跳回到点A ,则所构成的封闭图形的面积的最大值是______.图1选择题:9.在二次根式16,8,4,2中同类二次根式的个数为( ) (A)4 (B)3 (C)2 (D)110.下列计算中正确的是( )(A)2323182=⨯=(B)134916916=-=-=-(C)24312312===(D)a a 242=11.下列各组式子中,不是同类二次根式的是( )(A)81与18 (B)63与2825 (C)48与8.4 (D)125.0与12812.化简)22(28+-得( )(A)-2(B)22- (C)2 (D)224-13.下列计算中,正确的是( )(A)562432=+ (B)3327=÷(C)632333=⨯(D)3)3(2-=-14.下列计算中,正确的是( )(A)14931227=-=- (B)1)52)(52(=+-(C)23226=-(D)228=-15.化简aaa aa a 149164212-+的值必定是( )(A)正数(B)负数 (C)非正数(D)非负数16.若a ,b 为实数且211441+-+-=a ab ,则22-+-++ba ab ba ab 的值为( )(A)22 (B)2 (C)22- (D)32解答题: 17.计算:(1))232)(232(-+; (2)2)32(+; (3)2145051183-+;(4);7232318283--+ (5)23)121543(÷-;(6)20072006)65()56()1245()31251(-⋅+++--;(7)33322)1(2mn m nmnm mn ÷-.18.如图2,大正方形的边长为515+,小正方形的边长为515-,求图中的阴影部分的面积.图219.阅读下面的解答过程,然后答题:已知a 为实数,化简aa a 13---.解:原式.)1(1a a a aa a a --=-⋅--=(1)上述解答是否有错误?答:____________;(2)若有错误,错在______步,错误的原因是____________; (3)写出正确的解答过程.20.阅读理解题:如果按一定次序排列的三个数a ,A ,b 满足A -a =b -A ,即,2b a A +=则称A 为a ,b 的等差中项.如果按一定次序排列的三个数a ,G ,b 满足,G b a G =即G 2=ab (a ,b 同号),则称G 为a ,b 的等比中项.根据前面给出的概念,求25-和25+的等差中项和等比中项.问题探究:因为223)12(2-=-,所以,12223-=- 因为223)12(2+=+,所以,12223+=+因为347)32(2-=-,所以,32347-=-请你根据以上规律,结合你的经验化简下列各式: (1)625-; (2)⋅+249复 习学习要求:了解二次根式的概念及其加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算和化简.做一做: 填空题: 1.在函数52-=x x y 中,自变量x 的取值范围是______.2.当x >2时,化简=-2)2(x ______. 3.若数P 在数轴上如图所示,则化简=-+-22)2()1(P P ______.4.已知x x -+-11有意义,则x 的平方根为______.5.当二次根式x 32-有意义时,y =|3x -1|的最小值是______.6.若x <0,则=-xy xxy y31______.7.若最简二次根式83-a 与a 217-是同类二次根式,则a =______. 8.当31≤a 时,化简|13|9612-++-a a a 的结果是______.9.若0966|2|2=+-+-+-z zy x ,则=⋅⋅z y x ______.选择题: 10.使根式xx 1+有意义的字母x 的取值范围是( ) (A)x >-1 (B)x <-1 (C)x ≥-1且x ≠0(D)x ≥-111.已知a <0<b ,化简2)(b a -的结果是( )(A)a -b (B)b -a(C)a +b (D)-a -b12.在32,9,,,45222xa y x x y +-中,最简二次根式的个数是( ) (A)1(B)2 (C)3 (D)413.下列二次根式中,与35-是同类二次根式的是( )(A)18 (B)3.0 (C)30 (D)30014.计算28-的结果是( )(A)6(B)2 (C)2 (D)1.415.估算37(误差小于0.1)的大小是( )(A)6(B)6.0~6.1(C)6.3(D)6.816.下列运算正确的是( )(A)171251251252222=+=+=+(B)1234949=-=-=-(C)20)4()5(1625)16()25(=-⨯-=-⨯-=-⨯-(D)1535)3()5(22=⨯=-⨯- 17.下列运算中,错误..的是( ) (A)632=⨯(B)2221=(C)252322=+(D)32)32(2-=-18.若把aa 1-的根号外的a 适当变形后移入根号内,结果是( )(A)a -- (B)a - (C)a - (D)a19.小明的作业本上有以下四题:①24416a a =; ②a a a 25105=⋅; ③;1.12a aa a a==④.23a a a =-做错的题是( ) (A)① (B)②(C)③ (D)④20.若)()()(22m n m n n a a m >-=-+-成立,则a 的取值范围是( )(A)m ≤a ≤n (B)a ≥n 且a ≤m (C)a ≤m (D)a ≥n21.用计算器计算,1515,1414,1313,12122222--------…,根据你发现的规律,判断P =112--n n ,与1)1(1)1(2-+-+=n n Q ,(n 为大于1的整数)的值的大小关系为( )(A)P <Q (B)P =Q (C)P >Q (D)不能确定解答题: 22.计算:(1);483122+ (2);7002871-+ (3);8121332+-(4))56()56(+⨯-; (5)2)2332(-; (6)25)520(-÷+;(7)mmm mm m m 3361082273223-+-; (8).123132+++23.(1)当a <0时,化简aa a a -+-2212;(2)已知x 满足的条件为⎩⎨⎧<->+0301x x ,化简;129622++++-x x x x(3)实数a ,b 在数轴上表示如图,化简:.)()2()2(222b a b a ++--+24.(1)当a =5+1,b =5-1时,求a 2b +ab 2的值;(2)当41=x ,y =0.81时,求31441yyx y xx---的值.(3)已知154-的整数部分为a ,小数部分为b ,求a 2+b 2的值.25.若12+x 与y -2互为相反数,求x y 的值.26.已知x ,y 为实数,且499+---=x x y ,求y x +的值.第二十一章 二次根式测试题填空题:(每题2分,共24分) 1.函数1-=x xy 的自变量x 的取值范围是______. 2.当x ______时,x x -+-31有意义.3.若a <0,则b a 2化简为______. 4.若3<x <4,则=-++-|4|962x x x ______.5.1112-=-⋅+x x x 成立的条件是______.6.若实数x 、y 、z 满足0412||22=+-+++-z z z y y x ,则x +y +z =______.7.长方形的面积为30,若宽为5,则长为______. 8.当x =______时,319++x 的值最小,最小值是______. 9.若代数式22)3()1(a a -+-的值是常数2,则a 的取值范围是______.10.观察下列各式:,,514513,413412,312311 =+=+=+请将猜想到的规律用含自然数n (n ≥1)的代数式表示出来是______. 11.观察下列分母有理化的计算:,4545134341,23231,12121-=+-=+-=+-=+……,从计算结果中找出规律,并利用这一规律计算: =+++++++++)12007)(200620071341231121(.______.12.已知正数a 和b ,有下列结论:(1)若a =1,b =1,则1≤ab ; (2)若25,21==b a ,则23≤ab ;(3)若a =2,b =3,则25≤ab ; (4)若a =1,b =5,则3≤ab .根据以上几个命题所提供的信息,请猜想:若a =6,b =7,则ab ≤______. 选择题:(每题2分,共24分) 13.已知xy >0,化简二次根式2xy x -的正确结果为( )(A)y (B)y - (C)y - (D)y --14.若a <0,则||2aa -的值是( )(A)0(B)-2a (C)2a (D)2a 或-2a15.下列二次根式中,最简二次根式为( )(A)x 9(B)32-x(C)xy x - (D)b a 2316.已知x 、y 为实数,且0)2(312=-+-y x ,则x -y 的值为( )(A)3(B)-3 (C)1 (D)-117.若最简二次根式b 5与b 23+是同类二次根式,则-b 的值是( )(A)0(B)1(C)-1 (D)3118.下列各式:211,121,27,其中与3是同类二次根式的个数为( )(A)0个(B)1个(C)2个(D)3个19.当1<x <3时,化简22)3()1(++-x x 的结果正确的是( )(A)4 (B)2x +2(C)-2x -2 (D)-420.不改变根式的大小,把aa --11)1(根号外的因式移入根号内,正确的是( )(A)a -1 (B)1-a (C)1--a (D)a --121.已知m ≠n ,按下列(A)(B)(C)(D)的推理步骤,最后推出的结论是m =n .其中出错的推理步骤是( )(A)∵(m -n )2=(n -m )2 (B )∴22)()(m n n m -=-(C)∴m -n =n -m(D)∴m =n22.如果a ≠0且a 、b 互为相反数,则在下列各组数中不是互为相反数的一组是( )(A)3a 与3b (B)2a与2b(C)3a 与3b (D)a +1与b -123.小华和小明计算XXX)(442a a a +-+时,得出两种不同的答案.小华正确审题,得到的答案是“2a -2”,小明忽略了算式后面括号中的条件,得到的结果是“2”,请你判断,括号中的条件是( ) (A)a <2 (B)a ≥2 (C)a ≤2 (D)a ≠2 24.已知点A (3,1),B (0,0),C (3,0),AE 平分∠BAC ,交BC 于点E ,则直线AE对应的函数表达式是( ) (A)332-=x y (B)y =x -2 (C)13-=x y (D)23-=x y解答题:(第25题每小题4分,第26-29题每题4分,第30、31题每题6分)25.计算:(1);21448)21(2+++ (2);836212739x x x ⨯+-(3));32)(32()32)(347(2-++-+(4);211)223(23822+--+⨯-(5);166193232x xxxx x +- (6)).0)](4327121(3[222≥--b a bababa26.若,03|9|22=--++mm n m 求3m +6n 的立方根.27.已知7979--=--x x x x 且x 为偶数,求132)1(22--++x x x x 的值.28.试求)364()36(3xy yx yxy yxy x+-+的值,其中23=x ,27=y .29.已知正方形纸片的面积是32cm 2,如果将这个正方形做成一个圆柱,请问这个圆柱底面的半径是多少?(精确到0.1,π取3.14)30.已知:223,223-=+=b a ,求:ab 3+a 3b 的值.31.观察下列各式及其验证过程:⋅+=+=833833;322322验证:;3221222122)12(232)12(2322232322222233+=-+=-+-=+-=+-==⋅+=-+=-+-=+-=+-==8331333133)13(383)13(3833383833222233(1)按照上述两个等式及其验证过程的基本思路,猜想一个类似的结果并验证; (2)针对上述各式反映的规律,写出用n (n 为正整数,且n ≥2)表示的等式并给出证明.参考答案第二十一章 二次根式21.1 二次根式(1)1.3≥x 2.21>x 3.34≤x 且x ≠-2 4.0 5.1 6.3 7.55+8.D 9.A 10.D 11.C 12.C 13.(1)⋅≤21x 且x ≠-1 (2)x <-2 (3)x 为任意实数 (4)x 为非零实数 (5)x 为任意实数 14.135+ 15.cm π 16.ab 22 17.53)1(-(2)-2 18.(1)215 (2)21% 问题探究:6注意x =2时要舍去21.1 二次根式(2)1.a ,-a 2.32,3--a 3.3 4.1 5.0 6.x ≥y7.-6 8.n 9.111111111 10.D 11.C 12.B 13.D 14.D 15.C 16.C 17.D 18.C 19.C 20.(1)6 (2)25 21.(1)2x +1 (2)y -x 22.1 23.2 24.(1))3)(3)(3(2-++x x x (2))2)(2(3+-x x x (3))2)(2(4a a a +- (4))53)(53(+-x x25.(1)小明 (2)因为a =9,所以1-a <0,所以1)1(2-=-a a26.(1)2,11)(2n S n n n =+=+ (2),21012110=⨯⨯OA 所以1010=OA(3)222221024232221)210()23()22()21(S S S S S ++++=++++ 434241++=455410=++27.(1)4.47秒 (2)1.76秒 (3)64.8米 问题探究:略21.2 二次根式的乘除(1)1.b a 2.y x- 3.-ab 4.x ≤4 5.略 6.33 7.B 8.C 9.B 10.(1)23(2)37- (3)230- (4)30160 (5)15- (6)237- (7)1222-(8)24 (9)6 (10)9y 2-4x (11)26085+ (12)b a 230 (13)n m m 2+- (14)xz y x 2212-11.(1)22b a a - (2)ab a b )(- 12.(1)22 (2)0 13.2cm 36,cm 34,cm 6,cm 32====∆ABC S AB AC BC 问题探究:分三种情况计算:图1 图2 图3(1)当AE =AF =10cm 时(如图1),S △AEF =50(cm 2) (2)当AE =EF =10cm 时(如图2),BF =8(cm),)cm (40212==⋅∆BF AE S AEF(3)当AE =EF =10cm 时(如图3),⋅==∆)cm (515),cm (512AEF S DF21.2 二次根式的乘除(2)1.6 2.1054 3.56,32-+4.-3<x ≤3 5.B6.B 7.B 8.C 9.C 10.A 11.A 12.B 13.(1)55 (2)510 (3)22 (4)5510- (5)22-(6)2(7)-6 (8)332-(9)a ab 52 (10)cab 23- (11)23(12)210(13)6y 3 (14)ab b a 2- (15)x xy 22- (16)625-- 14.cm 152 15.(1)a5或a 25 (2)ba 52或ab 25 16.31648-17.(1)不正确,第②③步出现了错误(2)原式ab ab aa ab ab b a a ab a b ab a =-⋅-=--=--=)1()()(218.42问题探究:(1)3 (2)33 (3)333 (4)3333个1001333 21.3 二次根式的加减(1)1.23 2.略 3.2 4.23,21 5.123+ 6.10255+ 7.B 8.D 9.D 10.B 11.D 12.A 13.(1)28 (2)25 (3)2538+-(4)3314 (5)52315- (6)523316- (7)24 (8)33132413+(9)5514334- (10)1 (11)a a 32-问题探究:不够用,还需买78cm21.3 二次根式的加减(2)1.3 2.0 3.1560- 4.3 5.xy x y )(- 6.x x 22- 7.212- 8.12 9.C 10.A 11.C 12.A 13.B 14.D15.A 16.B 17.(1)10 (2)347+ (3)28 (4)26- (5)4523-(6)6338559--- (7)2m mn -18.320 19.(1)有 (2)错在第一步,忽视了a <0(因为01>-a,所以a <0) (3)原式+--=--⋅---=a a a aa a a 1a a a --=-)1( 20.25-和25+的等差中项为5,等比中项为3± 问题探究:212)2(23)1(+-复 习1.x >5 2.x -2 3.1 4.±1 5.0 6.0 7.5 8.2-6a 9.6 10.C 11.B 12.C 13.D 14.C 15.B 16.D 17.D 18.A 19.D 20.A 21.C 22.(1)316 (2)7755-(3)2411 (4)1 (5)61230- (6)1 (7)0 (8)323 23.(1)a1-(2) 4(3)0 24.(1)58 (2)-2.45 (3)5418- 25.41 26.5第二十一章 二次根式测试题1.x ≥0且x ≠1 2.1≤x ≤3 3.b a - 4.1 5.x ≥1 6.07.6 8.3,91- 9.1≤a ≤3 10.21)1(21++=++n n n n (n 为自然数且n ≥1) 11.2006 12.4169 13.D 14.B 15.B 16.D 17.C 18.C 19.B20.D 21.C 22.B 23.B 24.D 25.(1)34242++ (2)x 319(3)2 (4)-11 (5)x x x -27 (6)a ab 325 26.3 27.11328.229-29.0.9cm 30.8531.(1)=+-==+=154441541544154415443315441444144)14(4154)14(42222+=-+=-+-=+- (2)=-12n n n11)1(1111222232322-+=-+-=-+-=-=--+n nn n nn n n n n n n nn n nn nn(n 为正整数,且n ≥2)。